Seminar 13

Relations factor-factor and product-product

Exercises

13.1. Relations F-F

1. Derive an isoquant function from the following two-factor production function:

$$
y=a+b_{1} x_{1}+b_{2} x_{2}-b_{3} x_{1}^{2}-b_{4} x_{2}^{2}+b_{5} x_{1} x_{2}
$$

2. Following isoquant function was derived from two-factor production function estimated in seminar 12 (influence of feed consumption and weight on production):

$$
x_{2}=-10810.8+4.275 x_{1}+0.004 y-0.000129 x_{1}^{2}+8.734 \times 100^{-6} x_{1} y+1,224 \times 100^{-7} y^{2}
$$

Calculate feed consumption required to reach production 50 t if average weight of each of 600 piglets is $28,5 \mathrm{~kg}$.
3. Make comments of following graph which includes isoquant functions for the relationship specified above.

4. Derive an isocline function for $M R S=0$, in case that weight $\left(\mathrm{x}_{2}\right)$ is influenced by feed consumption (x_{1}).
5. Calculate an optimal combination of factors x_{1} and x_{2} to reach production $30 t$, in case of costs minimization if $P x_{1}=10 \mathrm{CZK} / \mathrm{kg}$ and $P x_{2}=56 \mathrm{CZK} / \mathrm{kg}$.
6. Derive an isocost function based on optimal factors combination and calculate total costs. Then, explain the firm reaction on change of Px_{2} to level $48 \mathrm{CZK} / \mathrm{kg}$ for the same criterion optimality (specified above), which means no change of factors amount.

13.2. Relations $\mathbf{P}-\mathbf{P}$

1. Following production functions describe relationship between costs and production for three different products:

$$
\begin{aligned}
& y_{1}=-8(x-2,5)^{2}+50 \\
& y_{2}=-7,2(x-2,5)^{2}+45 \\
& y_{3}=3(x+0,5)^{2}-0,75
\end{aligned}
$$

costs/ha in thous and CZK	x	0,5	1,0	1,5	2,0	2,5	3,0	3,5
Production in q/ha	y_{1}	18,00	32,00	42,00	48,00	50,00	48,00	42,00
	y_{2}	16,20	28,80	37,80	43,20	45,00	43,20	37,80
	y_{3}	2,25	6,00	11,25	18,00	26,25	36,00	47,25

Calculate optimal combination of products y_{1} and y_{2} if total costs per 1 ha are 2,6 thousand CZK. Prices of products are following: $\mathrm{Py}_{1}=150 \mathrm{CZK} / \mathrm{q}$, $\mathrm{Py}_{2}=140 \mathrm{CZK} / \mathrm{q}$ and $\mathrm{Py}_{3}=390 \mathrm{CZK} / \mathrm{q}$.
2. Calculate MRPS, if $y_{1}=9,5 ; 39,57$ and 45,5 . Then, according to calculated values describe the relationship among products.
3. Calculate marginal productions, set prices of products and calculate optimal costs allocation among all products.
4. Calculate cost profitability for each product.

