Physics of Processes Changes and development of systems

Changes and development of systems

Chemical kinetics

- **chemical reactions take place at very different speeds (whole years vs. supersonic speeds for combustion**
- **the basic information in chemical kinetics is, in addition to time, the concentration of substance** *c* **and its rate of change over time d***c/***d***t*

Chemical equation: $A + mB \to AB_m$ (m – substance quantity - number of moles) **The time changes in the concentration of each component in the substance are expressed as:**

$$
-\frac{d[A]}{dt} = -\frac{1}{m}\frac{d[B]}{dt} = \frac{d[AB_m]}{dt}
$$

Chemical kinetics

1st order kinetic equations

- **the rate of change of individual components in a substance depends on their concentration**
- **this dependence is called the kinetic equation of the reaction**
- **the most important property of this equation is the order of the reaction:**

The chemical equation is given: $A + B \rightarrow C$.

The time evolution of the concentration of component A is described by the equation:

, where *i* **>** *j***;** *i***,** *j* **are integers and** *k* **is a real number** $|A|$ $\left|A\right|^{l}\left|B\right|^{j}$ (1) d $d[A]$ *i* $\lceil A \rceil$ $k[A|^l|B]$ *t A* $-\frac{u[1]}{u[2]}=$

- **-** *i* **values determine the order of the reaction according to the component** *A*
- **-** if we put $[A] = c$ a $i = 1 \Rightarrow j = 0$, then equation (1) takes the form:

- 1st order kinetic equation, where (2) d d *kc t c* $=$ $-$

- *k* **- kinetic parameter - a measure of the reaction rate**
- *c* **- component concentration**

Chemical kinetics

1st order kinetic equations

 e^{-kt} (3) - by integrating (2) we obtain $c = c_0 e^{-kt} \quad$ (3), where $\boldsymbol{c_0}$ – initial concentration of **the component**

ln 2 **- after substituting** *c* **=** *c***⁰ /2 do (3) obdržíme poločas reakce we obtain the half-life of the reaction:**

k t $\frac{1}{2} =$

- the time it takes for the initial concentration to drop by half

Decrease in N2O⁵ concentration in CCl⁴ (carbon tetrachloride) solution due to decomposition (Daniels, Alberty,1961)

Chemical kinetics

example of a 2nd order kinetic equation

The chemical equation is given: $A + B \rightarrow C$.

The time increment of component *C* **is described by the equation:**

 $|C|$ $(|A_0| - |C|)(|B_0| - |C|)$ (4) d d $k([A_0] - [C])([B_0] - [C])$ *t C* $\mathbf{z} = k(\left|A_0\right|-\left|C\right|)(\left|B_0\right|-\left|C\right|) \quad (4)$ - index "0" indicates the initial concentration

- 1st order reaction with respect to components *A* **and** *B* **but 2nd order reaction with respect to** *C*

- simplifying designation $c = [C]$, $a_0 = [A_0]$ a $b_0 = [B_0]$

- then solution (4) is:

$$
t = \frac{1}{k(a_0 - b_0)} \ln \frac{1 - c/a_0}{1 - c/b_0} \quad \text{pro} \quad a_0 \neq b_0 \quad \text{a} \quad t = \frac{1}{ka_0} \frac{c/a_0}{1 - c/a_0} \quad \text{pro} \quad a_0 = b_0
$$

Chaining of chemical reactions

- just as there is a chaining of chemical reactions, there is also a chaining of their description through differential equations

- an example is the combination of two subsequent reactions:

 $A \rightarrow B \rightarrow C$ (*i*)

- **in the first reaction, component** *A* **changes to** *B* **with kinetic parameter** *k***¹**
- in the second reaction the component *B* changes to *C* with kinetic parameter k_2
- **mathematical description of the reaction by differential equations:**

$$
\frac{d[A]}{dt} = -k_1[A] \quad (a) \qquad \frac{d[B]}{dt} = k_1[A] - k_2[B] \quad (b) \qquad \frac{d[C]}{dt} = k_2B \quad (c)
$$

with initial conditions: [*A***⁰] > 0, [***B***⁰] = 0, [***C***⁰] = 0**

Solution:

(a) in integral form: $[A] = [A_0]e^{-k_1t}$ (a')

- **- after inserting (a´) into (b):** $|A_{0}|$ $|e^{-k_1 t}-e^{-k_2 t}|$ (b) 2 N_1 $\frac{11^{24}01}{2}$ $e^{-k_1t} - e^{-k_2t}$ (*b* $k₂ - k$ k_1 A $B = \frac{\kappa_1 \mathbf{1} A_0 \mathbf{1}}{2} \Big| e^{-k_1 t} - e^{-k_2 t}$ \overline{a} =
- **- the sum of the material components of (***i***) is conserved, then:** $[C] = [A_0] - [A] - [B] = [A_0] + \frac{1}{1 - 1} (k_2 e^{-k_1 t} - k_1 e^{-k_2 t})$ (c) $1 \quad \mathbf{r}_2$ $\begin{bmatrix} 0 \\ -[A] \end{bmatrix}$ - $\begin{bmatrix} B \\ \end{bmatrix}$ = $\begin{bmatrix} A_0 \\ \end{bmatrix}$ 1 + $\frac{1}{|A_0|}$ $\begin{bmatrix} k_2 e^{-k_1 t} - k_1 e^{-k_2 t} \\ \end{bmatrix}$ (c $k₁ - k$ $[C] = [A_0] - [A] - [B] = [A_0] + \frac{1}{L} \left(k_2 e^{-k_1 t} - k_1 e^{-k_2 t}\right)$ \rfloor \cdot \mathbf{r} L \mathbf{r} \overline{a} \overline{a} $=[A_0]-[A]-[B]=[A_0]+ \frac{1}{2}[(k_2e^{-k_1t}-k_1e^{-k_2t}$

Chaining of chemical reactions

- **Fig.: Time dependence of components concentration**
- **- the concentration of component B peaks in time**
- **- after inserting (***d***) into (***b***´) is the max. concentration** *B***:**

$$
[B_{\max}] = [A_0 \left(\frac{k_1}{k_2}\right)^{\frac{k_2}{k_1 - k_2}}
$$

The course of concentration of components. Reaction according to the equation with initial conditions

 $[A_0] = 1; k_1 = 0, 1 \text{ s}^{-1}; k_2 = 0, 05 \text{ s}^{-1}$

$$
t_{Bm}
$$
 = 13,86 s and [B_{max}] = 0,5.

$$
\begin{array}{c}\n1.0 \\
0.9 \\
0.8 \\
0.7 \\
0.7 \\
0.9 \\
0.9 \\
0.9 \\
0.1 \\
0.1 \\
0.0\n\end{array}
$$
\nA

\nB

\nC

\n1.0

\n1.0

\n2.0

\n3.0

\n4.0

\n5.0

\n6.0

\n7.0

\n7.0

\n8.0

\n9.1

\n10.20

\n

$$
t_{Bm} = \frac{1}{k_1 - k_2} \ln \frac{k_1}{k_2} \quad (d)
$$

Reversible reactions

- reactions proceeding in the reverse direction of the initial reaction. Example:

- a reaction takes place where component A changes with kinetic parameter k_1 **into component** *B* **and at the same time a reaction where component** *B* **changes into component A with kinetic parameter** k_2

- **- differential equations describing the course of reactions:** $[A]$ k_1 A $+ k_2$ B *t A* $dt = \kappa_1 \mu_1 \mu_2$ d $= -k_1[A] +$
- **- equation takes on a special significance in the state of equilibrium, when** $d[A]/dt = d[B]/dt = 0$

and for the ratio of the equilibrium concentrations of the two components ([*B ^r* **] and [***A ^r* **]): where K is the equilibrium constant** $A \leftrightarrow B$
 a reaction takes place where component *A* changes with kinetic par

into component *A* with kinetic parameter k_z
 \cdot differential equations describing the course of reactions: $\frac{d[A]}{dt} = -k_i$
 \cdot equat $|B_{r}|$ $|A_{r}|$ $|A_{0}|-|A_{r}|$ $|A_{r}|$, $\frac{0 \text{ J} \quad \Gamma^{R}r \cdot \Gamma}{r} = \frac{K_1}{r} = K$ *k k A* A_0 $|-|A|$ *A B r* $\frac{r}{r} = \frac{l^{2}r}{r} = \frac{r^{2}r}{r} = \frac{r^{2}}{r}$ ÷, =

2

r

r

Arrhenius equation

Arrhenius found an empirical equation for the temperature dependence of the kinetic parameters of chemical reactions *k* **expressed in the simplest form as:**

$$
k = ve^{-\frac{E_a}{RT}}
$$

where ν - frequency factor (s⁻¹), E_a - activation **energy (J.mol-1),** *R -* **molar gas constant (J.K-1 .mol-1) and** *T* **- absolute temperature - knowledge of the characteristic quantities of a given reaction (** E **_a and** ν **) allows to determine the magnitude of the kinetic parameter for different reaction temperatures**

- a chemical reaction is a process involving an internal restructuring of the **reacting components**
- **this restructuring is associated with changes in the internal energy of the components; it is also called the formation of the activation complex** *X** intermediate steps between components A and B: $A \leftrightarrow X^* \leftrightarrow B$

Temperature-activated processes

- **- activation energy - energy required for the formation of the activation complex - the whole process of transition from component A to component B can be described schematically in a graph, where the "coordinates of change" are plotted on the "x" axis and the energy of the changing unit on the "y" axis - see Fig.**
- **- states** *A* **and** *B* **correspond to local energy minima**
- **- between** *A* **and** *B* **there is at least one state with maximum energy - the so-called activated complex**
- **- component** *B* **- steady state with the lowest energy**
- **- component** *A* **- only metastable, it is at an energy level Δ***E* **higher than** *B* **at the same frequency factor, the ratio of the kinetic parameters of the forward and reverse reaction :** *k AB RT* ΔE

$$
\frac{\kappa_{AB}}{k_{BA}} = e
$$

- with increasing temperature the ratio of the two kinetic parameters decreases, but their values according to the Arrhenius equation increase

- the rate of change of the kinetic parameter with temperature change is most often expressed by the modified Arrhenius equation:

$$
\frac{\mathrm{d}\ln k}{\mathrm{d}T} = \frac{E_a}{RT^2}
$$

- the first-order kinetic equation finds great application in many descriptions of phenomena - e.g. exponential decrease in amplitude of damped oscillations with decrement of damping *δ***:**

$$
x(t) = Ae^{-\delta t} \sin(\tilde{\omega}t + \varphi) = Ae^{-\frac{t}{\tau}} \sin(\tilde{\omega}t + \varphi) ,
$$
 5 acts here as a kinetic parameter

- damping time constant δ τ 1 =

- the time period over which the amplitude of the oscillations is reduced to a value e- times smaller

- analogous definition of response half-life - the time it takes for the amplitude of oscillations to drop to half of the initial value:

$$
t_{1/2} = \frac{\ln 2}{\delta} = \tau \ln 2
$$

- similar equations are used to describe the decay or lifetime of various products, substances, living organisms - e.g. the decay of radioactive elements

Decay of nuclides

Survival curves of microorganisms

- the above mechanism for describing decay and lifetime is also used to describe the survival of a collection of organisms or substances under defined condition

- DRT (decimal reduction time) is used instead of the kinetic parameter *k***:**

 $D = \ln(10)/k = \ln(10)\tau$

- *D* **is the length of time over which the concentration of individuals in a given environment and under given conditions falls by (to one tenth of the original number) one order of magnitude**

- in the medical and food industry, sterilisation results in a reduction of several *D*

- 12 *D* **procedures are used for food sterilisation - they reduce the pathogenic microorganism content by 12 orders of magnitude**

- the dependence of the natural logarithm of the concentration of organisms on the time of action is the so-called "survival line"

Survival curves of microorganisms

generalization - application of the Arrhenius equation

- now we are looking for the such operating times t_τ (critical time of action) which **at different temperatures lead to the same reduction of the concentration of the substance** $c/c₀$
- is therefore \bm{c}/\bm{c}_0 = konst. = exp(-*kt_T)* \Rightarrow *kt_T = ln(* \bm{c}_0 */* \bm{c} *) is also constant*

Survival curves of microorganisms generalization - application of the Arrhenius equation

In the last equation we add *k* **from the Arrhenius equation:**

$$
kt_{T} = ve^{-\frac{E_{a}}{RT}}t_{T} = \ln\left(\frac{c_{0}}{c}\right) \Rightarrow t_{T} = \frac{1}{\nu}\ln\left(\frac{c_{0}}{c}\right)e^{\frac{E_{a}}{RT}} \Rightarrow E_{a} = RT \ln\frac{t_{T}}{\frac{1}{\nu}\ln\left(\frac{c_{0}}{c}\right)} \Rightarrow
$$

$$
\Rightarrow T = -\frac{E_{a}}{R} \ln\frac{t_{T}}{\frac{1}{\nu}\ln\left(\frac{c_{0}}{c}\right)} = -\frac{E_{a}}{R} \ln t_{T} + \frac{E_{a}}{R} \ln\left[\frac{1}{\nu}\ln\left(\frac{c_{0}}{c}\right)\right] = -K_{s} \ln t_{T} + q
$$

- **equations for the relationship between temperature and heating time during thermoinactivation (in the case of enzymes and micro-organisms) or destruction (in the case of positive components, e.g. vitamins)**
- **thermoinactivation results in preservation by heating**

Application of the Arrhenius equation (continued)

- the equivalent temperature *T* **(i.e. the temperature at which there is a constant decrease in the concentration of the substance) decreases as a logarithmic function with increasing critical time of action** *t^T*

- the direction of T dependence on t_{T} , ($K_{\rm s}$ = $E_{\rm a}/{\mathsf R}$) depends on the respective reduction mechanism (*E_a*), but does not depend on the level of reduction (*c₀/c*)

- the constant term *q* **depends not only on the respective reduction mechanism (***E^a* **), but also on the level of reduction (***c***⁰** */c***):** $\overline{}$ $\overline{}$ $\overline{}$ \mathbf{L} \lfloor \mathbf{L} $\overline{}$ \int \setminus I \setminus $\bigg($ = *c c R E* $q = \frac{E_a}{I} \ln \left| \frac{1}{h} \ln \right| \frac{c_0}{a}$ ν

- as the ratio *c***⁰** */c* **increases, the value of** *q* **increases and therefore the reduction temperature corresponding to the same level of action**

Growth curves - GC

- **dependencies describing the temporal evolution of systems**
- **are based on observation (empirical)**
- **GC phases: increasing, stationary, possibly decreasing**
- **Examples - see graphs:**
- **1) Growth of bacterial colonies after their inoculation into the substrate**
- **2) Evolution of sheep numbers in South Australia - sigmoidal GC**

- **GCs with only a growth and stationary part are referred to as sigmoidal - they can be described by the logistic function P (which has been proposed to describe population growth)**

Logistics function

- *- P***(***t***) is defined for all** *t* ∈ **R**
- **- practically but just use** $t \in \langle -6, 6 \rangle$

Valid:
$$
P(t) = \frac{1}{1 + e^{-t}}
$$
 a $\frac{dP}{dt} = \frac{e^{-t}}{(1 - e^{-t})^2} = P(t)[1 - P(t)] = P(t)P(-t)$,

because equality applies 1 – *P(t)* **=** *P(-t)*

- **- the theoretical waveform is given with negative time and symmetry around the point [0;0,5]**
- **- important is the asymptotic behaviour for small and high values of time, where the value of the derivative of the function with respect to time is close to zero**

Logistics function (practical form)

- a logistic function in a practical form is used to describe growth:

 (P/K) $1 - \frac{1}{\cdot}$, d d l. \int \setminus I \setminus $\bigg($ $= r \frac{1}{r} \left| 1 - \right|$ *K P K P r t* P/K

where *r* **- growth rate and** *K* **- achievable capacity – see Fig.**

- for *P(***0***)* **=** *P***⁰ the solution of the equation is**

$$
P(t) = \frac{KP_0e^{rt}}{K + P_0(e^{rt} - 1)}
$$

- this equation describes the growth from an initial value of P_0 , **to a finite value of** *K* **for infinite time**

Overview of growth functions

There are a number of growth functions:

A review of growth functions used to describe increments in forest stands (Li Feng-ri et al. 2000)

