
Physics of Processes
Changes and development of systems



Changes and development of systems

Chemical kinetics

- chemical reactions take place at very different speeds (whole years vs. 

supersonic speeds for combustion

- the basic information in chemical kinetics is, in addition to time, the 

concentration of substance c and its rate of change over time dc/dt

Chemical equation:                              (m – substance quantity - number of moles)

The time changes in the concentration of each component in the substance are 

expressed as:
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Chemical kinetics
1st order kinetic equations

- the rate of change of individual components in a substance depends on their 

concentration

- this dependence is called the kinetic equation of the reaction

- the most important property of this equation is the order of the reaction:

The chemical equation is given: A + B  C.

The time evolution of the concentration of component A is described by the 

equation:

, where i > j; i, j are integers and k is a real number

- i values determine the order of the reaction according to the component A

- if we put [A] = c a i = 1  j = 0, then equation (1) takes the form:

- 1st order kinetic equation, where

k - kinetic parameter - a measure of the reaction rate

c - component concentration
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Decrease in N2O5 concentration 

in CCl4 (carbon tetrachloride) 

solution due to decomposition 

(Daniels, Alberty,1961)

Chemical kinetics
1st order kinetic equations
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- by integrating (2) we obtain , where c0 – initial concentration of 

the component

- after substituting c = c0 /2 do (3) obdržíme poločas reakce we obtain the half-life 

of the reaction:

- the time it takes for the initial concentration to drop by half

Exponential decrease in concentration:
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Chemical kinetics
example of a 2nd order kinetic equation
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The chemical equation is given: A + B  C.

The time increment of component C is described by the equation:

- index "0" indicates the initial concentration

- 1st order reaction with respect to components A and B but 2nd order reaction 

with respect to C

- simplifying designation c = [C], a0 = [A0] a b0 = [B0]

- then solution (4) is:



Chaining of chemical reactions
- just as there is a chaining of chemical reactions, there is also a chaining of their 

description through differential equations

- an example is the combination of two subsequent reactions:

- in the first reaction, component A changes to B with kinetic parameter k1

- in the second reaction the component B changes to C with kinetic parameter k2

- mathematical description of the reaction by differential equations:
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with initial conditions: [A0] > 0, [B0] = 0, [C0] = 0

Solution:

(a) in integral form:

- after inserting (a´) into (b):

- the sum of the material components of (i) is conserved, then:
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The course of concentration of components. 

Reaction according to the equation with 

initial conditions

[A0] = 1; k1 = 0,1 s-1; k2 = 0,05 s-1
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tBm = 13,86 s and [Bmax] = 0,5.

Chaining of chemical reactions

Fig.: Time dependence of components concentration

- the concentration of component B peaks in time

- after inserting (d) into (b´) is the max. concentration B:

Bm



Reversible reactions
- reactions proceeding in the reverse direction of the initial reaction. Example:

- a reaction takes place where component A changes with kinetic parameter k1

into component B and at the same time a reaction where component B changes 

into component A with kinetic parameter k2

- differential equations describing the course of reactions:

- equation takes on a special significance in the state of equilibrium, when

and for the ratio of the equilibrium concentrations of the two components ([B r] 

and [A r]):

where K is the equilibrium constant

- the last two equations express the principle of dynamic equilibrium
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Arrhenius equation
Arrhenius found an empirical equation for the 

temperature dependence of the kinetic 

parameters of chemical reactions k expressed in 

the simplest form as:

where n - frequency factor (s-1), Ea - activation 

energy (J.mol-1), R - molar gas constant

(J.K-1.mol-1) and T - absolute temperature

- knowledge of the characteristic quantities of a 

given reaction (Ea and n) allows to determine the 

magnitude of the kinetic parameter for different 

reaction temperatures

- a chemical reaction is a process involving an internal restructuring of the 

reacting components

- this restructuring is associated with changes in the internal energy of the 

components; it is also called the formation of the activation complex X* -

intermediate steps between components A and B: BXA 
*
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Temperature-activated processes

- activation energy - energy required for the formation of the activation complex

- the whole process of transition from component A to component B can be 

described schematically in a graph, where the "coordinates of change" are plotted 

on the "x" axis and the energy of the changing unit on the "y" axis - see Fig.

- states A and B correspond to local energy minima

- between A and B there is at least one state with maximum energy - the so-called 

activated complex

- component B - steady state with the lowest energy

- component A - only metastable, it is at an energy level ΔE higher than B  at the 

same frequency factor, the ratio of the kinetic parameters of the forward and 

reverse reaction :

- with increasing temperature the ratio of the two kinetic parameters decreases, 

but their values according to the Arrhenius equation increase

- the rate of change of the kinetic parameter with temperature change is most 

often expressed by the modified Arrhenius equation:
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Survival curves
application of kinetic equations

- the first-order kinetic equation finds great application in many descriptions of 

phenomena - e.g. exponential decrease in amplitude of damped oscillations with 

decrement of damping δ:

, δ acts here as a kinetic parameter

- damping time constant

- the time period over which the amplitude of the oscillations is reduced to a value 

e- times smaller

- analogous definition of response half-life - the time it takes for the amplitude of 

oscillations to drop to half of the initial value:

- similar equations are used to describe the decay or lifetime of various products, 

substances, living organisms - e.g. the decay of radioactive elements

)~sin()~sin()(  





tAetAetx

t

t




1


2ln
2ln

2/1 


t



Decay of nuclides

60Co β- 3,15.107

3H β- 3,87.108

90Sr β- 8,86.108

137Cs β- 9,53.108

226Ra α 5,05.1010

14C β- 1,81.1011

239Pu α 7,69.1011

233U α 5,13.1012

235U α 2,24.1016

238U α 1,42.1017



Survival curves of microorganisms

- the above mechanism for describing decay and lifetime is also used to describe 

the survival of a collection of organisms or substances under defined condition

- DRT (decimal reduction time) is used instead of the kinetic parameter k: 

D = ln(10)/k = ln(10)

- D is the length of time over which the concentration of individuals in a given 

environment and under given conditions falls by (to one tenth of the original 

number) one order of magnitude

- in the medical and food industry, sterilisation results in a reduction of several D

- 12 D procedures are used for food sterilisation - they reduce the pathogenic 

microorganism content by 12 orders of magnitude

- the dependence of the natural logarithm of the concentration of organisms on 

the time of action is the so-called "survival line"



Survival curves of microorganisms
generalization - application of the Arrhenius equation

- now we are looking for the such operating times tT (critical time of action) which 

at different temperatures lead to the same reduction of the concentration of the 

substance c/c0

- is therefore c/c0 = konst. = exp(-ktT)  ktT = ln(c0/c) is also constant



- equations for the relationship between temperature and heating time during 

thermoinactivation (in the case of enzymes and micro-organisms) or 

destruction (in the case of positive components, e.g. vitamins)

- thermoinactivation results in preservation by heating
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In the last equation we add k from the Arrhenius equation:

Survival curves of microorganisms
generalization - application of the Arrhenius equation



Application of the Arrhenius equation
(continued)

- the equivalent temperature T (i.e. the temperature at which there is a constant 

decrease in the concentration of the substance) decreases as a logarithmic 

function with increasing critical time of action tT

- the direction of T dependence on tT, (Ks= Ea/R) depends on the respective 

reduction mechanism (Ea), but does not depend on the level of reduction (c0/c)

- the constant term q depends not only on the respective reduction mechanism

(Ea), but also on the level of reduction (c0/c):

- as the ratio c0/c increases, the value of q increases and therefore the reduction 

temperature corresponding to the same level of action
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Growth curves - GC
- dependencies describing the temporal evolution of systems

- are based on observation (empirical)

- GC phases: increasing, stationary, possibly decreasing

Examples - see graphs:

1) Growth of bacterial colonies after their inoculation into the substrate

2) Evolution of sheep numbers in South Australia - sigmoidal GC

- GCs with only a growth and stationary part are referred to as sigmoidal - they 

can be described by the logistic function P (which has been proposed to describe 

population growth)



Logistics function
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- the theoretical waveform is given with negative time and symmetry around the 

point [0;0,5]

- important is the asymptotic behaviour for small and high values of time, where 

the value of the derivative of the function with respect to time is close to zero

because equality applies  1 – P(t) = P(-t)

- P(t) is defined for all t ∈ R

- practically but just use t ∈ -6, 6

Valid:



Logistics function
(practical form)

where r - growth rate and K - achievable capacity – see Fig.

- for P(0) = P0 the solution of the equation is

- this equation describes the 

growth from an initial value of P0, 

to a finite value of K for infinite 

time
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- a logistic function in a practical form is used to describe growth: 



Overview of growth functions
There are a number of growth functions:


