Physics of Processes

Changes and development of systems



Changes and development of systems

Chemical kinetics

- chemical reactions take place at very different speeds (whole years vs.
supersonic speeds for combustion

- the basic information in chemical kinetics is, in addition to time, the
concentration of substance c and its rate of change over time dc/dt

Chemical equation: A+ mB — AB_, (m - substance quantity - number of moles)

The time changes in the concentration of each component in the substance are
expressed as:

d[A]__1d[e]_d[AB,]

dt m dt dt




Chemical kinetics

1st order kinetic equations

- therate of change of individual components in a substance depends on their
concentration

- this dependence is called the kinetic equation of the reaction
- the most important property of this equation is the order of the reaction:
The chemical equation is given: A+ B — C.

The time evolution of the concentration of component A is described by the
equation:

d| A
- (Et ] B k[A]I [B]J (1), wherei>j; i, j are integers and k is a real number

- 1 values determine the order of the reaction according to the component A

-ifweput[A]=cai=1=)=0,then equation (1) takes the form:

dc

a =—Kc (2) - 1st order kinetic equation, where

k - kKinetic parameter - a measure of the reaction rate
C - component concentration



Chemical kinetics

1st order kinetic equations

- by integrating (2) we obtain C = Coe_kt (3), where Co — initial concentration of
the component

- after substituting ¢ = c, /2 do (3) obdrzime polo€as reakce we obtain the half-life
of the reaction: In 2

1/2 k
- the time it takes for the initial concentration to drop by half

Exponential decrease in concentration:

Decrease in N,O¢ concentration
¢ = 2.319075¢™ 7™ in CCl, (carbon tetrachloride)
R® =0.999802 solution due to decomposition
(Daniels, Alberty,1961)
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Chemical kinetics

example of a 2nd order kinetic equation

The chemical equation is given: A+ B —> C.

The time increment of component C is described by the equation:

% =k(A ]-[C]D(B,]-[C] (4) -index "0" indicates the initial concentration

- 1st order reaction with respect to components A and B but 2nd order reaction
with respect to C

- simplifying designation c = [C], a, = [Ay] @ by = [B]

- then solution (4) is:

1 1-c/a, 1 cla,
n pro a,#b, a t=
k(a, —b,) 1-c/b, ka, 1-c/a,

pro a, =D,



Chaining of chemical reactions

- just as there is a chaining of chemical reactions, there is also a chaining of their
description through differential equations
- an example is the combination of two subsequent reactions:

A>BC (i)

- in the first reaction, component A changes to B with kinetic parameter k,

- in the second reaction the component B changes to C with kinetic parameter k,
- mathematical description of the reaction by differential equations:

d[A] dBJ_ Al k.[B] de]_v 5 (c

=kl @ [A]-k,[B] (b) i —kB (©

with initial conditions: [Ag] >0, [By] =0, [C,] =0

Solution:
(@) in integral form: [A]=[A ™ (@)

- after inserting (a") into (b): [B]z%[eklt —e"‘zt] (b")

2 1

- the sum of the material components of (i) is conserved, then:

Cl- AT [el- a1 e ke )| @
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Chaining of chemical reactions

Fig.: Time dependence of components concentration
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- the concentration of component B peaks in time gy =

- after inserting (d) into (b") is the max. concentration B:

Kz

k,—kj, 1,0
[ max] [AO] -‘23\ /,..--'"‘
a8 //
A /
7
b Bm C
> 06 ‘l’
S 05 \LY
The course of concentration of components. -,,E ' Y’
Reaction according to the equation with s U4 \\
initial conditions 8 0,9 B
[A] =1; k; =0,15% k, = 0,05 s s AN
O 0,2 \ \‘\ -
tg, = 13,86 s and [B,,..] = 0,5. Mb] \\ \\\1
g \h"‘h—

18 20 30 40 50 60 70
Time (s)




Reversible reactions

- reactions proceeding in the reverse direction of the initial reaction. Example:
Ao B

- areaction takes place where component A changes with kinetic parameter k,
into component B and at the same time a reaction where component B changes
Into component A with kinetic parameter k,

- differential equations describing the course of reactions: % = —k,[A]+k,[B]
t

- equation takes on a special significance in the state of equilibrium, when
d[A]/dt =d|[B]/dt =0

and for the ratio of the equilibrium concentrations of the two components ([B ]
and [A []):
B.]_[Al-[A]_ Kk

= =— = K,where K is the equilibrium constant
[Ar] [Ar] k2

- the last two equations express the principle of dynamic equilibrium



Arrhenius equation

energy

activated complex

3

reaction coordinates

Arrhenius found an empirical equation for the
temperature dependence of the kinetic
parameters of chemical reactions k expressed in
the simplest form as:

_Ea
k=1e RT

where v- frequency factor (s?), E, - activation
energy (J.mol?), R - molar gas constant
(J.K-1.molt) and T - absolute temperature

- knowledge of the characteristic quantities of a
given reaction (E, and v) allows to determine the
magnitude of the kinetic parameter for different
reaction temperatures

a chemical reaction is a process involving an internal restructuring of the

reacting components

this restructuring is associated with changes in the internal energy of the
components; it is also called the formation of the activation complex X* -
intermediate steps between components A and B: A <> X < B



Temperature-activated processes

- activation energy - energy required for the formation of the activation complex

- the whole process of transition from component A to component B can be
described schematically in a graph, where the "coordinates of change" are plotted
on the "x" axis and the energy of the changing unit on the "y" axis - see Fig.

- states A and B correspond to local energy minima

- between A and B there is at least one state with maximum energy - the so-called
activated complex

- component B - steady state with the lowest energy

- component A - only metastable, it is at an energy level AE higher than B = at the
same frequency factor, the ratio of the kinetic parameters of the forward and

reverse reaction : k. A€

kBA

- with increasing temperature the ratio of the two kinetic parameters decreases,
but their values according to the Arrhenius equation increase

- the rate of change of the kinetic parameter with temperature change is most

often expressed by the modified Arrhenius equation:
dink E,

dT RT?




Survival curves

application of kinetic equations

- the first-order kinetic equation finds great application in many descriptions of
phenomena - e.g. exponential decrease in amplitude of damped oscillations with
decrement of damping &:

t

X(t) = Ae°'sin(@t + ) = Ae © sin(@t +¢) , & acts here as a kinetic parameter
T :% - damping time constant

- the time period over which the amplitude of the oscillations is reduced to a value
e- times smaller

- analogous definition of response half-life - the time it takes for the amplitude of
oscillations to drop to half of the initial value:

In 2
t1/2:722'|n2

- similar equations are used to describe the decay or lifetime of various products,
substances, living organisms - e.g. the decay of radioactive elements



Decay of nuclides

Half-life of selected nuclides
Nuclid Type of decay Half-life (s)
-1
7Ca B 0,175 50Co B 3,15.107
K B 1,23 3H B 3,87.108
N P 7.2 gy B 8,86.108
“Ne B 17,2 137Cs B 9,53.108
20Fr o 27,5 26Rq o 5,05.1010
“Fe B’ 511 14 B 1,81.10%
2K B 44600 239py a 7.69.101
PAu i3 2,32.10° 233 a 5.13.1012
“’Rn o 3,3.10° 235 a 2.24.1016
S i3 6,97.10° 238 a 1,42.1047
up B 1,24.108




Survival curves of microorganisms

- the above mechanism for describing decay and lifetime is also used to describe
the survival of a collection of organisms or substances under defined condition

- DRT (decimal reduction time) is used instead of the kinetic parameter k:

D =1In(10)/k = In(10)7
- D is the length of time over which the concentration of individuals in a given
environment and under given conditions falls by (to one tenth of the original
number) one order of magnitude

- in the medical and food industry, sterilisation results in a reduction of several D

- 12 D procedures are used for food sterilisation - they reduce the pathogenic
microorganism content by 12 orders of magnitude

- the dependence of the natural logarithm of the concentration of organisms on
the time of action is the so-called "survival line"



Survival curves of microorganisms

generalization - application of the Arrhenius equation

- now we are looking for the such operating times t; (critical time of action) which
at different temperatures lead to the same reduction of the concentration of the
substance c/c,

- Is therefore c/c, = konst. = exp(-kt;) = kt; = In(c,/c) is also constant



Survival curves of microorganisms

generalization - application of the Arrhenius equation

In the last equation we add k from the Arrhenius equation:

= E,
kt. =ve RTt; :In(c—o):ﬂT :iln(c—o)eRT = E, =RT Int;:
C v \c 1 [coj
“Inl =2
v ¢
E t E E 1 (¢c
=>T=-——"Ih—— :——alntT+—aln{—ln(—°ﬂ:—KslntT+q
R

R 1InC° R 1% C
|4 C

- equations for the relationship between temperature and heating time during
thermoinactivation (in the case of enzymes and micro-organisms) or
destruction (in the case of positive components, e.g. vitamins)

- thermoinactivation results in preservation by heating



Application of the Arrhenius equation

(continued)

- the equivalent temperature T (i.e. the temperature at which there is a constant
decrease in the concentration of the substance) decreases as a logarithmic
function with increasing critical time of action t;

- the direction of T dependence on t, (K,.= E,/R) depends on the respective
reduction mechanism (E,), but does not depend on the level of reduction (c,/c)

- the constant term g depends not only on the respective reduction mechanism

(E,), but also on the level of reduction (co/c): ¢y /.
q :—aln{— In(—oﬂ
1% C

- as the ratio cy/c increases, the value of g increases and therefore the reduction
temperature corresponding to the same level of action



Growth curves - GC

- dependencies describing the temporal evolution of systems

- are based on observation (empirical)

- GC phases: increasing, stationary, possibly decreasing

Examples - see graphs:

1) Growth of bacterial colonies after their inoculation into the substrate
2) Evolution of sheep numbers in South Australia - sigmoidal GC

- GCs with only a growth and stationary part are referred to as sigmoidal - they
can be described by the logistic function P (which has been proposed to describe
population growth)
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Logistics function

- P(t) is defined for allt € R
- practically but just use t € (-6, 6)
1 dP e

e © =(1_et)2=P(t)[1—P(t)]=P(t)P(—t),

Valid: P(t) =

because equality applies 1 — P(t) = P(-t)

time

- the theoretical waveform is given with negative time and symmetry around the
point [0;0,5]

- important is the asymptotic behaviour for small and high values of time, where
the value of the derivative of the function with respect to time is close to zero



Logistics function

(practical form)

- a logistic function in a practical form is used to describe growth:

d(P/K) rp(l Pj,

dt K K
where r - growth rate and K - achievable capacity — see Fig.
KP,e"
K+P,(e" -1)

- for P(0) = P, the solution of the equation is  P(t) =

- this equation describes the
growth from an initial value of Py,
to a finite value of K for infinite
time
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Overview of growth functions

There are a number of growth functions:

A review of growth functions used to describe increments in forest
stands (Li Feng-ri et al. 2000)
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