
Physics of Processes
Damped and forced harmonic oscillator



Damping of oscillating systems

- in real systems with dissipative forces, oscillating motion is limited or directly 

eliminated

- after one oscillation is performed, the system does not return to its original 

state

- therefore, it is not a strictly periodic process

- only in systems with a low level of damping we can consider the process to 

be quasi-periodic with damping as a "fault"

- tlumení damping is a common accompanying phenomenon of any real 

oscillating motion or process, which is amplified or suppressed as needed

- a frequent example of vibration damping in technical systems and machines 

in general

- simulation

http://www.acs.psu.edu/drussell/Demos/SHO/damp.html


Linear harmonic oscillator
Damped

- arises from a linear harmonic oscillator by 

parallel assignment of a damper with a 

coefficient of linear resistance b

- the simplest case:

the braking resistance force is directly 

proportional to the oscillation speed



Damping force proportional to speed 

    Fb braking (resistive) force,  

           b coefficient of linear resistance 

                                             equation of motion 

                                             δ decrement of attenuation 

 

                                                          
                           
                            
                            solution shape 
                                                 
                                                 characteristic equation 
 
 
                                                            
                                                           general solution: equation (1) 
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C1, C2 – from the initial conditions of motion 

 λ1, λ2 – generally complex numbers 
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4 solution cases: 

The equation of motion is again an ordinary linear 
differential equation of the 2nd order with constant 
parameters and zero right side. 



I. Negligible attenuation

δ/ω << 1

D2 ~ -ω2

- this state can be characterized as a case of almost undamped harmonic

oscillations

- resulting angular frequency of damped oscillations = inherent angular 

frequency of the oscillator

- the change in the frequency of the oscillator is in this case caused by changes 

in some of the quantities k and m
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II. Damped periodic oscillations
(0 < δ/ω < 1)

In this case, D2 is negative and the roots of the characteristic equation 

are complex numbers:

Damped periodic oscillations

- it is not strictly a periodic process - the amplitude of oscillations 

decreases exponentially over time
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is the angular frequency of the damped harmonic 

oscillations, which is less than the angular frequency ω

- solution of the equation (1)
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A,      - new integration constants - determined from initial conditions



II. Damped periodic oscillations
(0 < δ/ω < 1)



Velocity and acceleration
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http://www.acs.psu.edu/drussell/Demos/phase-diagram/phase-diagram.html


Attenuation

Attenuation              Period ratio

__________________________

1                  0              1

0,5             0,6931       1,0061

0,1             2,3026       1,0650

0,05           2,9957       1,1078

0,01           4,6052       1,2398
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logarithmic attenuation decrement

- the ratio of 2 consecutive maximum deviations to the same side from the 

equilibrium position:

- when comparing damped and 

undamped oscillations, applies:

- damping time constant

- expresses the time during which the amplitude of the oscillations 

decreases e-times: 



Influence of attenuation on the change of periodicity 

of damped oscillations: 

– attenuation



III. Critical attenuation
- astatic motion (δ/ω = 1)

If δ/ω = 1, then D = 0 and the solution of the characteristic equation is a double

root λ1,2 = -δ. The motion ceases to be a periodic motion.

The general solution of the equation of motion has the form:

If the oscillator at the moment t = 0 has a deviation from the equilibrium position

x0 = A and zero velocity v0 = 0, the equation gives:
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Critical attenuation is used to dampen motion wherever it is necessary to 

establish an equilibrium position as quickly as possible.
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So it applies:



III. Astatic motion 



IV. Overdamped oscillations -

strong attenuation
(δ/ω > 1)

If D2 = δ2 - ω2 > 0, then both roots of the characteristic equation are real and 

positive. The general solution of equation (1) then has a nonharmonic character.

In this case, the damping is so great that the system returns to the equilibrium 

position only very slowly after deviating. The so-called aperiodic (overdamped) 

motion takes place.
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- quantities C1, C2 and A,  are determined by the initial conditions as in other 

cases
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Linear harmonic oscillator
with driving force and damping

Driving force: Forced oscillating motion is performed by the system due to the 

action of a time-varying, usually periodic, external driving force: 

- inherent frequency of system ω, frequency driven harmonic oscillations Ω

- equation of motion

- ordinary linear differential equation of the 2nd

order with constant coefficients, inhomogeneous

- its solution can be written as the sum of the general

solution xb(tappropriate homogeneous equations and

any particular solution xp(t) of the whole equation

x(t) = xb(t) + xp(t)
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Solution

The deviation of the damped motion decreases exponentially with 

increasing time and after a certain time, practically only undamped 

oscillations remain, whose frequency is equal to the frequency of the 

driving oscillations Ω of external driving force. Then the oscillator 

performs only oscillations with the same frequency as the frequency 

of the external periodic variable force acting on it and these 

oscillations are called forced oscillations.

The agreement of the solutions with the differential equation for the 

argument of the function sin:
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Simulation

http://www.acs.psu.edu/drussell/Demos/SHO/mass-force.html


Consequences of the solution
- after a certain time from the beginning of the force, a steady state occurs and 

the system already oscillates periodically

- the inherent oscillations of the system subside after a certain time and the 

system stabilizes at an undamped harmonic oscillation with frequency 

- however, the effect of damping is reflected both in the amplitude of the driven

oscillations – see:

and in their phase – see:                               and

- both constants A, φ, present in the solution of the equation

lose their effect during damping as
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Resonance of driven oscillations
The difference ω2 – Ω2 in the 

denominator of the expression for C

shows that the amplitude C of the 

forced oscillations is the larger by 

what the smaller the difference

between the angular frequency ω of its 

own undamped oscillations and the 

angular frequency Ω of the forced 

oscillations. It is  resonance. The 

dependence of the amplitude of the 

forced oscillations on the frequency of 

the driving oscillations C = C (Ω) is 

called the resonance curve in 

amplitude.



Quality factor and energy of driven 

oscillations
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Q – characteristics of the oscillating system

2π times the ratio of the average energy of the oscillator

to the energy ΔTW dissipated by the damping force over a 

period of one period
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- at a large value of the quality factor Q, the 

accumulated energy is significantly greater than 

the energy supplied by the oscillation during one 

cycle

- each oscillator is fully characterized by its own 

frequency and quality factor, regardless of the 

oscillating process and the nature of the power 

dissipation



Resonance at low damping
(δ << ω)

- at low damping values  can be neglected and we consider the resonance to be 

the case when ω = Ω

- the phase shift  between the driving force and the forced oscillations in the 

resonant state is just -π/2 - see the graph

- this phase shift ensures that the driving force always acts in the direction of 

"moving" the oscillator and does a positive work

Stabilization:

- all the work done by the driving force is first used to overcome the resistances 

that dampen the oscillations - the amplitude of the oscillations and their energy 

increases

- then the amplitude and approximately also the energy reach a stable maximum 

value


