
Physics of Processes
Generation of standing waves



Generation of standing waves

- interference of opposing progressive waves from x1, x2 coordinates with phases:

- mean distance between the both sources

Coordinates transformation: - a new origin

, δv = (x2 – x1)/2 

, where ts = δv/c - the time of the meeting of the 

both waves in the middle of the interval (x1, x2)
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- both waves will have the same 

phase at xk coordinates, given by 

the condition: φ1 =  φ2 + k.2π, 

where k = 1, 2, 3, …

x



Generation of standing waves
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Equal amplitude of opposing waves

 
stt

z
Auuu  


 sin2cos221

The resulting equation implies: the interference 

of two progressive opposing waves produces 

harmonic oscillations with the same phase but 

variable amplitude Av = 2A cos(2πz/λ), which

depends on the z -coordinate, i.e. the distance 

of that point from .x

The largest value 2A corresponds to the places with the largest amplitude Av, i.e. 

where cos(2πz/λ) takes values ±1, i.e. for 2πz/λ = 0, π, 2π, .. Points with this 

maximum excursion are called antinodes. In the middle between the antinodes lie 

points where the amplitude of Av is zero. These points are called nodes.

Coordinates – antinodes: z = ±kλ/2

Coordinates – nodes: z = ±(2k+1)λ/4

In a progressive wave, all points oscillate with the same deflection, but with 

different phases, which propagate at the phase velocity of the wave. In a standing 

wave, all points oscillate with the same phase at points a wavelength apart and 

with opposite phase at points half a wavelength apart. The amplitude value in the 

case of standing waves is periodically dependent on the position of the point.

- the two opposing waves can then be 

written :

- both deflections differ in the sign of the phase

Superposition of both waves :

Animation

Standing longitudinal waves

https://www.walter-fendt.de/html5/phcz/standingwavereflection_cz.htm
https://www.acs.psu.edu/drussell/Demos/Flexural/bending.html
https://www.walter-fendt.de/html5/phcz/standinglongitudinalwaves_cz.htm


Standing waves in the strings
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In general: if a traveling wave is reflected at the free or fixed end, it is reflected 

with the same respectively opposite phase and the resulting standing wave has 

an antinode respectively node at this end
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Strings: threads of different materials fixed and tensioned at both ends

- free oscillations of the string are damped, harmonic and arise from the 

interference of progressive waves reflecting off the string's fixed edges

Boundary conditions: there are nodes at both ends of the string of length l:

n = 1, 2, 3... indicates the fundamental (n = 1) respectively higher oscillation 

frequency (higher harmonic)

Valid:                          , is therefore . Valid:                 ,

where  - normal tension in the string,  - string density

The angular frequencies of the string can also be expressed:

- relationship between angular frequency and angular wavenumber:

- this equation is valid only for integer n – it has a discrete (discontinuous) 

character



Standing waves in thin bars
Elastic solution
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Longitudinal oscillations: The actual oscillation of the rod is determined by 

standing harmonic waves, which are generated by the interference of 

progressive waves in the rod propagating in both principal directions. Their 

frequency is determined, as in the case of strings, by the arrangement of the 

standing quarter waves along the rod so as to preserve the nodes at the point 

of attachment (fixation) of the rod and any antinodes at the free ends of the rod. 

It is also clear that neither the angular frequency of the natural vibrations nor 

the speed of their propagation through the rod depends on the cross-section of 

the rod.

In the case of torsional oscillations, the wave equation form is retained, only 

the modulus of elasticity in tension E is replaced by the shear modulus G in 

this equation, while the meaning of the boundary conditions is retained. The 

biggest change is therefore the difference in the propagation speed of the 

torsional oscillations. Since G ≈ E/[2(1+μ)], the speed of the torsional waves

is - times smaller than the propagation speed of the longitudinal 

waves (μ denotes the Poisson's ratio).
)1(2 

ml

EJ
K nn




4
π2

Transverse oscillations: E - the modulus of elasticity of the rod,

J - the moment of inertia of the cross section of the rod, l – length

of the rod, m‘ - the mass per unit length of the rod, kλ - the angular

wavenumber, n = l/λ - the number of wavelengths along the length 

of the rod, Kn – the constant



Standing waves in other objects
From the acoustic point of view, the natural vibrations of the plates and 

membranes are very important, which depend not only on their dimensions and 

shapes, but also on their fixing points. The positions of the nodes and antinodes 

on an oscillating plate or membrane can be determined from the distribution of 

small particles deposited on their surface. Coarser particles (e.g. sand) settle in 

nodal points or lines and form so-called Chladni patterns. Finer particles (e.g. 

lycopodium), on the other hand, are deposited at antinodes and form so-called 

Savart patterns.

- see videos

Of great importance are the so-called spherical (spheroidal) oscillations, i.e. the 

oscillations of spherical bodies. Among these kmits, the intrinsic kmits of 

spherical celestial bodies, including the Earth, play a large role.
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Oscillations of membranes

E – modulus of elasticity, r – radius, m - mass

https://www.acs.psu.edu/drussell/Demos/MembraneSquare/Square.html


Elastic wave energy
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mass Δm, density ρ and deflection of the medium from 

the equilibrium position u
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- the propagating wave causes changes in the energy of the environment 

through which the wave passes

- instantaneous deflection of the environment caused by a progressive wave :

- the comparison of the relations for Ek and Ep shows that both parts of the energy 

are in phase (they reach a maximum and a minimum at the same time) - this is the 

essential difference between the energy of a part of the environment and the 

energy of a simple oscillating point



Elastic wave energy
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In an elastic environment , then:
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- the total energy of a part of the medium does not remain constant (unlike the 

total energy of oscillation of a single material point), but it is valid:



Energy density, wave flux














c

x
tA

V

E
w c  222

cos Energy density in an elastic medium

22

2

1
Aw  Medium energy density

cA
S

ScwPe

22

2
 Average wave flow through a plane area S (W)

cA
S

Pe 22

2

1
 Wave flux density (W.m-2)

2
π4 R

Pe
k  Wave flux density of a spherical wave at distance R

from its source

simple

another

Animation of sources:

https://www.acs.psu.edu/drussell/Demos/rad2/mdq.html
https://www.acs.psu.edu/drussell/Demos/forkanim/forkanim.html


The formation of a progressive 

wave in the string

0

0




c

c – phase velocity of transverse waves in the string

0 – axial tension in the string

0 – string density
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We introduce a quantity characterizing the state of a particular string, a constant 

independent of the string motion. It is a calibration constant mediating the 

relationship between the initial transverse wave velocity c and the braking stress

0. It is called acoustic resistance Z:
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- the string represents an open system in which a progressive wave propagating 

in the positive direction z is excited:

- angular wavenumber



Termination and connection of strings
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At the point of transition from the environment of acoustic resistance Z1 to the 

environment of acoustic resistance Z2, a reflected wave is formed, which 

combines with the original wave.

The total deflection u after the addition of the direct and reflected waves for z < 0 

is then given by:

- the equation shows that the reflected wave is phase shifted with respect to the 

incident wave (difference in signs for the term kλ1z).

The excited wave is described by the equation:



Wave passage through the string 

interface

The wave generally passes through the interface between the strings. In general, 

this fact can be expressed by the wave equation in the medium for z > 0:

where T is the transmission coefficient,

A is the amplitude of the incident wave,

kλ2 is the angular wavenumber in the medium for z > 0

Because the deflection of the waves in both parts of the medium must be a 

continuous function at the interface, the following must hold:
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Wave passage through the string 

interface
Different variants of string connection with another environment:

Name R  T     Z2/Z1       Charakteristics

Fixed connection -1     0      Endless resistance Z2, standing waves with

node for z = 0

A simple transition 0     1       1      Equal impedances (not the same environments)

Free end                    1     2       0      Zero resistance Z2, pure standing wave with

node for z = -λ/4 and antinode for z = 0

- if R is larger than -1 and less than 1, then the wave resulting from the 

superposition of the original and reflected waves is neither a pure standing 

wave nor a pure travelling wave

- such a wave is called a sine wave

- each sine wave can be represented by a superposition of two waves either 

standing or traveling with opposite direction of propagation

Wave reflection at the interface

https://www.acs.psu.edu/drussell/Demos/reflect/reflect.html

