Engineering Physics Physics for Forestry

Oscilation and waves

Oscillation – a repeated cycle motion of a particle about an equilibrium position

- Displacement along y axis for simple harmonic motion (SHM):

$$y = A \sin(\omega t + \varphi)$$
, where

A – amplitude of motion

 ω – angular frequency

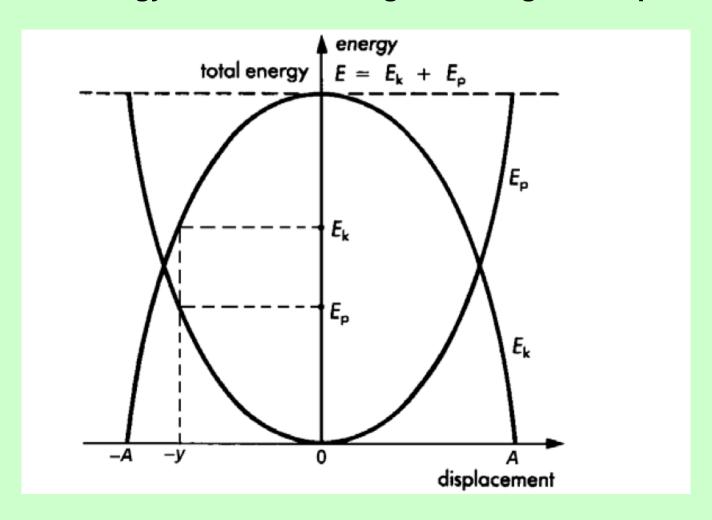
 $(\omega.t + \varphi)$ – phase of motion

 φ – phase constant – phase angle for time t = 0

T – period - the time to complete one cycle, [T] = s

f = 1/T – frequency - number of cycles per second $[f] = s^{-1} = Hz$

Speed of SHM:
$$v = \frac{dy}{dt} = \omega A \cos(\omega t + \varphi)$$


Acceleration of SHM:
$$a = \frac{dv}{dt} = \frac{d^2y}{dt^2} = -\omega^2 A sin(\omega t + \varphi) = -\omega^2 y$$

- In SHM there is a constant interchange of energy between the kinetic and potential forms

- The kinetic energy is given by: $E_k = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2A^2\cos^2(\omega t + \varphi)$
- The potential energy is given by: $E_p = \frac{1}{2}m\omega^2 y^2 = \frac{1}{2}m\omega^2 A^2 sin^2(\omega t + \varphi)$
- The total energy E constant; always the sum of E_k and E_p :

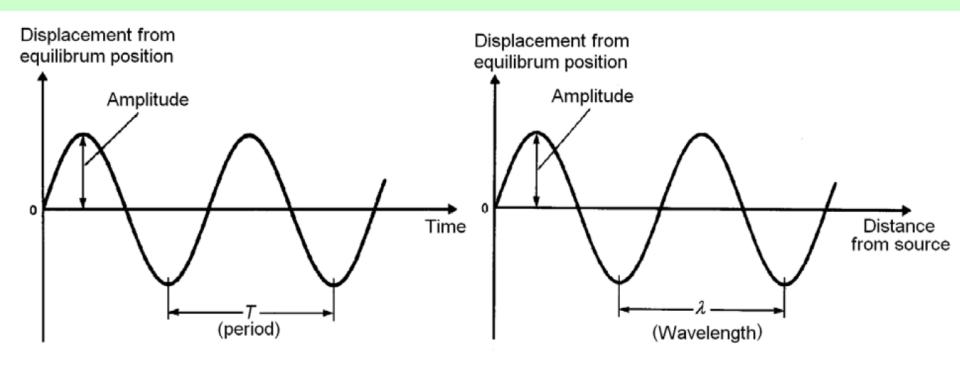

$$E = E_k + E_p = \frac{1}{2}m\omega^2 A^2$$

Fig. shows the energy as the oscillator goes through a complete cycle:

- <u>Wave motion</u> a means of transferring energy from one point to another without there being any transfer of matter between the points
- *Mechanical waves* (e.g. sound waves) require a material medium to propagate
- Electromagnetic waves electrical oscillations in which voltage, charge or current cycles around an equilibrium value can propagate through a vacuum
- Mechanical waves the propagation of the oscillatory motion of particles through space due to the elasticity of the environment
- Transverse waves particles oscillate perpendicular to the motion of the wave (e.g., water rippling on the surface)
- Longitudinal waves the particles of the environment oscillate parallel to the wave motion (e.g. sound waves in air)

- The source of the waves oscillates harmonically ⇒ the plot of the displacement of the particles from the equilibrium position at a given time versus the distance from the source is also sinusoidal see Fig.
- The <u>amplitude</u> A of a single particle oscillation; also the amplitude of the wave
- The <u>wavelength</u> λ the distance between any nearest particles at the same phase of their motion $[\lambda]$ = m
- The period T the time it takes any particle to complete one oscillation; also the time it takes a wave to travel one wavelength
- The <u>frequency</u> f the number of cycles of any particle in one second; also the number of wavelengths that pass through a fixed point in one second [f] = Hz

Displacement against time for a single particle in harmonic wave

Displacement against distance for particles in a harmonic wave

The speed of wave v – the distance the wave travels in one second

- The product of the number of cycles per second (frequency) f and the wavelength λ : $v = f \lambda$
- The energy transferred by an oscillator is proportional to the square of its amplitude \Rightarrow a proportionality between the square of the amplitude of the wave and its intensity
- The intensity *I* at a given point the energy per second passing through the unit surface in the direction along the normal
- The intensity *I* at a distance *r* from a point source of power *P* which radiates waves in all directions in a non-absorbing medium:

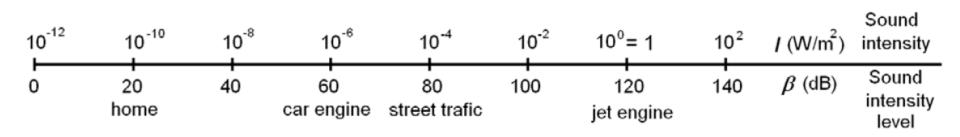
$$I = \frac{P}{4\pi r^2}$$
, [/] = W/m² (4 πr^2 - the area of a sphere of radius /)

- The intensity I(r) of emitting waves – inversely proportional to the distance r from the source: $I(r) \sim 1 / r^2$

Acoustics

- Sound waves longitudinal pressure waves travelling through a medium
- Sounds produced by vibrating objects (strings, pipes, loudspeakers)
- The hearing range for humans sounds of frequencies 20 Hz 20 kHz

Example:

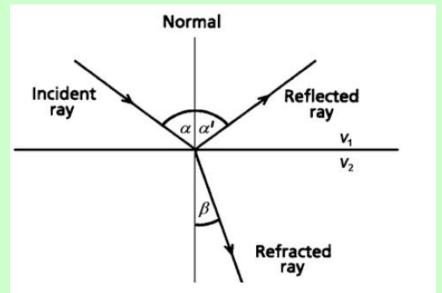

We assume that the speed of sound in air is about 333 m/s. If a lightning flash in a thunderstorm is followed by sound after 6 seconds, what is the distance between the lightning and the observer? Assume that light travels much faster than sound.

[d = 2 km]

Acoustics

- The speed of sound as any mechanical waves depends on the elastic and inertial properties of the medium:
- The speed of sound in water about 1450 m/s, in steel 5900 m/s
- The <u>intensity of a sound</u> I the energy of a sound wave per unit area per second: I = $J.m^{-2}.s^{-1}$ = $W.m^{-2}$
- Average sound intensity range for human hearing:
- hearing threshold ($I_0 = 10^{-12} \text{ W/m}^2$) pain threshold ($I_{\text{max}} = 10^2 \text{ W/m}^2$) \Rightarrow
- ⇒ huge range of sound intensity values 10¹⁴
- Better to use a logarithmic scale:
- The <u>sound intensity level</u> of the sound intensity *I*: $\beta = 10 \log \frac{I}{I_0}$
- $[\beta] = dB decibel$

Acoustics



Example 6.15:

What sound intensity level corresponds to a sound intensity of 10⁻⁴ W/m²?

$$[\beta = 80 \text{ dB}]$$

- The rays show the direction of light propagation
- Geometric optics assumes that light moves in straight lines and presents laws that describe the reflection and refraction of light rays
- When rays strike a plane surface, their direction changes
- Light is reflected from the plane surface, and some light may pass from one medium to another transparent medium in which the speed of propagation changes light refracts see Fig.

Law of reflection: $\alpha = \alpha'$ (alpha with a line)

- The angle of incidence α always equals the angle of reflection α'

Law of refraction - Snell's law:

- The ratio of the sine angle of incidence α to the sine angle of refraction β

is constant:
$$\frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$
,

where v_1 – the speed of light in the medium 1

 v_2 – the speed of light in the medium 2

$$n_1 = \frac{c}{r_1}$$
 - index of refraction of a medium with the speed of light v_1

$$n_2 = \frac{c}{v_2}$$
 – index of refraction of a medium with the speed of light v_2

(
$$c = 3.10^8$$
 m/s – speed of light in vacuum)

Total reflection

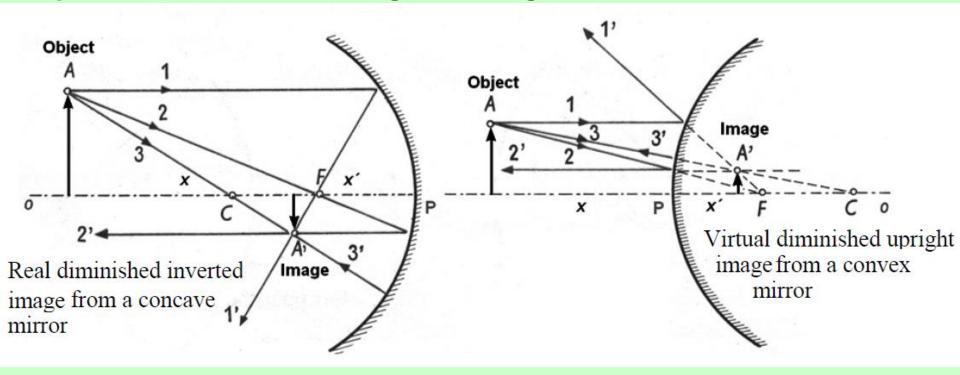
- If light travels from the optically denser medium of n_1 into the optically thinner medium of n_2 ($v_1 < v_1$), then $\beta > \alpha$
- The *critical angle* $\alpha_{\rm m}$ is reached when the refraction angle of the ray $\beta = 90^{\circ}$
- At angles α greater then the critical angle $\alpha > \alpha_{\rm m}$ the ray does not pass to the second medium and it is *totally reflected*

Example 10.17:

The light ray passes from the glass into the air. Calculate the angle of refraction if the angle of incidence is 30° and the refractive index of the glass is 1.5. Calculate the speed of light in the glass.

$$[\beta = 48^{\circ}35', v_1 = 2.10^{8} \text{ m/s}]$$

Image creation


- Reflection or refraction of light can be used to create an image of a physical object using mirrors and lenses

Mirror – a surface that reflects most of the light that falls on it

- When rays of light fall on a mirror, the law of reflection tells how the rays are reflected
- A plane mirror a flat reflecting surface
- The image formed by a plane mirror is always the same size as the object; is as far behind the mirror as the object in front of the mirror
- The image is laterally inverted
- When you look at yourself in a plane mirror, you do not see yourself exactly as you appear to others, but with the right and left sides reversed

- Spherical mirrors made up of the surfaces of spheres
- Concave mirrors have a reflecting surface in the inner parts of the sphere Convex mirrors have a reflecting surface in the outer parts of the sphere
- Position of the image compared to the position of the object:
- The image can be *upright* or *inverted*
- Height of the image compared to the height of the object:
- The image can be enlarged, diminished or the same size as the object
- A *virtual image* an image from which light rays seem to pass and which cannot be created on a screen
- A real image one through which light rays actually pass and can be displayed on a screen

Graphical construction of image – see Fig.

- C the centre of curvature of the sphere from which the mirror's part of surface is formed,
- P the top of the mirror,
- CP the radius of curvature r of the mirror

- The distance from the focus F to the top of the mirror P the *focal* length f
- The focal length f is related to the radius of curvature r of the mirror by the relation: f = r/2
- For each type of spherical mirror there are three main rays whose paths can be determined

- 1 the incident ray parallel to the optical axis is reflected to the focus F,
- 2 the incident ray passing through focus F is reflected back parallel to the optical axis,
- 3 the incident ray passing through the centre of curvature C is reflected back along its original path

Calculation of image properties

- To calculate image position, the mirror formula (equation) is used:

$$\frac{1}{x} + \frac{1}{x'} = \frac{1}{f}$$
 (f = r/2), where

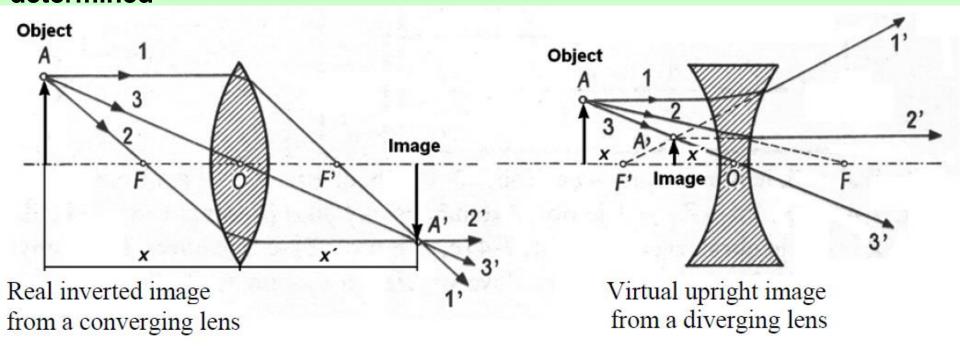
- x object-mirror distance,
- x' image-mirror distance,
- f focal length of mirror,
- r radius of curvature of mirror

Lateral magnification m – the ratio of the image height h_i to the object

height
$$h_0$$
: $m = \frac{h_i}{h_0} = -\frac{x'}{x}$

Sign convention for these two equations:

- All distances are measured to the top P of the mirror
- The distances in front of the mirror are of positive algebraic sign
- The distances behind the mirror are of negative algebraic sign
- This is also true for focal distances: f > 0 concave mirror, f < 0 convex mirror
- Positive values x' > 0 for real images
- Negative values of x' < 0 for virtual images
- The object and image heights, $h_{\rm o}$ and $h_{\rm i}$ positive for points above the optical axis, negative for points below the optical axis


<u>Lens</u> – a curved, transparent material used to refract the light that falls on it

- Light is refracted from the first material (usually air) into the lens, passes through the lens, and then refracts back into the first material
- Converging lens incident light rays parallel to the optical axis converge to the focus (focal point) F after refraction on the lens surfaces
- Diverging lens incident light rays parallel to the optical axis diverge from the focus (focal point) F after refraction on the lens surfaces
- Focal length f the distance between the optical centre O and the focal point F

The power of lens P:
$$P = \frac{1}{f}$$
 (Power = $\frac{1}{\text{focal length in metres}}$)
$$[P] = m^{-1} = D \text{ (dioptre)}$$

Graphic construction of the image – see Fig.

- If the paths of two arbitrary rays from one point on an object are known, the position of its image (the intersection of the two refracted rays) can be determined
- For each type of lens there are three main rays whose paths can be determined

- 1 the incident ray parallel to the optical axis is refracted to the focus F' on the other side of the lens,
- 2 the incident ray passing through the F focus is refracted parallel to the optical axis,
- 3 the incident ray passing through the optical centre O does not change its direction

Calculation of image properties

- To calculate image position, the lens formula (equation) is used:

$$\frac{1}{x} + \frac{1}{x'} = \frac{1}{f}$$
, where

- x object-lens distance,
- x' image-lens distance,
- f focal length of lens

Lateral magnification m – the ratio of the image height h_i to the object

height
$$h_0$$
: $m = \frac{h_i}{h_0} = -\frac{x'}{x}$

Sign convention for these two equations:

- All distances are measured from the optical centre O of the lens,
- The object distance positive if the object is in front of the lens,
- The image distance positive if the image is behind the lens and negative if the image is in front of the lens (positive values of x' > 0 for real images, negative values of x' < 0 for virtual images),
- The focal length positive for a converging lens f > 0 and negative for a diverging lens f < 0,
- The object and image heights $h_{\rm o}$ and $h_{\rm i}$ positive for points above the principal axis and negative for points below the principal axis