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s u m m a r y

The linear potential model of Meyer and Polubarinova-Kochina (MPK) solves Laplace’s equation in a
quadrant, the vertical face of which is subject to a harmonic variation of hydraulic head induced by a tide.
On the horizontal face of the quadrant a linear combination of the partial derivatives of the head with
respect to time and with respect to the vertical Cartesian coordinate are linearly related. The fields of pore
pressure (head) and Darcian velocity, trajectories of marked particles, the oscillating phreatic surface and
its upper envelope are obtained. Hydrograph in a piezometer located 60 m from the shore line in a thick
unconfined coastal aquifer (Oman) is interpreted by the analytical results of the model using the detected
groundwater amplitude attenuated as compared with the tide amplitude. MPK method provides a poten-
tially superior description to the Dupuit–Forchheimer method for tidally driven phreatic systems.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

‘‘Time is infinite motion without a single instance of rest”.L. Tol-
stoy, War and Peace

Cyclostationarity, i.e. repetitiveness with certain periods,
amplitudes and phase shifts is one of the cornerstones of modern
science: orbiting planets in celestial mechanics, life in biology,
Tolstoy’s pendulum-sweeping civilization clashes and military
invasions in geopolitics or the hydrological cycle in geosciences,
among many other phenomena, are characterized by temporal
regularity. Historically, processes with linear and non-linear
growth-decay kinetics called for monomials and exponential
functions, while the sin-cos-functions based description of har-
monic (or anharmonic) behaviour of an entity exposed to ‘‘sig-
nals” (‘‘agitations”, ‘‘forcing”) emerged as the Fourier series-
integral analysis/synthesis. In groundwater hydrology, the most
common natural, periodically excited system is a coastal aquifer,
the head in which oscillates in response to the astronomic cyclic-
ity (realized through easily observable tides). Simple-coupled har-
ll rights reserved.

oils, Water, and Agricultural
University, Oman. Fax: +968

@gmail.com (A. Kacimov),

ple/anvar/anvar.html, http://
monic variation of the ocean stage is imposed as a boundary
condition in the contiguous porous layers, where the hydraulic
head observations require special gadgets (piezometers, data-
loggers).

Coastal aquifers in Oman (especially, in the Batinah region,
Kacimov et al., 2009a,b) and in other arid countries (Pulido-Bosch
et al., 2004), are important sources of both fresh groundwater from
a terrestrial submarine discharge (if any) used for near-coast irriga-
tion, and of encroached beach-bank-filtered sea water used as
influent of desalination plants. Usually, a shallow (2–10 m) well
is dug/drilled in an unconfined aquifer composed of sand or grave-
ly unconsolidated sediments and either fresh water lens is
skimmed or saline water is abstracted. These wells are located sev-
eral meters/tens of meters from the shore line and therefore the
tide effect on the water level in the wells is quite pronounced.
Amplitudes of tides in the Gulf of Oman in the Batinah region are
within the range of 1–1.3 m (see the link below).

The objective of this note is to retrieve a hydrograph from a
shallow piezometer installed in an unconfined aquifer in the study
area (Al-Hail site, Samail catchment, Southern Batinah), to link this
hydrograph to the tide amplitude and to interpret the results using
the Linear Potential Theory (LPT) of Meyer (1955-1956) and Polu-
barinova-Kochina (1959; Polubarinova-Kochina and Kochina,
1994), abbreviated as MPK below and recently implemented on ex-
actly the same site for modeling artificial recharge experiments
(Kacimov et al., 2009b).

http://dx.doi.org/10.1016/j.jhydrol.2010.07.040
mailto:anvar@squ.edu.om
mailto:akacimov@gmail.com 
mailto:�osman@squ.edu.om 
http://www.squ.edu.om/agr/depts/swae/people/anvar/anvar.html
http://www.ksu.ru/eng/anvar/
http://www.ksu.ru/eng/anvar/
http://dx.doi.org/10.1016/j.jhydrol.2010.07.040
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


bedrock

H0
y

x

Phreatic 
surface 

L

t

ht(t)

b

Mean sea level (msl)

Tp

aquifer

h(x,t)

A

B

Br

h0

Swash zone

Uniform Darcian 
velocity profile in DF
approximation 

Maximum run-up elevation

Minimum run-down elevation

Ocean water

Gently inclined beach slope

Fig. 1. Vertical cross-section of a finite-thickness unconfined coastal aquifer.
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For coastal aquifers (if not fjordic and not interspersed by river
channels perpendicular to the shore line) on a moderate scale of
this study a 2-D flow obeys the Darcy law:

V
!¼ �krhðx; y; tÞ ð1Þ

where x and y are the landward-oriented and vertical Cartesian
coordinates (Fig. 1), t is time, k is hydraulic conductivity (constant)
and the Darcian velocity vector V

!ðx; y; tÞ has components u and v in
x and y directions, respectively.

In this note we are not interested in the swash, riparian and
near-shore zone (an oval demarcates this zone in Fig. 1) where
infiltration-exfiltration – although also cyclostationary and moni-
torable by standard piezometers – is controlled by the beach prop-
erties (e.g., Austin and Masselink, 2006) and is important for beach
morphology, sediment transport in the surf zone, beach biota,
near-shore sea currents and wave geomechanical impact/energy
transfer through the beach skeleton (see, e.g., Finn et al., 1983;
McLachlan and Brown, 2006). Our focus will be on the part of the
phreatic surface located relatively far from the shore line, i.e.
where high-frequency fluctuations of the sea level are already fil-
tered by a porous beach cushion. At the same time, the piezometer,
where water table fluctuations are observed, should not be too far
from the beach because the amplitude of these fluctuations de-
creases with x. Moreover, at high x in Fig. 1 other hydrological ef-
fects (e.g. irrigation, traffic load, density contrast close to the
interface of a sea water intrusion zone, Kacimov et al., 2009a,
etc.) interfere and obliterate the tidal agitation.

Since the Ferris (1951)–Jacob (1950) papers and earlier Dutch
contributions (see De Ridder and Wit, 1965 for references) the ef-
fect of tides on unconfined and confined aquifers and mathemati-
cally equivalent problems of surface waves impacting earth dams
have been studied theoretically, in laboratory experiments and in
the field (e.g., Carr and Van Der Kamp, 1969; De Cazenove, 1971;
Edelman, 1972; Erskine, 1991; Fakir and Razack, 2003; Geng
et al., 2009; Kim et al., 2007; King et al., 2010; Li et al., 1999; Mish-
ra and Jain, 1999; Ojima, 1977; Ogris, 1972; Reynolds, 1987; Rob-
erts et al., 2010; Rotzoll et al., 2008; Teo et al., 2003; Trefry, 1999;
Vandenbohede and Lebbe, 2007; Wang and Tsay 2001; Zhou,
2008), with a recent focus on variable-density and solute transport
numerical codes (e.g., Li et al., 2009). The Dupuit–Forchheimer (DF)
approximation, usually exploited in models describing the ground-
water zone inland (and far from the oval in Fig. 1) assumes a hor-
izontal (quasi-horizontal) piston-type cyclostationary motion of
water from/into an open water body (e.g., sea, reservoir, river,
etc. or their combinations demarcating a porous massif in the
plane not shown in Figs. 1 and 2) into/from an adjacent aquifer
of a certain thickness, k and storage coefficient. The amplitude
and phase of water level fluctuations in piezometers (observational
wells) are related to the inducing signal from the source of cyclic
agitations that is often used in solving inverse problems.

Since Putnam (1949) and Reid and Kajiura (1957) it is well
understood that a cyclic excitation of Darcian flows of a con-
stant-density incompressible fluid in an incompressible fully-satu-
rated porous skeleton subjacent to any surface water waves should
be described by the Laplace equation in the (x, y)-plane. If a flat
porous sea floor is subject to periodic wave impacts from above
(as in Putnam–Reid–Kajiura schemes and numerous papers pub-
lished after them, see, e.g. Packwood and Peregrine, 1980), then
solving a boundary-value problem for this equation is mathemati-
cally similar to the steady model of groundwater motion eluci-
dated by Tóth (1963) (see, e.g., Bokuniewicz, 1992), i.e. the
theory of holomorphic functions can be used for these two differ-
ent applications (in coastal engineering, e.g. Magda, 2000 and in
hydrogeology, e.g. Craig, 2008).

If a porous massif has a phreatic surface(s), as in coastal aquifers
or porous embankments, then, generally speaking, a non-linear
condition should be satisfied on this free boundary (Roberts
et al., 2010; Polubarinova-Kochina and Kochina, 1994). The math-
ematical complexity of the problem in Fig. 1 is exacerbated by the
presence of a transient seepage face, periodically appearing and
disappearing on a beach slope or even on both sides of a depression
periodically emerging on the lee side of a beach bank crescent
(Aitchison et al., 1983). During the exfiltration stage, decoupling
occurs between the groundwater phreatic surface and free surface
in the reservoir free water body (Nielsen, 1990; Turner et al., 1996),
which is actually the main stoss-side decoupling. Lee-side decou-
plings and seepage faces are short-lived and depend on the pres-
ence of microtopogrpahy depressions but hey are themselves
‘‘decoupled” with the stoss-side decoupling. The Laplace equation
based, non-linear and transient phreatic-surface dynamics juxta-
posed with, say, ocean waves (Nielsen et al., 1997) or river bores
– crucial in the swash zone (oval in Fig. 1) – to the best of our
knowledge, has not yet been described in a closed form, although
several analytical approximations (see, e.g., Longuet-Higgins,
1983, who actually ignored the water table and solved the Laplace
equation in a half-plane with a Dirichlet boundary condition for u,
given on the beach surface), in particular, the perturbation analysis
of Teo et al., 2003 and Roberts et al., 2010 (they took into account
finite-slope beaches and obtained series expansions for several
harmonics), and numerical codes (e.g., Gardner, 2005) have been
implemented.

As numerical methods can tackle PDEs even more parametri-
cally complex than the Laplace equation, the effects of capillar-
ity/partial saturation were included through upgrading the
governing equation to the Richards one, which has been tackled
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Fig. 2. Vertical cross-section of an infinite-thickness unconfined coastal aquifer.
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by FDM–FEM–BEM. Incorporation of the capillary fringe and va-
dose zone in the tidal effect model exterminates the free boundary
but demands the soil water retention and unsaturated permeabil-
ity functions and additional boundary conditions on the soil–air
interface, that is seldom feasible in the field.

It is noteworthy that the topology of the resulting seepage
streamlines, reproduced from solving either the Laplace or Rich-
ards equation, resembles ones induced by vortices (perpendicular
to a vertical plane of Fig. 1), with ‘‘hinge lines” similar to ones of
Tóth (1963), although, of course, vorticity in commonly posited
constant-density fluids is nil. These ‘‘hinge lines” are transient,
with an exception of standing waves on a horizontal sea floor, i.e.
the loci of the ‘‘hinge lines” move up and down along the beach
contour (or sea floor) with the wave set up as in e.g., bores, tides,
higher-frequency waves (Ataie-Ashtiani et al., 2001; Li and Barry,
2000), or traveling oceanic waves.
2. Boundary-value problems and their explicit solutions

2.1. Dupuit–Forchheimer approximation

The Boussinesq equation (Baird et al., 1998; Horn, 2002) in an
unconfined horizontal homogeneous isotropic aquifer of an effec-
tive porosity s (also called drainable porosity, specific yield-specific
storage in no-hysterisis media, storage coefficient; not to confuse
with specific storage in confined aquifers), with a horizontal subja-
cent bedrock and semi-infinite in the positive x direction (Fig. 1) is
written for the saturated thickness hs(x, t) of a fluid sandwiched be-
tween the bedrock and phreatic surface:

k
@

@x
hs
@hs

@x

� �
¼ s

@hs

@t
ð2Þ

i.e. in Eq. (2) the y-coordinate is effectively exterminated from
Eq. (1). Several generalisations of PDE (2) to sloping bedrocks,
leaky aquifers stacked beneath one where hs is searched and
recharge on the phreatic surface have been examined for cyclo-
stationary boundary conditions (e.g., Smith, 2008; Su et al.,
2003).

No explicit analytical solution for a boundary condition corre-
sponding to a tidal excitation (even for a simple harmonic) are
known for Eq. (2). Integral estimates are, however, possible. In
this manner, Philip (1973) predicted the effect of overheight
(superelevation) of the period-averaged water table above the
mean sea level (msl), later confirmed in laboratory and field
experiments, as well as in various perturbation solutions by
Knight (1981), Li et al. (2000), Parlange et al. (1984), Roberts
et al. (2010), Song et al. (2006, 2007), Teo et al., 2003, Zyryanov
and Khublaryan (2006). As Kacimov (2002) argued in congruity
with Philip’s (1973) seminal ideas, superelevation is a generic
property of a non-linear diffusion equation and is not caused by
a seepage face (contrary to what some of Philip’s disciples/adver-
saries stated).

The lack of analytical solutions to (2) doomed practical
groundwater hydrologists to various types of linearisations
(Polubarinova-Kochina and Kochina, 1994), e.g. to representation
of hs in (2) as hs = b + h0(x, t), where b is the ‘‘average” saturated
thickness. Then putting this sum into (2) and by ignoring the
term (@h0=@x)2 – that is allegedly true because the slope of the
water table is already postulated to be small in the original
non-linear Boussinesq equation (2) – the governing PDE is sim-
plified to:

@2h0

@x2 ¼
s
T
@h0

@t
ð3Þ

where T = kb is ‘‘transmissivity”. Eq. (3) makes most groundwater
hydrologists happy because for this linear PDE the whole analytical
machinery, from, e.g., the Carslaw and Jaeger, 1959 heat conduction
compendium, becomes available. If h0 in Eq. (3) is counted from msl,
then the tide-related problem is solved with the boundary
conditions

h0ð1; tÞ ¼ 0; h0ð0; tÞ ¼ htðtÞ ð4Þ

In Eq. (4) the second boundary condition, determined by the
tide, is imposed on a vertical line AB (dashed-dotted line in
Fig. 1). The real sea floor, ABr, is usually gently sloped and, hence,
far from AB. This deviation of the contours, through which agitation
is induced, is, in our opinion, one of the major flaws of the DF the-
ory (2) and its linearisation (3).

From now on we assume the simplest signal characterized by a
single harmonic:

ht ¼ H0 cos
2pt
tp

ð5Þ
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where H0 is the amplitude of the tide and tp is the period. Then the
so-called Ferris (1951)–Jacob (1950) solution1 to the boundary-va-
lue problem (3)–(5) is

h0 ¼ H0 exp �
ffiffiffiffiffiffiffi
ps
tpT

r
x

� �
cos

2pt
tp
� x

ffiffiffiffiffiffiffi
ps
tpT

r� �
ð6Þ

We emphasize that in Eq. (6) three independent physical char-
acteristics of an unconfined aquifer are imbedded: s, k and ‘‘aver-
age” saturated thickness b (T = kb). How to get the latter is a
special story (Polubarinova-Kochina and Kochina, 1994).

2.2. Linear potential theory

Half a century ago, MPK developed an alternative (alas, well-
forgotten) theory for predicting water table oscillations in an
unconfined aquifer. In 1955–1956 Meyer published a series of pa-
pers where a purely cyclostationary tidal excitation was addressed
(with no initial conditions). Polubarinova-Kochina (1959) consid-
ered a more general case of an arbitrary initial condition for a phre-
atic surface (e.g. a given steady state regime preceding the further
transient ‘‘agitation”) disturbed by an arbitrary reservoir stage var-
iation (in particular, by a harmonic agitation). From the Polubari-
nova-Kochina (1959) solution the results of Meyer follow as a
particular case (large-time limit when the ‘‘memory” of the initial
water table shape is effaced). We shall base our analysis on the lat-
est derivations of Polubarinova-Kochina and Kochina (1994) who
considered a porous quadrant x > 0, y < 0 (Fig. 2), fully saturated
(capillarity ignored). The Darcian velocity potential u(
x, y, t) = �kh(x, y, t) obeys the Laplace equation:

@2/
@x2 þ

@2/
@y2 ¼ 0 ð7Þ

A non-linear condition holds:

s
@/
@t
þ k

@/
@y
þ @/

@x

� �2

þ @/
@y

� �2

¼ 0 ð8aÞ

on an unknown free boundary. Eq. (8a) has recently caused a hot
discussion (Strack and Verruijt, 2010) which showed that even
experienced groundwater hydrologists stumble on its interpreta-
tion. This equation is as nasty as all non-linear wave problems (Sto-
ker, 1957) and even a step-function type solution (a sudden rise of
the water level in a reservoir, De Wiest, 1960) or similarity solution
(constant-rate rise of the water level in two adjacent reservoirs,
Kacimov and Yakimov, 2001) are mathematically so tedious that
(8a) is commonly linearised to

@/
@t
þ k

s
@/
@y
¼ 0 ð8bÞ

which is imposed on the fixed y = 0 line (see Ogris, 1972 for gener-
alization of Eq. (8b) to seepage counting for inertial effects, usually
ignored in standard groundwater flow models). The initial condition
for (7) is taken as:

/ðx; y;0Þ ¼ 0 ð9Þ

which means that at t = 0 all groundwater is at rest. Other condi-
tions on the boundaries of the porous quadrant in Fig. 2 and far
from the beach-free surface are:
1 Clearly, like the Theis confined-aquifer - sink-well solution, (6) was well known to
engineers dealing with heat conduction, see Carslaw and Jaeger, 1959, Chapter II,
Section 6 and viscous flows of Newtonian fluids, decades prior to the Ferris and Jacob
publications. The original ideas can be tracked back to the Poisson treatise: Memoire
sur la distribution de la chaleur dans les corps solides. J. de l’e Polytechnique. Paris,
1823.
/ð0; y; tÞ ¼ �kht; c/ðx;0; tÞ ¼ �ky; /! 0 at r !1;
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð10Þ

The last asymptotics in Eq. (10) implies no regional or pumping-
induced flow far from the shoreline.

Polubarinova-Kochina and Kochina’s (1994) solution in terms of
h is:

hðx; y; tÞ ¼ � 2
p

htðtÞ arctan
y
x
þ 2kx

sp

Z t

0

htðt � uÞ
ðku=s� yÞ2 þ x2

du ð11Þ

The phreatic surface is determined from Eq. (11) using the
isobaricity condition following from the second equation in (10)
as:

hoðx; tÞ ¼ hðx;0; tÞ ð12Þ

MPK model has its own deficiencies: it ignores the unsaturated
zone and capillary fringe, seepage face and decoupling in the oval
zone of Fig. 1, a clogging thin layer occurring on the interface be-
tween the ocean water and interface (pretty easily countable in
the DF theory) makes the LPT problem mathematically intractable,
an arbitrary beach slope in Fig. 1 is difficult to tackle, linearization
– as tested against explicit solutions in terms of the non-linear po-
tential model for decay of groundwater mounds (Polubarinova-
Kochina, 1977) – introduces errors if wave amplitudes are high,
compressibility is neglected. We recall that LPT is valid if L of the
piezometer in Fig. 1 is greater than the abscissa of the point of
maximum run-up elevation (whether this run-up is caused by a
tide, swell, bore or any other variation of the sea level). In other
words, the phreatic surface fluctuations h0(x, t) in Fig. 2 are not dis-
turbed by the groundwater hump dynamics near the run-up where
the effects of the seepage face and asymmetry of infiltration-exfil-
tration are indeed important.

As one can see from (7), (8a), (8b), (9), (10), (11), (12), LPT is an
essentially 2-D (in a vertical plane) ‘‘deep-water-theory” (see also
Brock, 1976; Carravetta, 1957; Dagan, 1964; Hunt, 1970; Polubari-
nova-Kochina and Kochina, 1994; Rowan, 1957; Stoker, 1957; Tyv-
and, 1984), which does not pre-impose any verticality of constant
head lines (as the DF approximation does). DF theory assumes that
along AB in Fig. 1 the magnitude of the Darcian velocity, jV!j, does
not vary with y. The vertical component v of V

!
is either ignored in

the ‘‘standard” DF theory, or varies linearly with y in the ‘‘general-
ized hydraulic” approximation of Polubarinova-Kochina and Kochi-
na (1994). It is, however, proved (see e.g., Ataie-Ashtiani et al.,
2001; Cartwright et al., 2006; Gardner, 2005) that v can be signif-
icant in tidally excited unconfined aquifers; close to the free sur-
face seepage is ‘‘much” (and nonlinearly!) stronger than at the
base of even relatively thin aquifers.

In LPT the distribution u(y) along the vertical beach in Fig. 2 is a
part of solution and this function can be even non-monotonic (Kac-
imov, 2009b) that is totally at odd with the ‘‘hydraulic” principle.
The profile jV!j, shown in Fig. 2, immediately follows from Eq.
(11) by differentiation. The direction of V

!
along AB is, of course,

alternating (with time) from landward to seaward according to
the imposed harmonic (5).

If we put (5) as the integrand into (11), then an explicit expres-
sion for h(x, y, t) is delivered by Wolfram’s (1991) Mathematica in
terms of combinations of the CosIntergal, SinhIntegral and SinInte-
gral functions, i.e. Mathematica routines. A routine differentiation
of h with respect to x and y gives explicit expressions for u(x, y, t)
and v(x, y, t). We drop all these lengthy expressions for the
sake of brevity. Fig. 3 shows the contour plots h(x, y, 1.1) =
�0.1, �0.01, 0.05, 0.1, 0.2, 0.3 (curves 1–6, correspondingly) for
H0 = 1.1 m, tp = 0.5 day, s = 0.2, k = 30 m/day (these four values
were fixed in all further calculations; in the next Section we will
explain why). Fig. 4a shows a snapshot of the vertical distribution
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of horizontal velocity related to conductivity, u(0.1, y, 1.1)/30. In
Fig. 4b the time-graph of u(0.1, �1, t)/30 is plotted. Fig. 5 shows
the contour plot of the magnitude of jV!jðx; y;1:1Þ (curves 1–3 cor-
respond to jV!j = 0.1, 0.3, 0.7). As one can see from Figs. 4a and 5,
the DF approximation is totally inadequate.

We note that close to the shore line the LPT-predicted magni-
tude of the hydraulic gradient exceeds the Polubarinova-Kochina
critical limit of 1. Consequently, dislodging of fine fraction particles
in the beach matrix can occur, with translocation of these particles
to the sea during the half-cycle when u < 0 at x = 0. This seepage
(exfiltration) induced erosion determines the steepness of beaches
(McLachlan and Brown, 2006). Additionally, the locus of high gra-
dients in the quadrant near the origin of coordinates of Fig. 2 may
cause deviations from the postulated Darcy law.

As in Kacimov et al. (1999), we reconstruct the trajectories of
marked particles using the system of two non-autonomous non-
linear ODEs:

dxp

dt
¼ 1

m
u xp½t�; yp½t�; t
� �

;
dyp

dt
¼ 1

m
vðxp½t�; yp½t�; tÞ ð13Þ

where m is porosity (for simplicity we assumed that m = s) and
(xp, yp) are the Lagrangian coordinates of a selected particle.2 The
2 We recall that u and v in eqn. (13) are explicitly expressed through Mathematica
special functions i.e. no numerical differentiation of the nodal head values, as in most
numerical codes, is involved.
system (13) is solved with initial conditions (xp, yp) = (x0, y0) at
t = 0 by the NDSolve (Runge–Kutta) Matheamtica routine. Fig. 6
shows the loops of the particle trajectory starting its journey at
t = 0 from for x0 = 7, y0 = �5 with marching time of 3 days, plotted
by the ParametricPlot routine of Mathematica. Obviously, the recon-
structed kinematics of marked particles should be used with cau-
tion: if a particle trajectory crosses the lines x = 0 or y = 0, then
time-marching should be stopped, although mathematically the dy-
namic system (13) can be integrated for any t > 0.
6.5 6.75 7.25 7.5 7.75 8
xpHtL

Fig. 6. Trajectory of a marked particle initially located at x0 = 7, y0 = �5.
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The velocity field and trajectories are needed in environmental
applications when the fate of contaminants agitated by the tide
and migration of chemicals from the aquifer into the sea (and back)
are important (e.g., Ataie-Ashtiani et al., 2001; Staver and Brins-
filed, 1996).

The water table equation is obtained from general Eqs. (11) and
(12). At relatively large t, when the memory of the initial (t = 0) flat
water table vanishes, the MPK water table equation reads:

h0ðx; tÞ ¼ �H0 exp �2ps
kTp

x
� �

cos
2pt
Tp
þ 1

p
NðxÞ sin

2pt
Tp

� �
;

NðxÞ ¼ 2xs
k

Z 1

0

sinð2pu=TpÞ
u2 þ ðxs=kÞ2

du ð14Þ

Using Wolfram’s Mathematica routine Integrate we can write
the integral in (14) in the form:

NðxÞ ¼
ffiffiffiffi
p
p

MeijerG
1
2

	 

; fg

	 

;

1
2
;
1
2

	 

; f0g

	 

;

psx
ktp

� �2
" #

ð15Þ

where MeijerG is another Mathematica routine (Meijer’s G-function;
the Dutch mathematician C. Meijer introduced the generalization of
the hypergeometric function in his paper: Meijer (1936)). In our
computations, numerical integration by the NIntegrate routine of
Mathematica in Eq. (14) gave practically the same results as
MeijerG.

The time te between the tide peak in the ocean and a maximum
of the hydrograph in the corresponding piezometer is obtained as
solution of the equation:

@h0ðx; tÞ
@t

¼ 0 ð16Þ

at a given locus x = L. Differentiating Eqs. (14) and (15) this time is
found as:

te¼
tp

2pArcTan
expð2psL
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We put te back into Eq. (14) and get the curve of all maxima of
the phreatic surface, h0(x, te (x)), the so-called water table upper
envelope (water logging curve). Above this curve the porous med-
ium is never saturated. In the Batinah region of Oman this curve
will control the roots of irrigated coastal crops (plants), which do
not tolerate the salinity of ‘‘upwelled” h0 in Fig. 1. The curves te(x)
and he(x) = h0(x)/H0 are shown in Fig. 7a and 7b, respectively. We
can see from Fig. 7a that te(x) is not a linear function of x – contrary
to what the DF theory (Eq. (6)) predicts.
3. Experiments and their LPT interpretation

We used a piezometer located about 60 m from the shore line in
Al-Hail area which lies in the lower reaches of Samail catchment to
the north of the capital Muscat, Oman (Kacimov et al., 2009a). The
study area is characterized by thick accumulation of alluvium
(100–600 m) (Macumber, 1997) that comprises the main source
of groundwater in the area. The alluvium is predominantly com-
posed of unconsolidated gravels with minor sand and silt formed
mainly during the Quaternary. It is poorly sorted with large degree
of heterogeneity. The piezometer penetrates a shallow depth
(about 2.5 m counted from the ground surface) and reports an
average water level at a depth of 1.8 m from the ground surface.
In our tide-detection experiment we measured fluctuations in
water table by using CTD-Diver model DI265 which is a data-log-
ger that determines the height of a water column by measuring
the water pressure with a built-in pressure sensor. Air pressure
was measured simultaneously using a Baro-Diver, Model DI500.
The diver was tighten to a rope and inserted into the piezometer
below the water surface at an elevation of 400 cm that was taken
as a reference point for measurements. The Diver measured the
height of the water column above the Diver’s pressure sensor
(400 cm). The Diver was programmed to take measurements every
5 min for a full day cycle of measurements. The experiment began
on 20/02/2008 at 09:16:29 and terminated on 21/02/2008 at
10:11:29.

Fig. 8 a shows absolute pressure in millibars retrieved by the Di-
ver. Fig. 8b is a barometrically corrected (see Rasmussen and Craw-
ford 1997 for the details on this effect) water level (in cm) in the
peizometer i.e. water elevation above the data-logger itself. From
Fig. 8b we can see that the amplitude of water table fluctuations
in our piezometer is about 12 cm. Prior to the February-2008 con-
tinuous readings by Diver, in 2004–2007 we regularly measured
the water table depth in these piezometers and detected the
amplitude of fluctuations of the same magnitude i.e. H0 = 10–
12 cm is common.

We retrieved the ocean levels from the nearby station
(23.6167�N, 58.6000�E) in Muscat (http://www.mobilegeograph-
ics.com:81/locations/3974.html?y=2008&m=2&d=20).with high-
low tide values: February 20, 2008 8:55 AM 2.51 m, 3:16 PM
0.56 m, 10:06 PM GST 2.88 m., February 21, 2008 21 3:58 AM
1.23 m, 9:42 AM 2.57 m. We assumed that the tide generates a
monochromatic semi-diurnal signal with H0 = 1.1 m, and
t = 0.5 days (12 h) i.e. we ignored a slight difference in amplitudes
and periods of semi-diurnal components of the real tide.

We assumed that the bedrock is at infinity and that the specific
yield is s = 0.2 that is confirmed in the study area by numerous
pumping tests conducted by the Ministry of Regional Municipali-
ties and Water Resources and with what we actually soil-sampled
in 2003 in the 3-m deep pedon where later our piezometers (tap-

http://www.mobilegeographics.com:81/locations/3974.html?y=2008&amp;m=2&amp;d=20
http://www.mobilegeographics.com:81/locations/3974.html?y=2008&amp;m=2&amp;d=20
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ping just the top of the unconfined aquifer) were installed. As we
have mentioned, there is no LPT-solution for a real gently inclined
bed and we assumed a vertical (AB) agitation ray in Fig. 2. Then
using (14), (15) we matched the amplitude found from LPT and
from experiments (Fig. 8a and b) by varying k. The best fit is at-
tained at k � 30 m/day. The found value of k is well within the
range 8–70 m/day reported by the Ministry for this aquifer.3 If
we use the DF solution (6) for the whole possible range of reported
aquifer thicknesses (100–500 m) in the whole Batinah region, then
for the same s we get the amplitude of at least H0 / 0.3–0.6 m that
is significantly higher than what was observed in our piezometer.

We note that if Ax in Fig. 2 is assumed to be a rigid caprock and
the aquifer (confined by this ray) is infinite in –y direction, then in
an elastic medium the governing equation for the hydraulic head
h(x, y, t) is:

@2h
@x2 þ

@2h
@y2 ¼

Ss

k
@h
@t

ð18Þ

where Ss is now specific storage, Ss = qg(a + mb), q is water density,
g is gravity acceleration, a and b are skeleton and water compress-
ibilities. Let us impose on AB of Fig. 2 the same boundary conditions
as in the LPT theory i.e.

hð0; y; tÞ ¼ H0 cos
2pt
tp

; h �1;�1; tð Þ ¼ 0 ð19Þ

where �1;�1 are the signs of ‘‘or-infinities” in Cartesian coordi-
nates. With the condition of rigidity of the caprock (y = 0), i.e.
hy(0, x, t) = 0 solution of (18) and (19), obviously, does not depend
on y and is given by a transformed Eq. (6):

hðx; tÞ ¼ H0 exp �
ffiffiffiffiffiffiffiffi
pSs

tpk

s
x

" #
cos

2pt
tp
� x

ffiffiffiffiffiffiffiffi
pSs

tpk

s !
ð20Þ
3 We emphasize that this k is ‘‘apparent” or ‘‘effective” value, integrating the
hydraulic conductivity of the whole ‘‘participating” porous volume between AB in
Fig. 2 and our piezometer.
At no realistic values of Ss and k our piezometer hydrograph can
be matched by (20). Fig. 9 illustrates this for x = 60 m, tp = 0.5 day
and k = 30 m/day. Curves 1–3 there show h0/H0 according to MPK
Eq. (14) with s = 0.2, Eq. (20) with Ss = 0.001 m2/N and Eq. (20) with
Ss = 10�6 m2/N, correspondingly (the last two curves represent the
upper and lower bounds of practical clay and sand-gravel skeleton
compressibilities).

The above said recurs to the Bouwer (1978) admonishment
against unscrupulous applications of the DF theory (see also Kaci-
mov et al., 2009b) – now for tidally excited coastal unconfined
aquifers. Namely, if the thickness of an unconfined aquifer is rela-
tively high and disturbances of the head are prevalently from the
upper part of the aquifer (e.g., Bouwer’s groundwater mounds or
our tides, hydraulically different from horizontal-piston-type agi-
tations), then the flow topology (e.g., streamlines, streaklines,
isobars, isotachs, isochrones, Poincare sections, etc.) may be com-
pletely different from what the DF theory postulates.
4. Conclusions

Linear potential theory of Meyer and Polubarinova-Kochina is
employed for modeling the dynamics of groundwater in an uncon-
fined aquifer of the Batinah region in Oman. The hydrograph in a
shallow piezometer is used in conjunction with the tide data for
assessing the hydraulic conductivity of a deep aquifer of a given
effective porosity with no spurious ‘‘transmissivity” involved. The
theory predicts 2-D transient variation of the head expressed as
an integral, whose kernel is of the Poisson type and the integrand
is the boundary condition on a vertical interface between the sea
and a porous massif. As compared with the integral representation
of solution to the boundary-value problem (3), (4), where the inte-

grand has the kernel ðt � uÞ�3=2 exp � sx2

4ðt�uÞk

h i
and the boundary

function is involved through ht (u), in LPT Eq. (11) involves
½ðku=s� yÞ2 þ x2��1 as the kernel but the agitation condition as
htðt � uÞ. This becomes important if (11) at y = 0 is considered as
an integral equation of the first kind, the left hand side of which
is obtained from Diver-type piezometric observations and ht (or
even the planet motion in the Solar system) is to be reconstructed
from this observation. LPT and field observation at an Eulerian
point (piezometer) of the motion of Lagrangian groundwater parti-
cles enable a better understanding of a coastal (ocean-aquifer)
systems.

In this note, the head (pore pressure), Darcian velocity and its
components for a monochromatic (cosinusoidal) signal are ob-
tained in an explicit and rigorous form. The dynamics of marked
particles subject to these cyclostationary head fluctuations in a
porous quadrant is obtained from a system of ODEs.
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Why have the Ferris–Jacob formulae prevailed over MPK’s ones,
even in aquifers and for transient regimes where the very premises
of the DF (‘‘hydraulic”) approximation are arrantly inappropriate?
We deem that this was caused by the mathematical instrumenta-
tion available to the hydrologists at the time: Eqs. (6) and (20)
involving elementary functions can be muddled through by any
‘‘practitioner” while the special functions (Sin–Sinh–Cos–Integrals,
Meier’s G-function) involved in the LPT-solution (see, e.g., Eqs. (14)
and (15)) to the same problem need a more intricate platform
(mathematical background and computer). With the advent of
Wolfram’s Mathematica and other computer algebra packages,
the situation has however changed: practical hydrologists can
now use ‘‘new” special functions, integrals and ODEs involving
them in the well ‘‘hydraulics” as easily as the ‘‘old” Theis–Hantush
special functions.
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