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Description of a well test
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1. During a well test, a transient pressure response is created by 
a temporary change in production rate.
2. For well evaluation less than two days.
reservoir limit testing several months of pressure data

Flow rate @ Surface
Pressure @ Down-hole

3

Schlumberger 2002



Well test objectives

• Exploration well
– On initial well, confirm HC existence, predict a first 

production forecast (DST: fluid nature, Pi, reservoir 
properties 

• Appraisal well
– Refine previous interpretation, PVT sampling, (longer 

test: production testing)

• Development well
– On production well, satisfy need for well treatment, 

interference testing, Pav
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Well test Types
• Draw down 

– Open the well with constant rate decreasing bottom hole pressure

• Build Up test
– Shut-in the well  increasing bottom hole pressure

• Injection/ fall-off test ( different fluid type)
– The fluid is injected  increasing Bottom hole pressure
– Shut-in the well  decreasing the bottom hole pressure 

• Interference test / pulse test
– Producing well measure pressure in another shut-in well away from 

the producer communication test

• Gas well test
– Back pressure , Isochronal test , modified isochronal test  well 

productivity, AOFP, Non-Darcian skin.
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Information obtained from well 
testing

• Well Description
– For completion interval (s), 
– Production potential (PI), and skin

• Reservoir Description
– “Average” permeability (horizontal and vertical)
– Heterogeneities(fractures, layering, change of Prop.)
– Boundaries (distance and “shape”)
– Pressure (initial and average)

• Note: Well Description and Reservoir Description
– May be separate objectives
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Methodology

• The inverse problem

• Model recognition (S)
– Well test models are different from the geomodels

in the sense that they are dynamic models and 
also it’s an average model.

Q vs t

Reservoir

P vs t
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Example: Interference test

1. Create signal at producing well 
2. Measure the signal at both wells

Observation well:
1. The signal will be received with a delay
2. The response is smaller
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Fluid Flow Equation
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concepts
• Permeability and porosity 
• Storativity and Transmissibility
• Skin 
• Wellbore storage 
• Radius of investigation
• Superposition theory 
• Flow regimes
• Productivity index (PI)
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Concepts-Definitions
• Permeability: 

– The absolute permeability is a measure of the capacity of 
the medium to transmit fluids. Unit: md (10-12 m2)

• Transmissibility

• Storativity

• Diffusivity (Hydraulic diffusivity)  
• AOF
• PI
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Fluid flow equation: ingredients

• Conservation of mass ( continuity equation)

• EOS, defining the density and changes in density with 
pressure

• Transport equation ( Darcy’s law: experimental, or 
Navier-Stoke)
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Fluid flow equation: radial case

• Continuity + Darcy: in radial  coordinate (isotropic)

• Assumptions:
Radial flow into a well opened over entire thickness , single 
phase, slightly compressible fluid, constant viscosity , 
ignoring the gravity, constant permeability and porosity
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Solution to radial diffusivity equation

• Inner/outer Boundary conditions:
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Unsteady- Infinit acting reservoirs(radial 
flow regime): DD

• Finite diameter well without WBS- infinite acting reservoir

USS,PSS,SS?
∂P/∂t=f(x,t) USS (Well test)
∂P/∂t=cte PSS (boundary)
∂P/∂t=0  SS( aquifer)

( ) ( )
Du t J u Y ur Y u J urqP r t e du

T u J u Y uπ π

∞
− −

∆ = −
+∫

2 1 0 1 0
2 2 2

0 1 1

( ) ( ) ( ) ( )2( , ) 1
2 ( ) ( )

21( , )
2 2 4i
q B crP r t P Ei

kh kt
µ ϕµ
π

  
= − −  

  

2

162.6( ) log 3.23 0.87i wf
t w

q B ktP P t S
Kh c r

µ
ϕµ

  
− = − +     

15



Radius of investigation

The radius of investigation ri tentatively 
describes the distance that the pressure 
transient has moved into the formation.

Or  it’s the radius beyond which the flux 
should not exceed a specified fraction 
or percentage of the well bore flow rate 

0.032i
t
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=

Can we use the radius of investigation to 
calculate the pore volume and reserve?

1. Based on radial homogeneous if 
fracture ?

2. Is it a radius or volume?
3. How about gauge resolution?
4. Which time we are talking about?
5. How about a close system?
6. How about the velocity of front?
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Radius of investigation
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Skin Pressure Drop
Skin Pressure drop: higher pressure drop 
near the well bore due to mud filtrate, 
reduced K , improved K, change of flow 
streamlines, fluid composition change,….
It is one of the most important parameter 
used in production engineering as  it could 
refer to a sick or excited well and leads to 
additional work-over operations.
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Q(surface)

Q(Sand face)

Q(wellbore)
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Transition Radial FR

In surface production or shut in the surface rate is  controlled
However due to compressibility of oil inside the well bore we have difference 
between sandface production and surface production
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Superposition

• Effect of multiple well
– ∆Ptot@well1=∑∆Pwells @well1   

• Effect of rate change

• Effect of boundary

• Effect of pressure change
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Radius of investigation:superposition
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Fluid flow equation : complexity

• Linear , bilinear , radial, spherical 

• Depends on the well geometry, and reservoir 
heterogeneities

• Change the fluid flow equation and the solution

• The fluid heterogeneities affect the  diffusivity 
equation and the solution ( non linearity gas res)
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Derivative Plots
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Derivative plot
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Derivative plot : Example1

Structure effect on well testing

25Bourdet 2002



Derivative plot 
Example2 :  Radial Composite
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Example: 

Derivative plot : Example3 : 
Horizontal Well Testing

1    Vertical radial Sw
2     Linear flowSpp, Sw
3     Later radial flow 
ST=f(Sw,Spp,Sw,SG ,…)

Linear flow:
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Some sensitivities!

28Houze et al. 2007 



Practical Issues

• Inaccurate rate history
• Shut-in times
• Gauge resolution
• Gauge drift
• Changing wellbore storage
• Phase segregation
• Neighbouring well effect
• Interference
• Tidal effects
• Mechanical noise
• Perforation misties
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Uncertain parameters
• Complex permeability / porosity (higher order of heterogeneities)
• Complex thickness
• Complex fluid
• Wellbore effect?
• Any deviation from assumption
• New phenomena ?
• Gauge resolution
• Measurements? Correct rate history
• Numerical- Analytical
• Core-Log  values ? Seismic?
• Averaging process?
• Layering response?
• Test design? Sensitivities? Multiple models ?

How to make decision?
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Rock Description
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32

Core data evaluation

• Summary numbers 
(statistics) for comparison 
with well tests

• Variability measures

• How do the numbers 
relate to the geology

• How good are the 
summary numbers

• How representative are 
the numbers
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Measures of Central Tendency
• Mean - population parameter

• Average - the estimator of the population mean

• Arithmetic average

• Geometric average

• Harmonic average
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Differences between averages
Measures of heterogeneity

Each permeability average has a different application in 
reservoir engineering

k k khar geom ar≤ ≤
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• Used to estimate effective property for 
certain arrangements of permeability

• Horizontal (bed parallel flow)

• Vertical and Horizontal (random)

• Vertical (bed series flow)

Remember these assumptions….                                            

not the application!! 

kar

k geom

khar

kar

khar

Averages in reservoir engineering
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Comparing the well test and core perms.

• Need to 
consider the 
nature and 
scale of the 
layering in the 
volume of 
investigation of 
a well test

-
kar

-
kgeom

-
khar

1-5ft

5-10ft

10-50ft
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Well test comparison example

• Well A: Kar =400md ktest = 43md kgeom = 44md
• Well B: Kar =600md ktest = 1000md

Well A Well BCore plug data

Toro-Rivera et al., 1994
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Permeability distributions in well

• NB: K data plotted on log AND linear scales

Well A Well B

Major 
channels

Minor 
channels
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Triassic Sherwood Sandstone
Braided fluvial system 
(Toro Rivera, 1994,SPE 28828, Dialog article)

Well test comparison example
WELL A

WELL B
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Core plug petrophysics
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WT log-log plot
∆

P 

WELL A 

ETR MTR LTR 

r

Time 
WELL B 

ETR MTR LTR 

∆
P 

r

ETR: Linear flow
MTR: Radial flow (44mD)

Negative skin
LTR: OWC effect

ETR: Radial flow?
MTR: Radial flow (1024 mD)

Small positive skin
LTR: Fault?

Well test response very different
Geological interpretation?

WELL A WELL B
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Well Test Informed Geological Interpretation

WELL B

LogK LinK

WELL A

LogK LinK

Many small channels
Limited extent
“Floodplain effective flow”

Few large channels
More extensive
“Channel effective flow”

INTERFLUVE INCISED VALLEY

WELL A WELL B
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‘Well A’

‘Well B’

Two different well test responses - same formation



44

Coefficient of variation
• Normalised

measure of 
variability

43210

Synthetic core plugs
Homogeneous core plugs
Aeolian wind  ripple (1) 

Aeolian grainflow (1) 
Shallow mar. low contrast lam. 

Fluvial trough-cross beds (2)
Fluvial trough-cross beds (5)

Mix'd aeol. wind rip/grainf.(1)
Lrge scale x-bed dist chan (5) 

Shallow marine SCS
Aeolian interdune (1)

Shallow marine Rannoch Fm
Shallow mar. Lochaline Sst (3)

Shall. mar. high contrast lam.
Shallow marine HCS

Heterolithic channel fill
Beach/stacked tidal Etive Fm. 

Dist/tidal channel Etive ssts
Fluv lateral accretion sst (5)

Sh. mar.rippled micaceous sst
Crevasse splay sst (5)

S.North Sea Rotliegendes Fm (6)
Carbonate (mix pore type) (4)  

 

Homogeneous

Heterogeneous

Very heterogeneous

0 < Cv < 0.5  Homogeneous
0.5 < Cv < 1  Heterogeneous
1 < Cv Very  Heterogeneous

Cv < 0.5  for a normal distribution

Cv
SD
kar

=
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Sample sufficiency

• Representivity of sample sets

• for a tolerance (P) of 20%

• and 95% confidence level

• Nzero or No = optimum no. of data points

• Where Ns = actual no. of data points

• Ps gives the tolerance

( )N Cv0
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Sample sufficiency

• Representivity of sample sets

• for a tolerance (P) of 20%

• and 95% confidence level

• Nzero or No = optimum no. of data points

• Where Ns = actual no. of data points

• Ps gives the tolerance

( )N Cv0
210= •

( )
P

Cv
Ns

s

=
•200

For carbonates (high variability P=50%) ( )N Cv0
210= •4
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Zheng et al., 2000

Comparison of Core and Test Perms
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Lorenz plot
• Order data in 

decreasing k/φ and 
calculate partial 
sums
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Lorenz plot
• Order data in 

decreasing k/φ and 
calculate partial 
sums
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Lorenz plot >> Lorenz Coefficient
• Order data in 

decreasing k/φ and 
calculate partial 
sums
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Unordered Lorenz Plot

Reveals stratigraphic layering
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Example Lorenz Plots
Lorenz Plot
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Use them together
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Hydraulic Units and Heterogeneity

( Ellabed et al., 2001)

Rotated Modified 
Lorenz Plot
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Heterogeneity and Anisotropy



55

10410210010 -210 -410 -6
.001

.01

.1

1

Rannoch anisotropy

Sample volume (m3)

kv
/k

h

Probe
Plug

Plug averages 

WB

Formation

SCS
HCS

Probe average 

Lamina Bed ParasequenceGrain

Scale dependant anisotropy

Estimate of kv/kh anisotropy depends on the 
scale of application
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Ebadi et al., 2008

ICV – Interval Control Valve

Kv controls vertical inflow



Putting it all together
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Conclusions

• Well testing 
– Model driven

– Simple Models

– Averaging process

• Reservoir Description
– Heterogeneous

– Scale dependant

– Upscaling challenge

58

K x h = 600mDft
Where h = 60ft

Which K = 10mD???

??
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