# total (hydraulic)head = elevation head + pressure head

(pressure head: varying density fluids – important in contamination or salinity)

**HYDRAULIC HEAD** 







1



## **HEAD LOSS IN POROUS MEDIA**



- Energy is **lost** in the flow through the porous medium **due to friction** ٠  $\frac{v_1^2}{2g} + \frac{p_1}{\gamma} + h_1 = \frac{v_2^2}{2g} + \frac{p_2}{\gamma} + h_2 + h_L$
- Energy equation Bernoulli eq.) ۲

**QUESTION 1** 

Neglect velocity terms ٠

$$h_L = \left(\frac{p_1}{\gamma} + z_1\right) - \left(\frac{p_2}{\gamma} + z_2\right) = h_1 - h_2 = \Delta h$$

Flow is always from higher head to lower head ۲

# LAMINAR and TURBULENT flow

• laminar – particles of liquid move at parallel paths • turbulent – motion of particles inordinate, fluctuations of velocispace, mixing inside flow • Criterion – Reynolds number  $Re_f = \frac{vd_{10}}{v}$ 

v - velocity

 $d_{10}$  = effective grain size diameter

## **CRITICAL REYNOLDS NUMBER**

for groundwater flow  $\text{Re}_{\text{fcr}} = 1$ 

The *Reynolds number* can be used as a criterion to distinguish between laminar and turbulent flow:

A **sieve analysis** (or gradation test) is a practice or **procedure used** (commonly used in civil engineering) **to assess the particle size distribution** (also called gradation) of a granular material **by allowing the material to pass through a series of sieves of progressively smaller mesh size** and weighing the amount of material that is stopped by each sieve as a fraction of the whole mass...



5/9/2024



#### Grain size curve



## DARCY'S LAW

- Water flow through an aquifer.
- Darcy's law (conservation of momentum) <u>was determined</u> <u>experimentally</u> by Darcy, it can be derived from the Navier-Stokes equations
- Analogous to Fourier's law, Ohm's law, or Fick's law
- Darcy's law (conservation of momentum) and the continuity equation (conservation of mass) are used to derive the groundwater flow equation



## **DARCY'S LAW**





## **Experimental equipment**

Henry Darcy 1856

## Darcy's Experimental Data

| NUMÉRO<br>de<br>s'expérience                                | DURÉE.                                                             | DÉBIT<br>MOYEN<br>parminute.                                                                    | PRESSION                                                                                                                                                                                        | MOYENNE<br>SOUS LE FILTRE                                                                                                           | DIFFÉRENCE<br>des<br>PRESSIONS.                                                                                  | RAPPORT<br>des<br>volumes<br>sus<br>pressions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OBSERVATIONS.                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                           | 2                                                                  | 3                                                                                               | 4                                                                                                                                                                                               | \$                                                                                                                                  | 6                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                             |
| 1<br>2<br>3<br>4<br>3<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | 15'<br>10'<br>10'<br>20'<br>16'<br>15'<br>20'<br>20'<br>20'<br>20' | 1.<br>18,8<br>18,3<br>18,0<br>17,4<br>18,1<br>14,9<br>12,1<br>9,8<br>7,9<br>8,65<br>4,5<br>4,15 | $\begin{array}{c} \text{m.} \\ P + 9.48 \\ P + 12.88 \\ P + 9.80 \\ P + 12.87 \\ P + 12.87 \\ P + 12.80 \\ P + 12.84 \\ P + 6.71 \\ P + 12.84 \\ P + 5.58 \\ P + 2.98 \\ P + 12.86 \end{array}$ | $\begin{array}{c} P-3,60 \\ P-2,78 \\ P+0.40 \\ P+0.49 \\ P-0,83 \\ P-0,83 \\ P+4,40 \\ P-0 \\ P+7,03 \\ P-0 \\ P+9,88 \end{array}$ | m.<br>13,08<br>12,88<br>12,58<br>12,58<br>12,41<br>12,35<br>9,69<br>8,44<br>6,71<br>5,78<br>5,58<br>2,98<br>2,98 | $1,44 \\ 1,42 \\ 1,43 \\ 1,40 \\ 1,47 \\ 1,54 \\ 1,43 \\ 1,46 \\ 1,37 \\ 1,55 \\ 1,51 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ 1,39 \\ $ | Fortes oscillations dans le ma-<br>nomètre supérieur.<br>Id.<br>Id.<br>Id.<br>Faibles.<br>Assez faibles.<br>Presque nulles.<br>Très-fortes.<br>Très-fortes.<br>Presque nulles.<br>Id.<br>Assez fortes.<br>On a dejà expliqué la cause de<br>ces oscillations. |



# **VALIDITY OF DARCY'S LAW**



#### **Re<sub>f</sub> >100** turbulent flow (Darcy eq. is not valid)

 $I = b v^2$ 

- DARCY VELOCITY v<sub>p</sub> is a fictitious velocity since it assumes that flow occurs across the entire cross-section of the sediment sample. Flow actually takes place only through interconnected pore channels (voids), at the seepage velocity v<sub>s</sub>
- Effective porosity, n<sub>ef</sub> for

## ACTUAL GROUNDWATER VELOCITY (seepage velocity) - $v_s$

