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THE RELATION BETWEEN THE LOWERING OF THE PIEZOMETRIC SURFACE
AND THE RATE AND DURATION OF DISCHARGE OF A WELL
USING GROUND WATER STORAGE

By
Charles V., Theis

This paper develops some of the basic concepts on
which much of our present-day theory of ground-water hydrau-
lics is founded. Although published in the Transactions of
the American Geophysical Union, part 2 (pp. 519=-524;, August
1935, the supply of reprints has long since been exhausted
3nd the paper is now generally to be found only in the better-
stocked reference libraries,

It is reproduced as pairt of the new series of
Ground Water Notes to permit distribu®tion to all ground-
water field personnel for their ready reference and use,
Minor changes have been made in notation only, to be con-
sistent with current Branch usage.

When a well is pumped or otherwise discharged, water levels in
its neighborhood are lowered. Unless this iowering occurs instantaneous=
ly it represents a loss of storage, either by the unwatering of a portion
cf the previously saturated sediments if the aquifer is nonartesian o by
release of stored water by the compaction of the aquifer due fo iowered
pressure if the aquifer is artesian. The mathematical theory of ground-
water hydraulics has been based, apparently entirely, on a postuiate that
equilibrium has been attained and therefore that water-levels are no
longer fallinge In 2 great number of hydrologic problems, invoiving a
well or pumping district near or in which water-levels are falling, the
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current theory is therefore not strictly applicable. This paper investi-
gates in pert the nature and consequences of a mathematical theory that
considers the motion of ground-water before equilibrium is reached and, as
a consegquence, involves time as a variable.,

To the extent that Darcy’s !aw governs the motion of ground-
water under natural conditions and under the artificial conditions set up
by pumping, an analogy exists between the hydrologic conditions in an
aquifer and the thermal conditions in a similar thermal system. Darcy's
law is analogous to the law of the flow of heat by conduction, hydraulic
pressure being analogous to temperature, pressure-gradient to thermal
gradient, permeability to thermal conductivity, and specific yield to
specific heate Therefore, the mathematical theory of heat-conduction
devetoped by Fourier and subsequent writers is largely applicable to hy-
draulic theory. This analogy has been recognized, at least since the work
of 8lichter, but apparently no attempt has been made to introduce the
function of time into the mathematics of ground-water hydrology. Among
the many probiems in heat-conduction analogous to those in ground-water
hydrautlics ere those concerning sources and sinks, sources being analogous
to recharging wells and sinks to ordinary discharging wells.

Ce I. Lubin, of the University of Cincinnati, has with great
kindness prepared for me the following derivation of the equation ex-
pressing changes in temperature due to the type of source or sink that is
analogous to a recharging or discharging wel | under certain ideal condi-
tions, to be discussed below,

The equation given by H, S, Carsliaw (introduction to the mathe-
matical theory of the conduction of heat in solids, 2nd ed., p. 152, 1921)
for the temperature at any point in an infinite plane with initial tem-
perature zero at any time due to an "instantaneous !ine-source coinciding
with the axis of z of strength Q" (involving two-dimensicnal flow of heat)
is
Q_ o~(x2 + y2)/akt (1)

/

where v = change in temperature at the point x,y at the time t; Q = the
strength of the source or sink--in other words, the amount of heat added
or taken our instantaneously divided by the specific heat per unit=-volume;
k= Kelvin's coefficient of diffusivity, which is equal to the coeffi-
cient of conductivity divided by the specific heat per unit-volume; and

t = time.

The effect of a continuous source or sink of constant strength
is derived from equation (!) as follows:

tet Q= o(t') dt?
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The definite integral, — du is a form of the
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(x2 + y2)/4kt

exponentiai integral, tables of which are available (Smithsonian Physical
Tables, 8th rev. ed., table 32, 1933; the values to be usad are those
given for Ei {-x), with the sign changed.) The value of the integral is
given by the series

®
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Equation (2) can be immediately adapted to ground-water hydrau-
lics to express the draw-down at any point at any time due to discharging
awell. The coefficient of diffusivity, k , Is analogous to the coeffi-
cient of transmissibility of the aquifer divided by the specific yield.
(The term "coefficient of transmissibility" is here used fo denote the
product of Meinzer's coefficient of permeability and the thickness of the
saturated portion of the aquifer; it quantitatively describes the abitity
of the acquifer to transmit water. Meinzer's coefficient of permeability
denotes a characteristic of the materialy the coefficient of transmissi-
bility denotes the analogous characteristic of the aquifer as a whole.)
The continuous strength of the sink is analogous to the discharge rate
divided by the specific yields Making these substitutions, we have
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in which the symbols have the meanings given with equation (5). In equa=~
tion (4) the same units must of course be used throughout., Egquation (4)
may be adapted to units commonly used

-u
s = .LJ,i;.QQ -ﬁe du (5)
T u
|.87r28/Tt

where s = the drawdown, in feet, at any point in the vicinity of a well
discharged at a uniform rate; Q = the discharge of the well, in gallcns a
minute; T = the coefficient of transmissibility of the aquifer, in gallons
a day, through each |-foot strip extending the height of the aquifer, under
a unit-gradient--this is the average coefficient of permeability(ieinzer)
multiplied by the thickness cf the aquifer; r = the distance from pumped
well to point of observation, in feet; S = the specific yleld, as a deci-
mal fraction; and t = the time the well has been pumped, in days.

Equation (5) gives the draw-down at any point around a well
being discharged uniformly (and continuously) from a homogeneous aquifer
of constant thickness and infinite areal extent at any time. The intro-
duction of the function, time, is the unique and valuable feature of the
equation. Equation (5) reduces to Thiem's or Slichter's equation for
artesian conditicns when the time of discharge is large.

Empirical tests of the equation are best made with the data ob-
tained by L. K. Wenzel (Recent investigations of Thiem's method for deter-
mining permeability of water-bearing sediments, Trans. Amer., Geophys.
Union, !3th annual meeting, ppe. 313=317, 1932; also Specific yield deter-
mined from a Thiem's pumping test, Trans. Amer. Geophys. Union, l4th
Annual fieeting, pp. 475-477, 1933) from pumping tests in the Platte Val ley
in Nebraska, Figure | presents the comparison of the computed and observed
draw-downs after two days of pumping. The observed values are those of
the generalized depression of the water=-table as previously determined by
Mr. Wenzel. The computed values are obtained by equation (5), using
values of permeability and specific yield that are within one per cent of
those determined by Mr, Wenzel by other methods. The agreement represented
may be regarded as showing either that the draw-downs have been computed
from known values of transmissibility and specific yield or that these
factors have been computed from the known draw-cowns.

Theoretically, the eguation applies rigidly oniy to water-bodies
(1) which are contained in entirely homogeneous sediments, (2) which have
infinite areal extent, (3) in which the well penetrates the entire thick-
ness of the water-body, (4) in which the coefficient of trensmissibility
is constant at ali times and in all places, (5) in which the pumped well
has an infinifesimai diameter, and (&) = applicable only to unconfined
water-bodies - in which the water in the volume of sediments through which
the water-table has fal len is discharged instantaneously with the fall of

the water-table,
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These theoretica! restrictions have varying degrees of impor=-
tance in practice. The effect of heterogeneity in the aaifer can hardly
be foretold. The effect of boundaries can be considered by more elaborate
analyses, once they are located. The effect of the well failing fto pene-
trate the entire acuifer is apparently negligible in many cases. The
pumped well used in the set-up that yielded the data for Figure | pene-
trated only 30 feet into a 90=foot acuifer. The coefficient of transmis-
sibility must decrease during the process of pumping under water-table
conditions, because of the diminution in the cross-section of the area of
flow due to the fall of the water-table; however, it appears from Figure
| that if the water-table falls through & distance equal only to a small
percentage of the total thickness of the aquifer the errors are not large
enough to be observed. |In artesian aquifers the coefficient of transmis-
sibility probabiy decreases because of the compaction of the aquifer, but
data on this point are lacking. The error due to the finite diameter of
the well is apparently always insignificant.,

In heat=conduction a specific amount of heat is lost concomi-
tantly and instantaneously with faitl in temperature. 1t appears probable,
analogously, that in elastic artesian aquifers a specific amourt of water
is discharged instantaneously from storage as the pressure falls. In non-
artesian aauifers, however, the water from the sediments through which the
water-table has fallen drains comparatively slowiy., This time-lag in the
discharge of the water made aveailable from storage is neglected in the
mathematical treatment here given. Hence an error is always present in the
equation when it is applied to water-table conditions. However, inasmuch
as the rate of fall of the water-table decreases progressively after a
short initial period, it secems probable that as pumping continues the rate
of drainage of the sediments tends tc catch up with the rate of fall of
the water=tabie, and hence that the error in the equation becomes progres=
sively smailer,

For instance, although the draw-dcwns computed for a 24-hour
period of pumping in Mr. Wenzei's test showed a definite lack of agreement
with the observations, similar computations for a 48-~hour period gave the
excel lent agreement shown in Figure i. Unfortunately data for periods of
pumping tonger than 48 hours have not been available.,

The equation implies that any two observations of draw-down,
whether at different places or at the same place at different times, are
sufficient to allow the computation of specific yieid and transmissibility.
However, more observations are always necessary in order fo guard against
the possibility that the computations wiil be vitiated by the heterogene-
ity of the aquifer. Moreover, it appears that the time=lag in the drain-
age of the unwatered sediments makes it impossible at present to compute
transmissibility and specific yield from observations on water=levels in
only one observation-well during short periods of pumping. Good data from
artesian wells have not been available, but such data as we have hold out
the hope that transmissibility and specific yield may be determined from
data from only one cbservation=well,



A useful corollary to equation (5) may be derived from an ancly-

sis of the recovery of a discharged welt. If a well is discharged for a
known period and then left to reccver, the residual draw-down at any in=-
stant will be the same as if discherge of the well had been continued but

a recharge well with the same flow had been introduced at the same point
at the instant discharge stopped. The residual draw-ccwn at any instant

will then be -

114,.6 -u e~u

T = —J e—_ - i i

s T ///// - du 7 du (6)
1,87r23/Tf |,87r2S/Tf*

where t is the time since discharge started and t' is the time since dis-
charge stopped.

2
in and very close to the well the quantity lig%%Té will be

very small as soon as t' ceases to be small because r is very small.

In many problems ordinarily met in ground-water hydraulics, all but fthe

first two terms of the series of equation (3) may be neglected, so 'that,
) 2 2 . .

if Z = l4§%£—§ and Z' = l4§%51§ equation (6) may be approximately

rewritten '

114.6Q .
st = L1209 7|:-=o.577 - log,Z'+ 0.577 + log Z {—,]
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Transposing and converting ta common logarithms, we have

o 264¢ t -
T = Py |Og|0 F (7)

This equation permits the computation of the coefficient of transmissibili=-
ty of an aquifer from an observation of the rate of recovery of a dis-
charged well.

Figure 2 shows a plot of observed recovery-curves. The ordinates
are tog (t t7); the abscissas are the distances the water-table lies beiow
its equilibrium-position. According to equation (7) the points should
fall on a straight line passing through the origin. Curve A is a plot of
the recovery of a well within 3 feet of the well pumped for fMr. Wenze!'s
test, previousiy mentioned, Most of the points lie cn a straight line,
but the line passes to the left of the origin. This discrepancy is proba-
bly due to the fact that the water-table rises faster than the surrounding
pores are filleds The coefficient of permeability computed from the equa-
tion is about 1200, against a probably correct figure of 1000. Curve B is
plotted from data obtaired from an artesian well near Salt Lake City, The
points all fail according to theory.



Curve C shows the recovery of a well peneftrating only the upper
part of a nonartesian aquifer of comparatively low transmissibility. It
departs markedly from a straight line. This curve probably follows equa-
tion (6), but it does not follow equation (7), for in this case
(1.,87r25/Tt! is not smail, Equation (6), involving r and S, neither of
which may be known in practice, is not of practical vailue for the present
purpose, Further empirical tests may show that it is feasible to project
the curve to the origin, in the neighborhood of which 1.87r25/Tt! becomes
small, owing to the increase in t and t', and apply equation {7) to the
extrapolated values so obtained in order to determine at least an approxi-
mate value of the transmissibility.

The paramount value of equation (5) apparently lies in the fact
that it gives part of the theoretical background for predicting the future
effects of a given pumping regimen upon the water-ievels in a district
that is primarily dependent on ground-water storage. Such districts may
include many of those tapping extensive nonartesian bodies of ground-water.
Figure 3 shows the vertical rate of fall of the water-level in an infinite
acuifer, the water being all taken from storage. The curves are piotted
for certain definite values of pumping rate, transmissibility, and speci=-
ficyield, but by changing the scales either curve could be made applicable
to any values set up.

These theoretical curves agree qualitatively with the facts
generally observed when a well is pumped. The water-level close to the
well at first falls very rapidly, but the rate of fall soon slackens, In
the particular case considered in Figure 3 the water-level at a point 100
feet from the pumped weil would fail during the first year of pumping more
than hatf the distance it would fall in 1000 years. A delayed effect of
the pumping is shown at distant points. The water-level at a point about
6 miles from the pumped wel | of Figure 3 would fall only minutely for about
five years but would then begin to fall perceptibly, although at a much
less rate than the water-ievel close to the well, Incidentally the rate
of fall affer considerable pumping is so small that it might easily lead
to a false assumption of equilibrium. The danger in a pumping districr
using ground~water storage lies in the delayed interference of the wells,
For instance, although in 50 years one well would cause a draw-down of
only 6 inches in another well 6 miles away, yet the 100 wells that might
lie within 6 mifes of a given well would cause in it a total draw-down of
more than 50 feet.

in the preparation of this paper | have had the indispensable
help not oniy of Dr, Lubin, who furnished the mathematical keysione of the
paper, but also of Dr. C. E. Van Orsirand, of the United States Geological
Survey, and of my colleagues of the Ground Water Division of the Survey,
who cordially furnished data and criticism.




Author's Note:

The factor S in the equations given is called "specific yield"
in the text of the paper. Later consideration has shown it advisable to
call this term the "coefficient of storage” of the aquifer and to define
it as the quantity of water in cubic feet that is discharged from each
vertical prism of the aquifer with basal area eqal to | square foot and
height equal to that of the aquifer when the water tevel falls | foot.

For non-artesian aquifers this concept is closely akin to that of specific
yield and, as shown in the paper, computations of its value seem to be in
close agreement with those determined for specific yield. For artesian
aquifers, the concept is related to the compressibility of the aquifer and
the value of the coefficient is of a smaller order of magnitude than that
for non-artesian aquifers.








