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1.1 Primary Reservoir Characteristics

Flow in porous media is a very complex phenomenon and
cannot be described as explicitly as flow through pipes or
conduits. It is rather easy to measure the length and diam-
eter of a pipe and compute its flow capacity as a function of
pressure; however, in porous media flow is different in that
there are no clear-cut flow paths which lend themselves to
measurement.

The analysis of fluid flow in porous media has evolved
throughout the years along two fronts: the experimental and
the analytical. Physicists, engineers, hydrologists, and the
like have examined experimentally the behavior of various
fluids as they flow through porous media ranging from sand
packs to fused Pyrex glass. On the basis of their analyses,
they have attempted to formulate laws and correlations that
can then be utilized to make analytical predictions for similar
systems.

The main objective of this chapter is to present the math-
ematical relationships that are designed to describe the flow
behavior of the reservoir fluids. The mathematical forms of
these relationships will vary depending upon the characteris-
tics of the reservoir. These primary reservoir characteristics
that must be considered include:

o types of fluids in the reservoir;

o flow regimes;

® reservoir geometry;

o number of flowing fluids in the reservoir.

1.1.1 Types of fluids

The isothermal compressibility coefficient is essentially the
controlling factor in identifying the type of the reservoir fluid.
In general, reservoir fluids are classified into three groups:

(1) incompressible fluids;
(2) slightly compressible fluids;
(3) compressible fluids.

The isothermal compressibility coefficient ¢ is described
mathematically by the following two equivalent expressions:

In terms of fluid volume:

-19V
- -7 1.1.1
¢= 5 [ ]
In terms of fluid density:
c= Lo [1.1.2]
p 3p
where

V= fluid volume

o= fluid density

p = pressure, psi~!

¢ = isothermal compressibility coefficient, &1

Incompressible fluids
An incompressible fluid is defined as the fluid whose volume
or density does not change with pressure. That is

ﬂ =0 and ) =0

ap ap
Incompressible fluids do not exist; however, this behavior
may be assumed in some cases to simplify the derivation
and the final form of many flow equations.

Slightly compressible fluids

These “slightly” compressible fluids exhibit small changes
in volume, or density, with changes in pressure. Knowing the
volume Vs of a slightly compressible liquid at a reference
(initial) pressure py.¢, the changes in the volumetric behavior

of this fluid as a function of pressure p can be mathematically
described by integrating Equation 1.1.1, to give:

’ Voav
—c dp = / -
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V = Viet €xp [¢ (Pret — P)] [1.1.3]

where:

p = pressure, psia
V = volume at pressure p, ft*
pref = initial (reference) pressure, psia
Vet = fluid volume at initial (reference) pressure, psia

The exponential ' may be represented by a series expan-
sion as:
2 P P
S R R e J—
€ _1+x+2!+3!+ +n!
Because the exponent x (which represents the term
¢ (pref — p)) is very small, the e* term can be approximated
by truncating Equation 1.1.4 to:

[1.1.4]

e =1+« [1.1.5]
Combining Equation 1.1.5 with 1.1.3 gives:
V= Vref[l + c(ﬁref —P)] [116]

A similar derivation is applied to Equation 1.1.2, to give:

P = pre[1 — c(pret — D)1 [1.1.7]

where:

V= volume at pressure p

p = density at pressure p
Vet = volume at initial (reference) pressure pre
pref = density at initial (reference) pressure pr.s

It should be pointed out that crude oil and water systems fit
into this category.

Compressible fluids
These are fluids that experience large changes in volume asa
function of pressure. All gases are considered compressible
fluids. The truncation of the series expansion as given by
Equation 1.1.5 is not valid in this category and the complete
expansion as given by Equation 1.1.4 is used.

The isothermal compressibility of any compressible fluid
is described by the following expression:

_1 l(%)
“=3"Z\ r

Figures 1.1 and 1.2 show schematic illustrations of the vol-
ume and density changes as a function of pressure for the
three types of fluids.

[1.1.8]

1.1.2 Flow regimes

There are basically three types of flow regimes that must be
recognized in order to describe the fluid flow behavior and
reservoir pressure distribution as a function of time. These
three flow regimes are:

(1) steady-state flow;
(2) unsteady-state flow;
(3) pseudosteady-state flow.
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Figure 1.2 Fluid density versus pressure for different fluid types.

Steady-state flow

The flow regime is identified as a steady-state flow if the pres-
sure at every location in the reservoir remains constant, i.e.,
does not change with time. Mathematically, this condition is
expressed as:

(5),-
at ),

This equation states that the rate of change of pressure p with
respect to time ¢ at any location ¢ is zero. In reservoirs, the
steady-state flow condition can only occur when the reservoir
is completely recharged and supported by strong aquifer or
pressure maintenance operations.

[1.1.9]

Unsteady-state flow

Unsteady-state flow (frequently called transient flow) is
defined as the fluid flowing condition at which the rate of
change of pressure with respect to time at any position in
the reservoir is not zero or constant. This definition suggests
that the pressure derivative with respect to time is essentially

a function of both position ¢ and time ¢, thus:

Pseudosteady-state flow

When the pressure at different locations in the reservoir
is declining linearly as a function of time, i.e., at a con-
stant declining rate, the flowing condition is characterized
as pseudosteady-state flow. Mathematically, this definition
states that the rate of change of pressure with respect to
time at every position is constant, or:

9
—p = constant
at /;

It should be pointed out that pseudosteady-state flow is com-
monly referred to as semisteady-state flow and quasisteady-
state flow.

Figure 1.3 shows a schematic comparison of the pressure
declines as a function of time of the three flow regimes.

[1.1.10]

[1.1.11]
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Figure 1.4 Ideal radial flow into a wellbore.

1.1.3 Reservoir geometry

The shape of a reservoir has a significant effect on its flow
behavior. Most reservoirs have irregular boundaries and
a rigorous mathematical description of their geometry is
often possible only with the use of numerical simulators.
However, for many engineering purposes, the actual flow
geometry may be represented by one of the following flow
geometries:

o radial flow;
e linear flow;
e spherical and hemispherical flow.

Radial flow

In the absence of severe reservoir heterogeneities, flow into
or away from a wellbore will follow radial flow lines a substan-
tial distance from the wellbore. Because fluids move toward
the well from all directions and coverage at the wellbore,
the term radial flow is used to characterize the flow of fluid
into the wellbore. Figure 1.4 shows idealized flow lines and
isopotential lines for a radial flow system.

Linear flow
Linear flow occurs when flow paths are parallel and the fluid
flows in a single direction. In addition, the cross-sectional
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Figure 1.9 Pressure versus distance in a linear flow.

area to flow must be constant. Figure 1.5 shows an ideal-
ized linear flow system. A common application of linear flow
equations is the fluid flow into vertical hydraulic fractures as
illustrated in Figure 1.6.

Spherical and hemispherical flow

Depending upon the type of wellbore completion config-
uration, it is possible to have spherical or hemispherical
flow near the wellbore. A well with a limited perforated
interval could result in spherical flow in the vicinity of the
perforations as illustrated in Figure 1.7. A well which only
partially penetrates the pay zone, as shown in Figure 1.8,
could result in hemispherical flow. The condition could arise
where coning of bottom water is important.

1.1.4 Number of flowing fluids in the reservoir

The mathematical expressions that are used to predict
the volumetric performance and pressure behavior of a
reservoir vary in form and complexity depending upon the
number of mobile fluids in the reservoir. There are generally
three cases of flowing system:

(1) single-phase flow (oil, water, or gas);
(2) two-phase flow (oil-water, oil-gas, or gas—water);
(3) three-phase flow (oil, water, and gas).

The description of fluid flow and subsequent analysis of pres-
sure data becomes more difficult as the number of mobile
fluids increases.

1.2 Fluid Flow Equations

The fluid flow equations that are used to describe the flow
behavior in a reservoir can take many forms depending upon
the combination of variables presented previously (i.e., types
of flow, types of fluids, etc.). By combining the conserva-
tion of mass equation with the transport equation (Darcy’s
equation) and various equations of state, the necessary flow
equations can be developed. Since all flow equations to be
considered depend on Darcy’s law, it is important to consider
this transport relationship first.

1.2.1 Darcy’s law

The fundamental law of fluid motion in porous media is
Darcy’s law. The mathematical expression developed by
Darcy in 1956 states that the velocity of a homogeneous fluid
in a porous medium is proportional to the pressure gradi-
ent, and inversely proportional to the fluid viscosity. For a
horizontal linear system, this relationship is:

q k dp

= A" i@ [1.2.1a]
v is the apparent velocity in centimeters per second and is
equal to g/A, where q is the volumetric flow rate in cubic
centimeters per second and A is the total cross-sectional area
of the rock in square centimeters. In other words, A includes
the area of the rock material as well as the area of the pore
channels. The fluid viscosity, u, is expressed in centipoise
units, and the pressure gradient, dp/dx, is in atmospheres
per centimeter, taken in the same direction as v and ¢. The
proportionality constant, %, is the permeability of the rock
expressed in Darcy units.

The negative sign in Equation 1.2.1a is added because the
pressure gradient dp/dx is negative in the direction of flow
as shown in Figure 1.9.



1/6 ~ WELL TESTING ANALYSIS

Direction of Flow
-

A R R e EE LR PP PP PP EPEEY EEEEPEPES

r

Figure 1.10 Pressure gradient in radial flow.

For a horizontal-radial system, the pressure gradient is
positive (see Figure 1.10) and Darcy’s equation can be
expressed in the following generalized radial form:

g k(3P
_ 4 _* (7 1.2.1b
' A, 23 ( or ) r [ ]
where:
q, = volumetric flow rate at radius »
A, = cross-sectional area to flow at radius
(0p/dr), = pressure gradient at radius

v = apparent velocity at radius 7

The cross-sectional area at radius 7 is essentially the sur-
face area of a cylinder. For a fully penetrated well with a net
thickness of #, the cross-sectional area A, is given by:

A, =2n7rh
Darcy’s law applies only when the following conditions exist:

e laminar (viscous) flow;

o steady-state flow;

e incompressible fluids;

e homogeneous formation.

For turbulent flow, which occurs at higher velocities, the
pressure gradient increases at a greater rate than does the
flow rate and a special modification of Darcy’s equation
is needed. When turbulent flow exists, the application of
Darcy’s equation can result in serious errors. Modifications
for turbulent flow will be discussed later in this chapter.

1.2.2 Steady-state flow

As defined previously, steady-state flow represents the condi-
tion that exists when the pressure throughout the reservoir
does not change with time. The applications of steady-state
flow to describe the flow behavior of several types of fluid in
different reservoir geometries are presented below. These
include:

e linear flow of incompressible fluids;

o linear flow of slightly compressible fluids;
o linear flow of compressible fluids;

o radial flow of incompressible fluids;

o radial flow of slightly compressible fluids;
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Figure 1.11 Linear flow model.

o radial flow of compressible fluids;
e multiphase flow.

Linear flow of incompressible fluids

In alinear system, it is assumed that the flow occurs through
a constant cross-sectional area A, where both ends are
entirely open to flow. It is also assumed that no flow crosses
the sides, top, or bottom as shown in Figure 1.11. If an incom-
pressible fluid is flowing across the element dx, then the
fluid velocity v and the flow rate ¢ are constants at all points.
The flow behavior in this system can be expressed by the
differential form of Darcy’s equation, i.e., Equation 1.2.1a.
Separating the variables of Equation 1.2.1a and integrating
over the length of the linear system:

L b
q k[P
— | dx=—— d
A_/O u Jp, »

4= kA(p1 — p2)
==L
Itis desirable to express the above relationship in customary
field units, or:
0.001127kA(p1 — p2)
= — ———"
ulL

which results in:

[1.2.2]

where:

q = flow rate, bbl/day

k = absolute permeability, md
p = pressure, psia

W = viscosity, cp

L = distance, ft

A = cross-sectional area, ft

Example 1.1 An incompressible fluid flows in a linear
porous media with the following properties:

L = 2000 ft, h=20ft, width = 300 ft
k=100 md, ¢ = 15%, w=2cp
p1 = 2000 psi, p2 = 1990 psi

Calculate:

(a) flow rate in bbl/day;

(b) apparent fluid velocity in ft/day;

(c) actual fluid velocity in ft/day.

Calculate the cross-sectional area A:

A = (h) (width) = (20) (100) = 6000 ft?

Solution
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(a) Calculate the flow rate from Equation 1.2.2:
0.001127RA(p1 — p2)
g=——————=-
L

_(0.001127) (100) (6000) (2000 — 1990)
- (2) (2000)

= 1.6905 bbl/day
(b) Calculate the apparent velocity:
g (1.6905)(5.615)
v== 5000 = 0.0016 ft/day
(c) Calculate the actual fluid velocity:

_ g (1.6905)(5.615) _
v= (,biA = W —0.0105ft/day

The difference in the pressure (p;—p2) in Equation 1.2.2
is not the only driving force in a tilted reservoir. The gravita-
tional force is the other important driving force that must be
accounted for to determine the direction and rate of flow. The
fluid gradient force (gravitational force) is always directed
vertically downward while the force that results from an
applied pressure drop may be in any direction. The force
causing flow would then be the vector sum of these two. In
practice we obtain this result by introducing a new parame-
ter, called “fluid potential,” which has the same dimensions
as pressure, e.g., psi. Its symbol is ®. The fluid potential at
any point in the reservoir is defined as the pressure at that
point less the pressure that would be exerted by a fluid head
extending to an arbitrarily assigned datum level. Letting Az;
be the vertical distance from a point 7 in the reservoir to this
datum level:

Q; =pi — (1'%4) Az
where p is the density in Ib/ft5.

Expressing the fluid density in g/cm?® in Equation 1.2.3
gives:

o =p; — 0. 433}/AZ
where:

[1.2.3]

[1.2.4]

®;= fluid potential at point 7, psi
pi = pressure at point 7, psi
Az; = vertical distance from point 7 to the selected
datum level
o = fluid density under reservoir conditions, Ib/ft?
v = fluid density under reservoir conditions, g/cm?;
this is not the fluid specific gravity

The datum is usually selected at the gas—oil contact, oil-
water contact, or the highest point in formation. In using
Equations 1.2.3 or 1.2.4 to calculate the fluid potential ®; at
location 7, the vertical distance z; is assigned as a positive
value when the point 7 is below the datum level and as a
negative value when it is above the datum level. That is:
If point 7 is above the datum level:
o (L )
@ = pi+({g7) bz
and equivalently:
®; = p; +0.433y Az;
If point ¢ is below the datum level:
— . — (P Az
@ =pi~ ({g) 4
and equivalently:
o; = Pi - 0. 433]/ Az;
Applying the above-generalized concept to Darcy’s equation
(Equation 1.2.2) gives:
o 0-001127RA (@ — @)

uL

[1.2.5]
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Figure 1.12 Example of a tilted layer.

It should be pointed out that the fluid potential drop (®1-®2)
is equal to the pressure drop (p;—p2) only when the flow
system is horizontal.

Example 1.2 Assume that the porous media with the
properties as given in the previous example are tilted with a
dip angle of 5° as shown in Figure 1.12. The incompressible
fluid has a density of 42 Ib/ft*. Resolve Example 1.1 using
this additional information.

Solution

Step 1. For the purpose of illustrating the concept of fluid
potential, select the datum level at half the vertical
distance between the two points, i.e., at 87.15 ft, as
shown in Figure 1.12.

Step 2. Calculate the fluid potential at point 1 and 2.

Since point 1 is below the datum level, then:

_ 0 _ 42
@) =p — (m) Az; = 2000 (m> (87.15)
= 1974. 58 psi
Since point 2 is above the datum level, then:
_ 2\ Az = 2
By = po + (144)A22 —=1990 + <144> (87.15)
= 2015.42 psi

Because ®, > &1, the fluid flows downward from
point 2 to point 1. The difference in the fluid
potential is:

A® = 2015.42 — 1974.58 = 40. 84 psi
Notice that, if we select point 2 for the datum level,
then:

42

d; = 2000 — (m) (174.3) = 1949.16 psi

144

The above calculations indicate that regardless of
the position of the datum level, the flow is downward
from point 2 to 1 with:

A® = 1990 — 1949. 16 = 40. 84 psi
Step 3. Calculate the flow rate:
0.001127kA (& — dy)
q =
uL
_ (0.001127) (100) (6000) (40. 84)
B (2) (2000)

Dy =1990 + (ﬁ) (0) = 1990 psi

= 6.9 bbl/day
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Step 4. Calculate the velocity:
(6.9)(5.615)
6000
(6.9)(5.615)
(0. 15) (6000)

Apparent velocity = = 0.0065 ft/day

Actual velocity = = 0.043 ft/day

Linear flow of slightly compressible fluids
Equation 1.1.6 describes the relationship that exists between
pressure and volume for a slightly compressible fluid, or:

V= Vref[l + c(pref _p)]

This equation can be modified and written in terms of flow
rate as:

q = Gret [14 c(Pret — P)] [1.2.6]

where g is the flow rate at some reference pressure
Dret. Substituting the above relationship in Darcy’s equation
gives:

q _ qref [1 + C(pref _17)] _ k de
Vi —0. 001127;5

Separating the variables and arranging:
L bo
@/ dr = —0.001127% [dip]
A )y o Jpy 1+ clpres — D)
Integrating gives:

_ |:0. 001127kA] n |:1 + c(Pret — P2) i|
Gret = ucL 14 c(pret — P1)

[1.2.7]

where:

qref = flow rate at a reference pressure p,¢, bbl/day
p1 = upstream pressure, psi
p» = downstream pressure, psi

k = permeability, md

L = viscosity, cp

¢ = average liquid compressibility, psi—!

Selecting the upstream pressure p; as the reference pressure
Pret and substituting in Equation 1.2.7 gives the flow rate at
point 1 as:

[0. OOllZ?kA]
R
cL

In[1+c(p1 — p2)] [1.2.8]

Choosing the downstream pressure p, as the reference
pressure and substituting in Equation 1.2.7 gives:

[0. 001127kA] |: 1 :|
q2 = In

[1.2.9]
ucL 1+c(p2 —p1)

where q; and ¢, are the flow rates at point 1 and 2,

respectively.

Example 1.3 Consider the linear system given in
Example 1.1 and, assuming a slightly compressible liquid,
calculate the flow rate at both ends of the linear system. The
liquid has an average compressibility of 21 x 10~° psi.

Solution ~ Choosing the upstream pressure as the reference
pressure gives:

0.001127RA

="

il :|1I1[1+C(P1 —p2)]

(0.001127) (100) (6000)
- [ (2) (21 x 10-5) (2000) }

x In [1 4 21x107° (2000 — 1990)] = 1.689 bbl/day

Choosing the downstream pressure gives

~ [o. 001127kA] ln[ 1 }
3 1+ bz — b1

_ { (0.001127) (100) (6000):|

(2) (21 x 10-5) (2000)

1
!
n L + (21 x 10-5) (1990 — 2000)

i| = 1.692 bbl/day

The above calculations show that ¢; and ¢ are not largely
different, which is due to the fact that the liquid is slightly
incompressible and its volume is not a strong function of
pressure.

Linear flow of compressible fluids (gases)

Foraviscous (laminar) gas flow in ahomogeneous linear sys-
tem, the real-gas equation of state can be applied to calculate
the number of gas moles # at the pressure p, temperature T,
and volume V:

n= s
~ ZRT
At standard conditions, the volume occupied by the above
7 moles is given by:

Vsc — nZscRTsc
Dsc

Combining the above two expressions and assuming Z;. =
1 gives:
pV _ pSC VSC

ZT = T

Equivalently, the above relation can be expressed in terms
of the reservoir condition flow rate g, in bbl/day, and surface
condition flow rate @, in scf/day, as:

p(5’ 615q) — pSC QSC

T T
Rearranging:
Dsc ZT Qs _
<T> (7) <5. 615) =4 [1.2.10]
where:

q = gas flow rate at pressure p in bbl/day
Qs = gas flow rate at standard conditions, scf/day
Z = gas compressibility factor
T, psc = standard temperature and pressure in °R and
psia, respectively.

Dividing both sides of the above equation by the cross-
sectional area A and equating it with that of Darcy’s law, i.e.,
Equation 1.2.1a, gives:

q _ pSC ZT QSC 1 _ Edﬁ
i= () (5) (sais) (5) = oo

The constant 0.001127 is to convert Darcy’s units to field
units. Separating variables and arranging yields:

Qsctsc T /’ _ (" y 5
0.006328k T A | Jo b Zig
Assuming that the product of Z 4 is constant over the spec-

ified pressure range between p; and p,, and integrating,
gives:

[ Qschsc T L

LS A P S L
0.006328kTscA]/0 =7 ), PP

1
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or:
_0.003164T3cAk (2 — p3)
e DseT(Zpg)L

where:

Q.= gas flow rate at standard conditions, scf/day
k = permeability, md

T = temperature, °R
g = gas viscosity, cp

A = cross-sectional area, ft?

L = total length of the linear system, ft

Setting ps. = 14.7 psi and T, = 520°R in the above expres-
sion gives:

~0.111924Ak(p3 — p3)

o = 1211
o, [12.11]

It is essential to notice that those gas properties Z and 4
are very strong functions of pressure, but they have been
removed from the integral to simplify the final form of the gas
flow equation. The above equation is valid for applications
when the pressure is less than 2000 psi. The gas proper-
ties must be evaluated at the average pressure p as defined
below:

— P+ 1}
P—\/T

Example 1.4 A natural gas with a specific gravity of 0.72
is flowing in linear porous media at 140°F. The upstream
and downstream pressures are 2100 psi and 1894.73 psi,
respectively. The cross-sectional area is constant at 4500 ft2.
The total length is 2500 ft with an absolute permeability of
60 md. Calculate the gas flow rate in scf/day (ps. = 14.7
psia, Ty, = 520°R).

[1.2.12]

Solution

Step 1. Calculate average pressure by using Equation 1.2.12:

2 2
5o /2100 +21894.73 _ 2000 psi

Step 2. Using the specific gravity of the gas, calculate its
pseudo-critical properties by applying the following
equations:

The = 168 + 325y, — 12.5
= 168 + 325(0.72) — 12.5(0.72)% = 395.5°R
Poc = 677+ 15.0y, — 37.5

= 677 +15.0(0.72) — 37.5(0.72)? = 668.4 psia

Step 3. Calculate the pseudo-reduced pressure and
temperature:
2000
Por = 5684 = 2.99
600
" 3955 Lo
Step 4. Determine the Z-factor from a Standing—Katz chart
to give:
Z=0.78

Step 5. Solve for the viscosity of the gas by applying the Lee—
Gonzales-Eakin method and using the following

sequence of calculations:

M, = 28.96y,
— 28.96(0.72) = 20.85
oM,
e = ZRT

_ (2000)(20.85) ,
= 0.78)(10.73) 600y — > 30 b/t

_(9.4+0.02M,) T
T 2094 19M,+ T
[9. 4+ 0.02(20. 96)] (600)15

= 209+ 19(20.96) + 600 119.72

X:3.5+§+0.01Ma

986
=3.5+ 500 +0.01(20.85) =5.35

Y=2.4-0.2X
=2.4-(0.2)(5.35) =1.33

g = 107K exp [X (py/62.4)"] = 0.0173 cp

10 (119.72ex0 | 5.35 (22 )
= Rl Rl VT

=0.0173
Step 6. Calculate the gas flow rate by applying Equation
1.2.11:
0.1119244k(p3 — 13)

sC —

TLZ g

~(0.111924) (4500) (60) (2100% — 1894.73?)
- (600) (2500) (0.78) (0.0173)

= 1224242 scf/day

Radial flow of incompressible fluids

In a radial flow system, all fluids move toward the producing
well from all directions. However, before flow can take place,
apressure differential must exist. Thus, if a well is to produce
oil, which implies a flow of fluids through the formation to the
wellbore, the pressure in the formation at the wellbore must
be less than the pressure in the formation at some distance
from the well.

The pressure in the formation at the wellbore of a pro-
ducing well is known as the bottom-hole flowing pressure
(flowing BHP, pys).

Consider Figure 1.13 which schematically illustrates the
radial flow of an incompressible fluid toward a vertical well.
The formation is considered to have a uniform thickness %
and a constant permeability k. Because the fluid is incom-
pressible, the flow rate ¢ must be constant at all radii. Due
to the steady-state flowing condition, the pressure profile
around the wellbore is maintained constant with time.

Let pys represent the maintained bottom-hole flowing pres-
sure at the wellbore radius 7, and p. denotes the external
pressure at the external or drainage radius. Darcy’s gener-
alized equation as described by Equation 1.2.1b can be used
to determine the flow rate at any radius 7:

_ 4 _ k dp
v= g =0.001127 2

r

[1.2.13]
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Figure 1.13 Radial flow model.

where:

v = apparent fluid velocity, bbl/day-ft*
q = flow rate at radius 7, bbl/day
k = permeability, md
L = viscosity, cp
0.001127 = conversion factor to express the equation
in field units
A, = cross-sectional area at radius »

The minus sign is no longer required for the radial system
shown in Figure 1.13 as the radius increases in the same
direction as the pressure. In other words, as the radius
increases going away from the wellbore the pressure also
increases. At any point in the reservoir the cross-sectional
area across which flow occurs will be the surface area of a
cylinder, which is 277k, or:

kdp
wdr

q q
V= —

A= Tk 0.001127

The flow rate for a crude oil system is customarily expressed
in surface units, i.e., stock-tank barrels (STB), rather than
reservoir units. Using the symbol @, to represent the oil flow
as expressed in STB/day, then:

q= BoQo

where B, is the oil formation volume factor in bbl/STB. The
flow rate in Darcy’s equation can be expressed in STB/day,
to give:

QOBO
27vh

=0. 001127£ d—p
Wo dr

Integrating this equation between two radii, ; and »,, when
the pressures are p; and p,, yields:

& Qo dr Py k
/71 <2nh>7 =0.001127 A <MoBo>dp [1.2.14]

For an incompressible system in a uniform formation,
Equation 1.2.14 can be simplified to:

Q, [ dr _0.001127k Py dp

27h n T a HoBo Py
Performing the integration gives:
Q. = 0.00708kh(ps — p1)

*" wBoIn(r/n)
Frequently the two radii of interest are the wellbore radius
7w and the external or drainage radius 7.. Then:
0.00708kh(pe — pw)
Q=—"—"—""7=
MOBO ln(rc/rw)

[1.2.15]

where:

Q,= oil flow rate, STB/day
pe = external pressure, psi
bwt = bottom-hole flowing pressure, psi

k = permeability, md

W, = oil viscosity, cp

B, = oil formation volume factor, bbl/STB
h = thickness, ft

7. = external or drainage radius, ft

rv= wellbore radius, ft

The external (drainage) radius 7. is usually determined from
the well spacing by equating the area of the well spacing with
that of a circle. That is:

wr? = 435604
or:

43 5604
Yo =/
b3

where A is the well spacing in acres.

In practice, neither the external radius nor the wellbore
radius is generally known with precision. Fortunately, they
enter the equation as alogarithm, so the errorin the equation
will be less than the errors in the radii.

[1.2.16]
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Equation 1.2.15 can be arranged to solve for the pressure
p at any radius 7, to give:

_ QOBOMO L
P =but + [o. 00708kh} ln(rw>

Example 1.5 An oil well in the Nameless Field is pro-
ducing at a stabilized rate of 600 STB/day at a stabilized
bottom-hole flowing pressure of 1800 psi. Analysis of the
pressure buildup test data indicates that the pay zone is
characterized by a permeability of 120 md and a uniform
thickness of 25 ft. The well drains an area of approximately
40 acres. The following additional data is available:

rw = 0.25ft, A = 40 acres
B, = 1.25bbl/STB,

Calculate the pressure profile (distribution) and list the pres-
sure drop across 1 ftintervals from 7, to 1.25 ft, 4 to 5ft, 19 to
20 ft, 99 to 100 ft, and 744 to 745 ft.

[1.2.17]

Lo = 2.5¢p

Solution

Step 1. Rearrange Equation 1.2.15 and solve for the pressure
p at radius 7:

_ /J’OBOQQ r
b=+ [0.00708kh]1“<ﬁ)

= 1800+ { (2.5) (1.25) (600)

(0.00708) (120) (25)] 1(535)

— 1800 + 88. 28111(&)

Step 2. Calculate the pressure at the designated radii:

7 (ft) b (psi) Radius Pressure drop
interval

0.25 1800

1.25 1942 0.25-1.25 1942—1800 = 142 psi

4 2045

5 2064 4-5 2064—2045 =19 psi

19 2182

20 2186 19-20 2186—2182 =4 psi

99 2328

100 2329 99-100 2329-2328 =1 psi

744 2506.1

745 2506.2 744-745 2506.2—2506.1 =0.1 psi

Figure 1.14 shows the pressure profile as a function of
radius for the calculated data.

Results of the above example reveal that the pressure drop
just around the wellbore (i.e., 142 psi) is 7.5 times greater
than at the 4 to 5 interval, 36 times greater than at 19-20 ft,
and 142 times than that at the 99-100 ft interval. The reason
for this large pressure drop around the wellbore is that the
fluid flows in from a large drainage area of 40 acres.

The external pressure p. used in Equation 1.2.15 cannot be
measured readily, but p. does not deviate substantially from
the initial reservoir pressure if a strong and active aquifer is
present.

Several authors have suggested that the average reser-
voir pressure p., which often is reported in well test results,
should be used in performing material balance calcula-
tions and flow rate prediction. Craft and Hawkins (1959)
showed that the average pressure is located at about 61%
of the drainage radius 7. for a steady-state flow condition.

Substituting 0.617. in Equation 1.2.17 gives:

_ L QoBo 1o 0.617,
p(atr = 0.617c) = pr = pur + [0.00708kh} ln( e )
or in terms of flow rate:

0. 0.00708kh(pr — Pwi)
*7 B, 1n(0.617./7y)

But since In(0. 617./7y) = In(7./7y) — 0.5, then:

Q- 0.00708kh(pr — pwt) [1.2.19]

7 woBo [In (re/r) — 0.5]
Golan and Whitson (1986) suggested a method for approxi-
mating the drainage area of wells producing from a common
reservoir. These authors assume that the volume drained
by a single well is proportional to its rate of flow. Assuming
constant reservoir properties and a uniform thickness, the
approximate drainage area of a single well Ay, is:

oo ()
qr

where:

[1.2.18]

[1.2.20]

Ay, = drainage area of a well
Ar = total area of the field
qr = total flow rate of the field
qw= well flow rate

Radial flow of slightly compressible fluids
Terry and co-authors (1991) used Equation 1.2.6 to express
the dependency of the flow rate on pressure for slightly com-
pressible fluids. If this equation is substituted into the radial
form of Darcy’s law, the following is obtained:

q _ M - 0.0011275%

A, 2mrh udr
where g, is the flow rate at some reference pressure pyes.

Separating the variables and assuming a constant com-

pressibility over the entire pressure drop, and integrating
over the length of the porous medium:
e dr

e
& _ooorner [
r Dt 1+ c(pres — 1)

qref 4
2rkh Jy,

gives:

_ [ 0.00708kh ] [ 1+ c(pe — Drer) :|
et = weln(re/ry) 14 c(pwt — Drer)

where ¢ is the oil flow rate at a reference pressure pres.
Choosing the bottom-hole flow pressure py as the reference
pressure and expressing the flow rate in STB/day gives:

o _[ 0.00708kh
o I‘LoBoco hl(’e/rw)
where:

]ln[1+€o(17e — Pwi)] [1.2.21]

¢, = isothermal compressibility coefficient, psi~!
Q, = oil flow rate, STB/day
k = permeability, md

Example 1.6 The following data is available on a well in
the Red River Field:

pe = 2506 psi, pwt = 1800 psi
re = 745 ft, 7w =0.251t

B, =1.25bbl/STB, p, =2.5¢cp
k = 0.12 darcy, h =251t

Co=25x 107 psi~!
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Figure 1.14 Pressure profile around the wellbore.

Assuming a slightly compressible fluid, calculate the oil flow
rate. Compare the result with that of an incompressible fluid.

Solution  For a slightly compressible fluid, the oil flow rate
can be calculated by applying Equation 1.2.21:

0.00708kh
Q = [m} In[1+ ¢o(Pe — pwi)]
~ (0.00708) (120) (25)
= | 25) (1.25) (25 x 10-5) In(745/0.25)

x In[1 4 (25 x 10-%) (2506 — 1800)] = 595 STB/day

Assuming an incompressible fluid, the flow rate can be
estimated by applying Darcy’s equation, i.e., Equation 1.2.15:
Qu = 0.00708kh(pe — pw)

°T weBoIn(re/ny)

(0.00708) (120) (25) (2506 — 1800)
(2.5) (1.25) In (745/0. 25)

= 600 STB/day

Radial flow of compressible gases

The basic differential form of Darcy’s law for a horizontal
laminar flow is valid for describing the flow of both gas and
liquid systems. For a radial gas flow, Darcy’s equation takes
the form:

0.001127(27 7h)k dp

m i [1.2.22]
g

qor =

where:

qqr = gas flow rate at radius 7, bbl/day
r = radial distance, ft
h = zone thickness, ft
I = gas viscosity, cp
p = pressure, psi
0.001127 = conversion constant from Darcy units to
field units

The gas flow rate is traditionally expressed in scf/day. Refer-
ring to the gas flow rate at standard (surface) condition as
@y, the gas flow rate g, under wellbore flowing condition
can be converted to that of surface condition by applying the

definition of the gas formation volume factor By to gg, as:

qgr
Q=%
g Bg
where:
_ Ppe 2T
By =5 6157 » bbl/scf
or:
pSC ZT _
( 5 6157 ) (7) Q¢ = dor [1.2.23]
where:

psc = standard pressure, psia
Ty = standard temperature, °R
Qg = gas flow rate, scf/day
qqr = gas flow rate at radius 7, bbl/day
p = pressure at radius 7, psia
T = reservoir temperature, °R
Z = gas compressibility factor at p and T
Zs. = gas compressibility factor at standard
condition = 1.0

Combining Equations 1.2.22 and 1.2.23 yields:
Dsc zZT 0 — 0.001127 (27 7h) k dp
(5.615Tsc> (7) ‘o dr

Mg dr
Assuming that Ty, = 520°R and ps. = 14.7 psia:
TQ.\ dr 2p
—2 ) —=0.703( — | d 1.2.24
(%) 5 (o) [1.2.24]

Integrating Equation 1.2.24 from the wellbore conditions
(rw and pys) to any point in the reservoir (» and p) gives:

/T P2
/ 19, ﬂ =0.703 2b dp
w \ kR ) 1 por \HeZ
Imposing Darcy’s law conditions on Equation 1.2.25, i.e.,
steady-state flow, which requires that @, is constant at all

radii, and homogeneous formation, which implies that 2 and
h are constant, gives:

TQ, 7\ ? 2
(W) In (a) =018 (@) @

The term:
73
L, Gae)
DPwf HgZ

[1.2.25]
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Slope = (Qy7/0.703kh)

Yw

Inr/ry

Figure 1.15 Graph of  vs. In(r/ry).

can be expanded to give:

4 2p 14 2p bwi 2p
wz) =] Gz [ (z)
-/pwf <I'LgZ) ? 0 \UgZ ? 0 ngZ ?
Replacing the integral in Equation 1.2.24 with the above
expanded form yields:

TQ, au b/ 2p Put [ 2p
() =omal [ ()= [ (222 )]
[1.2.26]
The integral /f 20/ (ugZ ) dp is called the “real-gas pseudo-

potential” or “real-gas pseudopressure” and it is usually
represented by m(p) or . Thus:

P 21)
—yv=[ (£ )da
== (z)

Equation 1.2.27 can be written in terms of the real-gas
pseudopressure as:

TQq r\
<W) ln(a) =0.703(¢ — Yw)

s QT (7
V=Vt 03k hl(rw)

Equation 1.2.28 indicates that a graph of y vs. In(r /) yields
a straight line with a slope of @,7'/0. 703kh and an intercept
value of ¥, as shown in Figure 1.15. The exact flow rate is
then given by:

0.703kh(Y — )

[1.2.27]

or:

[1.2.28]

e = ThG/re) [1.2.29]
In the particular case when » = 7., then:
_ 0.703kh (e — )
i &y [1.2.30]
where:

Y. = real-gas pseudopressure as evaluated from 0 to pe,
psi®/cp
Yrw= real-gas pseudopressure as evaluated from 0 to pys,
psi?/cp
k = permeability, md
h = thickness, ft
7. = drainage radius, ft
rw= wellbore radius, ft
Qy = gas flow rate, scf/day

Because the gas flow rate is commonly expressed in
Mscf/day, Equation 1.2.30 can be expressed as:

kh e VYw
Q = Ve — ¥w)

T 1422T In(re/rw) [1.2.31]

where:
Q,= gas flow rate, Mscf/day

Equation 1.2.31 can be expressed in terms of the average
reservoir pressure p, instead of the initial reservoir pressure
De as:

_ kh(fr — Yw)
14227 [In(re/7w) — 0.5]

@ [1.2.32]

To calculate the integral in Equation 1.2.31, the values of
2p/n Z are calculated for several values of pressure p. Then
2p/wgZ vs. p is plotted on a Cartesian scale and the area
under the curve is calculated either numerically or graph-
ically, where the area under the curve from p = 0 to any
pressure p represents the value of v corresponding to p.
The following example will illustrate the procedure.

Example 1.7 The PVT data from a gas well in the
Anaconda Gas Field is given below:

P (psi) g (cp) A

0 0.0127 1.000
400 0.01286 0.937
800 0.01390 0.882
1200 0.01530 0.832
1600 0.01680 0.794
2000 0.01840 0.770
2400 0.02010 0.763
2800 0.02170 0.775
3200 0.02340 0.797
3600 0.02500 0.827
4000 0.02660 0.860
4400 0.02831 0.896

The well is producing at a stabilized bottom-hole flowing
pressure of 3600 psi. The wellbore radius is 0.3 ft. The
following additional data is available:

k=65md,
pe = 4400 psi,

h=151t,
7e = 1000 ft

T = 600°R

Calculate the gas flow rate in Mscf/day.

Solution

Step 1. Calculate the term 2p/ugZ for each pressure as
shown below:

p@s) pug(p Z 2p/11sZ (psia/cp)
0 0.0127 1.000 0

400 0.01286  0.937 66391

800 0.01390  0.882 130508

1200 0.01530  0.832 188537

1600 0.01680  0.794 239894

2000 0.01840  0.770 282326

2400 0.02010 0.763 312983

2800 0.02170  0.775 332986

3200 0.02340  0.797 343167
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Figure 1.16 Real-gas pseudopressure data for Example 1.7 (After Donohue and Erekin, 1982).

ps) puglp Z 20/ ugZ (psia/cp)
3600 0.02500  0.827 348247
4000 0.02660 0.860 349711
4400 0.02831 0.896 346924

Step 2. Plot the term 2p/,Z versus pressure as shown in
Figure 1.16.

Step 3. Calculate numerically the area under the curve for
each value of p. These areas correspond to the real-
gas pseudopressure v at each pressure. These v
values are tabulated below; notice that 2p/u,Z vs.
p is also plotted in the figure.

p s v (psi’/cp)
400 13.2 x 10
800 52.0 x 10°
1200 113.1 x 10°
1600 198.0 x 10°
2000 304.0 x 10°
2400 422.0 x 106
2800 542.4 x 108
3200 678.0 x 10°
3600 816.0 x 10°
4000 950.0 x 10°
4400 1089.0 x 106

Step 4. Calculate the flow rate by applying Equation 1.2.30:
At py, = 3600 psi: gives ¥, = 816.0 x 10° psi®/cp
At pe = 4400 psi: gives Y. = 1089 x 10° psi®/cp
_0.703kh (e — Yrw)
£ Thn(re/ry)

(65) (15) (1089 — 816) 106
(1422) (600) In(1000/0. 25)

= 37614 Mscf/day

In the approximation of the gas flow rate, the exact gas
flow rate as expressed by the different forms of Darcy’s law,
i.e., Equations 1.2.25 through 1.2.32, can be approximated by
moving the term 2/p,Z outside the integral as a constant. It
should be pointed out that the product of Z 4 is considered
constant only under a pressure range of less than 2000 psi.
Equation 1.2.31 can be rewritten as:

kh re 1 9p
%= s | (oz)

Removing the term 2/u,Z and integrating gives:

ki (9 — )

O = 14227 (u,2) _In (re/ms)

[1.2.33]

avg
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where:

Q. = gas flow rate, Mscf/day
k = permeability, md

The term (ugZ)ayg is evaluated at an average pressure p
that is defined by the following expression:

5= e T 02

2

The above approximation method is called the pressure-
squared method and is limited to flow calculations when the
reservoir pressure is less that 2000 psi. Other approximation
methods are discussed in Chapter 2.

Example 1.8 Using the data given in Example 1.7, re-
solve the gas flow rate by using the pressure-squared
method. Compare with the exact method (i.e., real-gas
pseudopressure solution).

Solution

Step 1. Calculate the arithmetic average pressure:

/ 2 2
5 4400 —53600 — 4020 psi

Step 2. Determine the gas viscosity and gas compressibility
factor at 4020 psi:

ug = 0.0267
Z =0.862
Step 3. Apply Equation 1.2.33:

kh(p7 = %)

Qs = 14227 (1), In(re/ 1)

(65) (15) [44002 — 36007]
(1422) (600) (0.0267) (0.862) In(1000/0. 25)

= 38314 Mscf/day

Step 4. Results show that the pressure-squared method
approximates the exact solution of 37614 with an
absolute error of 1.86%. This error is due to the lim-
ited applicability of the pressure-squared method to
a pressure range of less than 2000 psi.

Horizontal multiple-phase flow

When several fluid phases are flowing simultaneously in a
horizontal porous system, the concept of the effective perme-
ability of each phase and the associated physical properties
must be used in Darcy’s equation. For a radial system, the
generalized form of Darcy’s equation can be applied to each
reservoir as follows:

g0 = 0.001127 (2’”") p, 3
o dr

gw = 0.001127 <2’”h ) k, 3
Hw dr

2mrh dp

gg = 0.001127 < " )kg 2

where:

ko, kw, kg = effective permeability to oil, water,
and gas, md
Hos w, Lg = Viscosity of oil, water, and gas, cp
4o, qw,qg = flow rates for oil, water, and gas, bbl/day
k = absolute permeability, md

The effective permeability can be expressed in terms of
the relative and absolute permeability as:

ko = kiok
by = kewk
kg = kigh

Using the above concept in Darcy’s equation and expressing
the flow rate in standard conditions yields:

Q, = 0.00708(rhk) kro d—p [1.2.34]
noB, /) dr
Qv = 0.00708(rhk) ( e ) d—p [1.2.35]
uwBy ) dr
_ kg O\ dp
Qg = 0.00708 (rhk) (Mng) e [1.2.36]
where:
Q,, @y = oil and water flow rates, STB/day
B,, By, = oil and water formation volume factor,

bbl/STB
Q, = gas flow rate, scf/day
B, = gas formation volume factor, bbl/scf
k = absolute permeability, md

The gas formation volume factor B, is expressed by

B, =0. OOSOBSZ‘TT bbl/scf

Performing the regular integration approach on Equations,
1.2.34 through 1.2.36 yields:

Oil phase:
0.00708 (kh) (& — Dw
0 — (k1) (ko) (e — Put) [1.2.37]
woBoIn(7e/7y)
Water phase:
0.00708 (kh) (krw) (Pe —
- (k) (kew) (be — Dur) [1.2.38]
MWBW ln(re/rw)
Gas phase:
kh) krg (Ye — V) .
. = M in terms of the real-gas
1422T In(7e/7w) potential [1.2.39]
kh) kg (P — P2
Q= ( ) L (ﬁ < pr) in terms of the pressure
1422 (e Z )avg T'In(re/rv) squared [1.2.40]
where:

@ = gas flow rate, Mscf/day
k = absolute permeability, md
T = temperature, °R

In numerous petroleum engineering calculations, it is con-
venient to express the flow rate of any phase as a ratio of
other flowing phases. Two important flow ratios are the
“instantaneous” water—oil ratio (WOR) and the “instanta-
neous” gas-oil ratio (GOR). The generalized form of Darcy’s
equation can be used to determine both flow ratios.

The water—oil ratio is defined as the ratio of the water flow
rate to that of the oil. Both rates are expressed in stock-tank
barrels per day, or:

QW
WOR = —
Q

o

Dividing Equation 1.2.34 by 1.2.36 gives:

_ krw oBo
WOk = <E> <NWBW>

[1.2.41]
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Figure 1.17 Pressure disturbance as a function of time.

where:
WOR = water—oil ratio, STB/STB

The instantaneous GOR, as expressed in scf/STB, is defined
as the fotal gas flow rate, i.e., free gas and solution gas,
divided by the oil flow rate, or:

QR + @
GOR= —/———=
Q
or:
&
GOR =R, + o [1.2.42]
where:

GOR = “instantaneous” gas—oil ratio, scf/STB
R, = gas solubility, scf/STB
Q = free gas flow rate, scf/day
Q, = oil flow rate, STB/day

Substituting Equations 1.2.34 and 1.2.36 into 1.2.42 yields:

k toBo
GOR=R. + (i) ( )
kro /Lng

where By is the gas formation volume factor expressed in
bbl/scf.

A complete discussion of the practical applications of the
WOR and GOR is given in the subsequent chapters.

[1.2.43]

1.2.3 Unsteady-state flow

Consider Figure 1.17(a) which shows a shut-in well that is
centered in a homogeneous circular reservoir of radius 7.
with a uniform pressure p; throughout the reservoir. This ini-
tial reservoir condition represents the zero producing time.

If the well is allowed to flow at a constant flow rate of ¢, a
pressure disturbance will be created at the sand face. The
pressure at the wellbore, i.e., py;, will drop instantaneously
as the well is opened. The pressure disturbance will move
away from the wellbore at a rate that is determined by:

permeability;

porosity;

fluid viscosity;

rock and fluid compressibilities.

Figure 1.17(b) shows that at time #{, the pressure distur-
bance has moved a distance 7, into the reservoir. Notice
that the pressure disturbance radius is continuously increas-
ing with time. This radius is commonly called the radius of
investigation and referred to as 7. It is also important to
point out that as long as the radius of investigation has not
reached the reservoir boundary, i.e., 7., the reservoir will be
acting as if it is infinite in size. During this time we say that
the reservoir is infinite acting because the outer drainage
radius 7., can be mathematically infinite, i.e., 7. = co. A sim-
ilar discussion to the above can be used to describe a well
that is producing at a constant bottom-hole flowing pressure.
Figure 1.17(c) schematically illustrates the propagation of
the radius of investigation with respect to time. At time #4, the
pressure disturbance reaches the boundary, i.e., 7,y = 7e.
This causes the pressure behavior to change.

Based on the above discussion, the transient (unsteady-
state) flow is defined as that time period during which the
boundary has no effect on the pressure behavior in the reser-
voir and the reservoir will behave as if it is infinite in size.
Figure 1.17(b) shows that the transient flow period occurs
during the time interval 0 < ¢ < ¢ for the constant flow
rate scenario and during the time period 0 < ¢ < #; for the
constant pyr scenario as depicted by Figure 1.17(c).
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1.2.4 Basic transient flow equation

Under the steady-state flowing condition, the same quantity
of fluid enters the flow system as leaves it. In the unsteady-
state flow condition, the flow rate into an element of volume
of a porous medium may not be the same as the flow rate
out of that element and, accordingly, the fluid content of the
porous medium changes with time. The other controlling
variables in unsteady-state flow additional to those already
used for steady-state flow, therefore, become:

e timef;
® porosity ¢;
e total compressibility ¢;.

The mathematical formulation of the transient flow equa-
tion is based on combining three independent equa-
tions and a specifying set of boundary and initial con-
ditions that constitute the unsteady-state equation. These
equations and boundary conditions are briefly described
below.

Continuity equation: The continuity equation is essentially
a material balance equation that accounts for every pound
mass of fluid produced, injected, or remaining in the
reservoir.

Transport equation: The continuity equation is combined
with the equation for fluid motion (transport equation) to
describe the fluid flow rate “in” and “out” of the reservoir.
Basically, the transport equation is Darcy’s equation in its
generalized differential form.

Compressibility equation: The fluid compressibility equation
(expressed in terms of density or volume) is used in for-
mulating the unsteady-state equation with the objective of
describing the changes in the fluid volume as a function of
pressure.

Initial and boundary conditions: There are two boundary con-
ditions and one initial condition is required to complete the

formulation and the solution of the transient flow equation.
The two boundary conditions are:

(1) the formation produces at a constant rate into the well-
bore;

(2) there is no flow across the outer boundary and the
reservoir behaves as if it were infinite in size, i.e., 7. = oco.

The initial condition simply states that the reservoir is at a
uniform pressure when production begins, i.e., time = 0.

Consider the flow element shown in Figure 1.18. The ele-
ment has a width of d» and is located at a distance of 7 from
the center of the well. The porous element has a differen-
tial volume of dV. According to the concept of the material
balance equation, the rate of mass flow into an element minus
the rate of mass flow out of the element during a differen-
tial time At must be equal to the mass rate of accumulation
during that time interval, or:

mass leaving
volume element
during interval At

mass entering
volume element | —
during interval At

rate of mass
accumulation
during interval At

[1.2.44]

The individual terms of Equation 1.2.44 are described below:
Mass, entering the volume element during time interval At
Here:

(Mass)in = At[AVp],er,

where:

[1.2.45]

v = velocity of flowing fluid, ft/day
p = fluid density at ( + dr), Ib/ft®
A =areaat (r + dr)
At = time interval, days
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The area of the element at the entering side is:

Ay = 21 (r +dr)h [1.2.46]
Combining Equations 1.2.46 with 1.2.35 gives:
[Massly, = 27 At(r + dr)h(vo) ,rar [1.2.47]

Mass leaving the volume element Adopting the same
approach as that of the leaving mass gives:

[Mass] oyt = 27 Atrh(vp), [1.2.48]

Total accumulation of mass The volume of some element
with a radius of 7 is given by:

V =nr’h
Differentiating the above equation with respect to » gives:

dv
Frie 2mrh
or:

= 2nrh) dr

Total mass accumulation during At =
Substituting for dV yields:

Total mass accumulation = 2r7h)d7[(pp)sar —

[1.2.49]
AV [(90)t+at — (9p)1]-

()]
[1.2.50]

Replacing the terms of Equation 1.2.44 with those of the
calculated relationships gives:

2nh(r +dr) At(¢p)r+dr — 2mhr At(¢p):

= QCrrh)dr[(¢p)t+ar — (Pp)i]

Dividing the above equation by (2r7k)dr and simplifying
gives:

1 1
W [(1’ + dr) (VP rar — 7(1),0)7] = At [(d’p)tMt — ((bp)t]
or:

190 9
59y el = o () [1.2.51]
where:

¢ = porosity

p = density, Ib/ft?
V = fluid velocity, ft/day

Equation 1.2.51 is called the continuity equation and it
provides the principle of conservation of mass in radial
coordinates.

The transport equation must be introduced into the conti-
nuity equation to relate the fluid velocity to the pressure gra-
dient within the control volume d V. Darcy’s law is essentially
the basic motion equation, which states that the velocity is
proportional to the pressure gradient 9p/97. From Equation
1.2.13:

k
~ (5.615) (0.001127) - 2
= (0.006328) — k gi [1.2.52]
where:
k = permeability, md
v = velocity, ft/day
Combining Equation 1.2.52 with 1.2.51 results in:
0.006328 9 op Bl
- — == 1.2.
; ( (p )3r> ot (#p) [1.2.53]

Expanding the right-hand side by taking the indicated deriva-
tives eliminates the porosity from the partial derivative term

on the right—hand side:
3 3¢
9 (pp) = ¢* + PE [1.2.54]

The porosity is related to the formation compressibility by
the following:
19¢

= rET) [1.2.55]

Applying the chain rule of differentiation to d¢/0¢:
3¢ 99 ap

ot ap ot
Substituting Equation 1.2.55 into this equation:

a
L.

Finally, substituting the above relation into Equation 1.2.54
and the result into Equation 1.2.53 gives:

0.006328 9
== ( (o7 )—)—pqs (oo

Equation 1.2.56 is the general partial differential equation
used to describe the flow of any fluid flowing in a radial direc-
tion in porous media. In addition to the initial assumptions,
Darcy’s equation has been added, which implies that the flow
is laminar. Otherwise, the equation is not restricted to any
type of fluid and is equally valid for gases or liquids. How-
ever, compressible and slightly compressible fluids must be
treated separately in order to develop practical equations
that can be used to describe the flow behavior of these two
fluids. The treatments of the following systems are discussed
below:

[1.2.56]

o radial flow of slightly compressible fluids;
o radial flow of compressible fluids.

1.2.5 Radial flow of slightly compressibility fluids

To simplify Equation 1.2.56, assume that the permeability
and viscosity are constant over pressure, time, and distance
ranges. This leads to:

0.006328k7 o ap +
T ar 7’/)5 = pPct— ¢*

Expanding the above equation gives:

2
0006328( )["‘”’Jr L

or '0872

(%) 15(2)

Using the chain rule in the above relationship yields:

EN[pop | 9%  (0p)\* dp
0.006328 (;) |: ar + ,03? + <;> %

=oea () e ) ()

Dividing the above expression by the fluid density p gives:

E\[1ap % 2\ (1 9p
0.006328(u>[ ar+872+<87> (p ap)}
ap ap (1dp
=0 () +5 (535)

Recalling that the compressibility of any fluid is related to its
density by:

[1.2.57]

dap dp
ar 9r

18,0
T pop
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combining the above two equations gives:
E\[a% 1op ap\?
0.006328 (;) {372 + T3 + c(5>
o (22 op
= et (31‘) +¢c<at>

The term c(0p/ 87')2 is considered very small and may be
ignored, which leads to:

ENT3%p 1ap ap
0.006328 (;> [W + ;5] =¢leto 5 [1.2.58]
Defining total compressibility, ¢, as:
c=cH+¢ [1.2.59]

and combining Equation 1.2.57 with 1.2.58 and rearranging

gives:

¥p  13p puc  3p

ar2 ' rar  0.006328k 3t

where the time ¢ is expressed in days.
Equation 1.2.60 is called the diffusivity equation and is

considered one of the most important and widely used

mathematical expressions in petroleum engineering. The

equation is particularly used in the analysis of well testing

data where the time ¢ is commonly reordered in hours. The

equation can be rewritten as:

Pp Lop__oua_dp
arz  rar  0.0002637k ot
where:

[1.2.60]

[1.2.61]

k= permeability, md
r= radial position, ft

p = pressure, psia

¢, = total compressibility, psi~!
t = time, hours

¢ = porosity, fraction

u = viscosity, cp

When the reservoir contains more than one fluid, total
compressibility should be computed as
€t = €oSo + CwSw + €gSg + ¢ [1.2.62]
where ¢,, ¢y, and ¢, refer to the compressibility of oil, water,
and gas, respectively, and S,, Sw, and S refer to the frac-
tional saturation of these fluids. Note that the introduction of
¢; into Equation 1.2.60 does not make this equation applica-
ble to multiphase flow; the use of ¢, as defined by Equation
1.2.61, simply accounts for the compressibility of any immo-
bile fluids which may be in the reservoir with the fluid that
is flowing.

The term 0. 000264%/ ¢ ¢y is called the diffusivity constant
and is denoted by the symbol 5, or:

_0.0002637%
Puc

The diffusivity equation can then be written in a more
convenient form as:
a%p Ll _1op
a2 ror ot
The diffusivity equation as represented by relationship 1.2.64
is essentially designed to determine the pressure as a
function of time ¢ and position 7.

Notice that for a steady-state flow condition, the pressure
at any point in the reservoir is constant and does not change
with time, i.e., 9p/9dt = 0, so Equation 1.2.64 reduces to:
2p 10p
e o)
or? + r or
Equation 1.2.65 is called Laplace’s equation for steady-state
flow.

[1.2.63]

[1.2.64]

[1.2.65]

Example 1.9 Show that the radial form of Darcy’s equa-
tion is the solution to Equation 1.2.65.

Solution

Step 1. Start with Darcy’s law as expressed by Equation
1.2.17:

_ + QOBOMO ln < L)
P=Pwi+1 5 007080k | "\ 7y

Step 2. For a steady-state incompressible flow, the term with
the square brackets is constant and labeled as C, or:

r
b =pwi + [C] ln(7>
Step 3. Evaluate the above expression for the first and
second derivative, to give:

ap 1
w=(;)
r r
Step 4. Substitute the above two derivatives in Equation

1.2.65:
e (5)e(;) o
7 r r

Step 5. Results of step 4 indicate that Darcy’s equation sat-
isfies Equation 1.2.65 and is indeed the solution to
Laplace’s equation.

To obtain a solution to the diffusivity equation (Equation
1.2.64), it is necessary to specify an initial condition and
impose two boundary conditions. The initial condition sim-
ply states that the reservoir is at a uniform pressure p; when
production begins. The two boundary conditions require
that the well is producing at a constant production rate and
the reservoir behaves as if it were infinite in size, i.e., 7. = o00o.

Based on the boundary conditions imposed on Equation
1.2.64, there are two generalized solutions to the diffusivity
equation. These are:

(1) the constant-terminal-pressure solution
(2) the constant-terminal-rate solution.

The constant-terminal-pressure solution is designed to pro-
vide the cumulative flow at any particular time for a reservoir
inwhich the pressure at one boundary of the reservoir is held
constant. This technique is frequently used in water influx
calculations in gas and oil reservoirs.

The constant-terminal-rate solution of the radial diffusiv-
ity equation solves for the pressure change throughout the
radial system providing that the flow rate is held constant
at one terminal end of the radial system, i.e., at the pro-
ducing well. There are two commonly used forms of the
constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pp solution.

Constant-terminal-pressure solution
In the constant-rate solution to the radial diffusivity equation,
the flow rate is considered to be constant at certain radius
(usually wellbore radius) and the pressure profile around
that radius is determined as a function of time and position.
In the constant-terminal-pressure solution, the pressure is
known to be constant at some particular radius and the solu-
tion is designed to provide the cumulative fluid movement
across the specified radius (boundary).

The constant-pressure solution is widely used in water
influx calculations. A detailed description of the solution
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and its practical reservoir engineering applications is appro-
priately discussed in the water influx chapter of the book
(Chapter 5).

Constant-terminal-rate solution

The constant-terminal-rate solution is an integral part of most
transient test analysis techniques, e.g., drawdown and pres-
sure buildup analyses. Most of these tests involve producing
the well at a constant flow rate and recording the flowing
pressure as a function of time, i.e., p(#y,t). There are two
commonly used forms of the constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pp solution.

These two popular forms of solution to the diffusivity
equation are discussed below.

The Ei function solution

For an infinite-acting reservoir, Matthews and Russell (1967)
proposed the following solution to the diffusivity equation,
i.e., Equation 1.2.55:

70.6QuuB, | o [ ~948¢pucir?
kh kt

D) = i+ [ } [1.2.66]

where:

p(r,t) = pressure at radius 7 from the well after ¢ hours
t = time, hours
k = permeability, md
Q, = flow rate, STB/day

The mathematical function, Ei, is called the exponential
integral and is defined by:

Ei(—x) :_/' e "du

u

=[1nx_f!+2’gzg_ej(‘m)+..}

Craft et al. (1991) presented the values of the Ei function
in tabulated and graphical forms as shown in Table 1.1 and
Figure 1.19, respectively.

The Ei solution, as expressed by Equation 1.2.66, is
commonly referred to as the line source solution. The expo-
nential integral “Ei” can be approximated by the following
equation when its argument x is less than 0.01:

[1.2.67]

Ei(—x) = In (1.781x) [1.2.68]

where the argument x in this case is given by:
_ 948¢ucr?
Tkt

Equation 1.2.68 approximates the Ei function with less than
0.25% error. Another expression that can be used to approx-
imate the Ei function for the range of 0.01 < x < 3.0 is
given by:
Ei(—x) = a1 + a; In(x) + a3[In@)* + as[In@)]* + asx

+ aex® + ax® + ag/x [1.2.69]

with the coefficients @; through ag having the following
values:
a; = —0.33153973 a; = —0.81512322

as =5.22123384 x 1072 a4 = 5.9849819 x 107

Table 1.1 Values of —Ei(—x) as a function of x
(After Craft et al. 1991)

x —Ei(—x) =« —Ei(—x) « —Ei(—x)
0.1 1.82292 3.5 0.00697 6.9 0.00013
0.2 1.22265 3.6 0.00616 7.0 0.00012
0.3 0.90568 3.7 0.00545 7.1 0.00010
0.4 0.70238 3.8 0.00482 7.2 0.00009
0.5 0.55977 3.9 0.00427 7.3 0.00008
0.6 0.45438 4.0 0.00378 7.4  0.00007
0.7 037377 4.1 0.00335 7.5  0.00007
0.8 0.31060 4.2 0.00297 7.6 0.00006
0.9 0.26018 4.3 0.00263 7.7 0.00005
1.0 0.21938 4.4 0.00234 7.8 0.00005
1.1 0.18599 4.5 0.00207 7.9 0.00004
1.2 0.15841 46 0.00184 8.0  0.00004
1.3 0.13545 4.7 0.00164 8.1 0.00003
14 011622 4.8 0.00145 8.2 0.00003
1.5 0.10002 4.9 0.00129 8.3  0.00003
1.6 0.08631 5.0 0.00115 8.4  0.00002
1.7 0.07465 51 0.00102 8.5  0.00002
1.8 0.06471 5.2 0.00091 8.6  0.00002
1.9 0.05620 53  0.00081 8.7  0.00002
2.0 0.04890 54 0.00072 8.8  0.00002
2.1 0.04261 5.5 0.00064 8.9 0.00001
2.2 0.03719 5.6  0.00057 9.0 0.00001
2.3 0.03250 5.7  0.00051 9.1 0.00001
2.4 0.02844 5.8 0.00045 9.2 0.00001
2.5 0.02491 5.9 0.00040 9.3  0.00001
2.6 0.02185 6.0 0.00036 9.4 0.00001
2.7 0.01918 6.1 0.00032 9.5 0.00001
2.8 0.01686 6.2 0.00029 9.6  0.00001
2.9 0.01482 6.3  0.00026 9.7  0.00001
3.0 0.01305 6.4 0.00023 9.8  0.00001
3.1 0.01149 6.5 0.00020 9.9 0.00000
3.2 0.01013 6.6  0.00018 10.0  0.00000
3.3 0.00894 6.7 0.00016

3.4 0.00789 6.8 0.00014

as = 0.662318450 as = —0.12333524

a7 = 1.0832566 x 1072 ag = 8.6709776 x 10~

The above relationship approximated the Ei values with an
average error of 0.5%.

It should be pointed out that for x > 10.9, Ei(—x) can be
considered zero for reservoir engineering calculations.

Example 1.10 An oil well is producing at a constant
flow rate of 300 STB/day under unsteady-state flow con-
ditions. The reservoir has the following rock and fluid
properties:

B, =1.25bbl/STB, o =1.5¢cp, ¢ =12 x 1076 psi~?
k, = 60 md, h=151t, pi = 4000 psi

¢ = 15%, 7w = 0.25ft

(1) Calculate the pressure at radii of 0.25, 5, 10, 50, 100,

500, 1000, 1500, 2000, and 2500 ft, for 1 hour. Plot the
results as:

(a) pressure versus the logarithm of radius;
(b) pressure versus radius.
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8 Exponential integral values

~ e-Udu
Ei(—x) = —
6 i(—x) '/).{ U

4 \ For x < 0.02
SN Ei(—x) = In(x) + 0.577
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Figure 1.19 Ei function (After Craft et al., 1991).

(2) Repeat part 1 for + = 12 hours and 24 hours. Plot the  Step 2. Perform the required calculations after 1 hour in the

results as pressure versus logarithm of radius. following tabulated form:
Solution r(t) x =6(—242.6>< Ei(—x)  p(12) =
Step 1. From Equation 1.2.66: 10771 4000 4 44. 125
Ei( —x)

0.25 —2.6625x 1076 —12.26° 3459

0.6.(300)(1.5)(1.25) 5 —0.001065 —6.27¢ 3723

70. .5)(1.25 10 —0.00426 —4.884 3785

p(r,1) = 4000 + [ (60)(15) } 50 —0.1065 —1.76 3922

100 —0.4260 —0.75" 3967

500 —10.65 0 4000

5| —48 (1.5)(1.5) (12 x 10-%)7? 1000 —42.60 0 4000

x B (60) 1500 —95.85 0 4000

2000 —175.40 0 4000

) 2500 —266.25 0 4000

= 4000 + 44. 125Ei [(—42. 6 x 10’6) :‘ ] @As calculated from Equation 1.2.17.

®From Figure 1.19.
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Figure 1.20 Pressure profiles as a function of time.
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Figure 1.21 Pressure profiles as a function of time on a semi-log scale.

Step 3. Show the results of the calculation graphically as

illustrated in Figures 1.20 and 1.21. r (@ x fﬁ(_242’ 6x  Ei(-») p(r,24) =
Step 4. Repeat the calculation for ¢t = 12 and 24 hours, as in 107)r"/24 4000 + 44.125
the tables below: Ei(=x)
0.25 —0.111 x 1075 —15.44¢ 3319
r(ft) x= (42.6x Ei(-x) p(r,12) = 5 —44.38 x 107¢ —9.457 3583
10-6)72/12 4000 + 44.125 10 —177.5x 1075 —8.06% 3644
Ei(—1) 50 —0.0045 —4.83° 3787
100 —0.0178 —8.458" 3847
0.25 0.222 x 1076 —14.74° 3350 500 —0.444 —0.640 3972
5 88.75 x 1076 —8.75¢ 3614 1000 —1.775 —0.067 3997
10  355.0x 106 —7.372 3675 1500 —3.995 —0.0427 3998
50 0.0089 —4.14¢9 3817 2000 -7.310 8.24 x 1076 4000
100 0.0355 —2.81° 3876 2500 —104.15 0 4000
500 0.888 —0.269 3988 @As calculated from Equation 1.2.17.
1000 3.55 —0.0069 4000 bFrom Figure 1.19.
1500 7.99 -3.77 x 107° 4000 . .
2000 14.62 0 4000 Step 5. Results of step 4 are shown graphically in
2500 208.3 0 4000 Figure 1.21.

@As calculated from Equation 1.2.17.
bFrom Figure 1.19.

Figure 1.21 indicates that as the pressure disturbance
moves radially away from the wellbore, the reservoir
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boundary and its configuration has no effect on the pressure
behavior, which leads to the definition of transient flow as:
“Transient flow is that time period during which the bound-
ary has no effect on the pressure behavior and the well acts
as if it exists in an infinite size reservoir.”

Example 1.10 shows that most of the pressure loss occurs
close to the wellbore; accordingly, near-wellbore condi-
tions will exert the greatest influence on flow behavior.
Figure 1.21 shows that the pressure profile and the drainage
radius are continuously changing with time. It is also impor-
tant to notice that the production rate of the well has no
effect on the velocity or the distance of the pressure dis-
turbance since the Ei function is independent of the flow
rate.

When the Ei parameterx < 0.01, the log approximation of
the Ei function as expressed by Equation 1.2.68 can be used
in 1.2.66 to give:

162.6Q,B, 110 kt
— [log ((thrz) - 3. 23j|
[1.2.70]

For most of the transient flow calculations, engineers are
primarily concerned with the behavior of the bottom-hole
flowing pressure at the wellbore, i.e., 7 = 7. Equation 1.2.70
can be applied at » = 7y to yield:

162.6QBoto |, ( kt
i ©

bp(r,t) =pi —

bwt =i —

where:

Sner? ) — 3.23] [1.2.71]
t'w

k = permeability, md

t = time, hours

¢ = total compressibility, psi~
It should be noted that Equations 1.2.70 and 1.2.71 cannot

be used until the flow time ¢ exceeds the limit imposed by
the following constraint:

1

[LCU’

t>948><104¢ ?

[1.2.72]
where:

k = permeability, md
t = time, hours

Notice that when a well is producing under unsteady-state
(transient) flowing conditions at a constant flow rate, Equa-
tion 1.2.71 can be expressed as the equation of a straight line
by manipulating the equation to give:

152008 )1 () ~3.0]
WCtTy

kh
bwt = a+mlog(?)

The above equation indicates that a plot of py; vs. ¢ on a
semilogarithmic scale would produce a straight line with an
intercept of @ and a slope of m as given by:

B 162.6Q,Bo 10 k
a=pi— h [log (¢M6t7’3v) —3. 23}

_ 162.6Q,B, 1,
Tk

bwi =

or:

Example 1.11 Using the data in Example 1.10, esti-
mate the bottom-hole flowing pressure after 10 hours of
production.

Solution

Step 1. Equation 1.2.71 can only be used to calculate py¢
at any time that exceeds the time limit imposed by

Equation 1.2.72, or:

2
t>9.48x104w%

(0.15) (1.5) (12 x 105) (0.25)°
60

t = 9.48 (10")

= 0.000267 hours
= 0.153 seconds

For all practical purposes, Equation 1.2.71 can be
used anytime during the transient flow period to
estimate the bottom-hole pressure.

Step 2. Since the specified time of 10 hours is greater than
0.000267 hours, the value of py can be estimated by
applying Equation 1.2.71:

. 162.6Q,B,11, kt
wt = Di— - [10 (Wcmzv)—s.zs}

162.6(300) (1.25) (1.5)
(60)(15

=4000—

" [1°g<<o.1s) (. 5>(60)( G

5| —3.23
(12x10-6)(0.25)
=3358 psi

The second form of solution to the diffusivity
equation is called the dimensionless pressure drop
solution and is discussed below.

The dimensionless pressure drop pp solution

To introduce the concept of the dimensionless pressure drop
solution, consider for example Darcy’s equation in a radial
form as given previously by Equation 1.2.15

Q. — 0.00708k% (pe — pwt) _ kh(pe — Dwt)
° T LB, In(re/ry) T 141.2u0B, In(re/7y)
Rearranging the above equation gives:
De — Dwt _ 7'7e
W =1In <7’w> [1.2.73]
kh

It is obvious that the right-hand side of the above equa-
tion has no units (i.e., it is dimensionless) and, accordingly,
the left-hand side must be dimensionless. Since the left-
hand side is dimensionless, and p. — pyr has the units of
psi, it follows that the term @,B,u,/0.00708kk has units
of pressure. In fact, any pressure difference divided by
QoB,11,/0.00708kh is a dimensionless pressure. Therefore,
Equation 1.2.73 can be written in a dimensionless form as:

pp =In(rep)
where:
= pe — ow
( 141.2Q, B, 110 )
kh
7'e

YeD = —
w
The dimensionless pressure drop concept can be extended
to describe the changes in the pressure during the unsteady-
state flow condition where the pressure is a function of time
and radius:

p=p(1
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Therefore, the dimensionless pressure during the unsteady-
state flowing condition is defined by:

k- p(D)
P = T 20 B [1.2.74]
(%)

Since the pressure p(7,t), as expressed in a dimensionless
form, varies with time and location, it is traditionally pre-
sented as a function of dimensionless time # and radius 7p
as defined below:

0.0002637kt
Ip=——7"——
pucrs

Another common form of the dimensionless time #p is based
on the total drainage area A as given by:

[1.2.75a]

0.0002637kt 72
= X 1.2.75b
ba pucA 4 (A ) [ ]
"= [1.2.76]
Tw
and:
7e
TeD = — [1.2.77]
T
where:
pp = dimensionless pressure drop
rep = dimensionless external radius
tp = dimensionless time based on wellbore
radius 7y
tpa = dimensionless time based on well drainage
area A

A = well drainage area, i.e., 772, ft*
7p = dimensionless radius
t = time, hours
p(r,t) = pressure at radius 7 and time ¢
k = permeability, md
1 = viscosity, cp

The above dimensionless groups (.e., pp, tp, and 7p) can
be introduced into the diffusivity equation (Equation 1.2.64)
to transform the equation into the following dimensionless
form:

opo 1 opy _ oo

5 — - = [1.2.78]
ory, 7p 07D dtp

Van Everdingen and Hurst (1949) proposed an analytical
solution to the above equation by assuming:

o aperfectly radial reservoir system;

o the producing well is in the center and producing at a
constant production rate of @;

e uniform pressure p; throughout the reservoir before
production;

o 1o flow across the external radius 7e.

Van Everdingen and Hurst presented the solution to Equa-
tion 1.2.77 in a form of an infinite series of exponential terms
and Bessel functions. The authors evaluated this series for
several values of 7.p over a wide range of values for #, and
presented the solution in terms of dimensionless pressure
drop pp as a function of dimensionless radius 7.p and dimen-
sionless time fp. Chatas (1953) and Lee (1982) conveniently
tabulated these solutions for the following two cases:

(1) infinite-acting reservoir 7ep = oo;
(2) finite-radial reservoir.

Infinite-acting reservoir For an infinite-acting reservoir,
i.e., 7ep = oo, the solution to Equation 1.2.78 in terms of

Table 1.2 pp versus tp—infinite radial system,
constant rate at the inner boundary (After Lee, J.,
Well Testing, SPE Textbook Series, permission to
publish by the SPE, copyright SPE, 1982)

p bp Ip bo p bp
0 0 0.15 0.3750 60.0 2.4758
0.0005 0.0250 0.2 0.4241 70.0 2.5501
0.001 0.0352 0.3 0.5024  80.0 2.6147
0.002 0.0495 0.4 0.5645  90.0 2.6718
0.003 0.0603 0.5 0.6167  100.0 2.7233
0.004 0.0694 0.6 0.6622  150.0 2.9212
0.005 0.0774 0.7 0.7024  200.0 3.0636
0.006 0.0845 0.8 0.7387  250.0 3.1726
0.007 0.0911 0.9 0.7716  300.0 3.2630
0.008 0.0971 1.0 0.8019  350.0 3.3394
0.009 0.1028 1.2 0.8672  400.0 3.4057
0.01 0.1081 1.4 0.9160  450.0 3.4641
0.015 0.1312 2.0 1.0195 500.0 3.5164
0.02 0.1503 3.0 1.1665 550.0 3.5643
0.025 0.1669 4.0 1.2750  600.0 3.6076
0.03 0.1818 5.0 1.3625 650.0 3.6476
0.04 0.2077 6.0 1.4362  700.0 3.6842
0.05 0.2301 7.0 1.4997  750.0 3.7184
0.06 0.2500 8.0 1.5557  800.0 3.7505
0.07 0.2680 9.0 1.6057  850.0 3.7805
0.08 0.2845 10.0 1.6509  900.0 3.8088
0.09 0.2999 15.0 1.8294 950.0 3.8355
0.1 0.3144 20.0 19601 1000.0 3.8584

30.0 2.1470

40.0 2.2824

50.0 2.3884

Notes: For tp < 0.01: ppy = 2ztp /x.
For 100 < ty < 0.2572D: ppy = 0.5 (In#p + 0.80907).

the dimensionless pressure drop pp is strictly a function of
the dimensionless time fp, or:

po =f(t)
Chatas and Lee tabulated the pp values for the infinite-acting
reservoir as shown in Table 1.2. The following mathemati-
cal expressions can be used to approximate these tabulated
values of pp.

For tp < 0.01:

pp =2, b [1.2.79]
T

For tp > 100:

pp = 0.5[1n(tp) + 0.80907] [1.2.80]

For 0.02 < tp < 1000:
pp = a1+ az In(p) + as[In(p)1? + asln (@)’ + astp

+ ag (t[))2 + a; (l‘[))3 + ag/tp [1.2.81]
where the values of the coefficients of the above equations
are:

a; = 0.8085064 a; = 0.29302022

a3 = 3.5264177 x 1072 as = —1.4036304 x 10~°

as = —4.7722225 x 10" ag = 5.1240532 x 1077

a7 = —2.3033017 x 1071 g5 = —2.6723117 x 1073

Finite radial reservoir For afinite radial system, the solution
to Equation 1.2.78 is a function of both the dimensionless
time #p and dimensionless time radius 7.p, or:

pp =f(tp,7eD)
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where:

external radius 7.

7eD [1.2.82]

wellbore radius 7y
Table 1.3 presents pp as a function of #p for 1.5 < 7ep < 10.
It should be pointed out that van Everdingen and Hurst
principally applied the pp function solution to model the
performance of water influx into oil reservoirs. Thus, the
authors’ wellbore radius 7, was in this case the external
radius of the reservoir and 7. was essentially the external
boundary radius of the aquifer. Therefore, the ranges of the
7ep values in Table 1.3 are practical for this application.

Consider the Ei function solution to the diffusivity equa-
tions as given by Equation 1.2.66:

70.60Bu 7 1. [ ~948¢ucir’
kh kt

This relationship can be expressed in a dimensionless form
by manipulating the expression to give:

pmn=@+[

_bimpnt)  dp ) =0/m)®
[141.2QOBO;1,0] =73 (0. 0002637kt>
- 4 e ttahabied

kh duerl

From the definition of the dimensionless variables of Equa-
tions 1.2.74 through 1.2.77, i.e., pp, tp, and 7p, this relation
is expressed in terms of these dimensionless variables as:

1._.( 7
S
Chatas (1953) proposed the following mathematical form for
calculated pp when 25 < #p and 0.2572) < ip:

_0.5+2fp riy [3—4In(rep)] — 27, — 1
-l 402 - 1)’

There are two special cases of the above equation which arise
when 7%, > 1 or when tp /7%, > 25:
If 2, > 1, then:

[1.2.83]

D

24
pp = S + In(rep) — 0.75
reD

If tp/r%, > 25, then:

1
pp = 3 |:1nf2) +0. 80907:| [1.2.84]

D

The computational procedure of using the pp function to
determine the bottom-hole flowing pressure changing the
transient flow period, i.e., during the infinite-acting behavior,
is summarized in the following steps:

Step 1. Calculate the dimensionless time f#, by applying

Equation 1.2.75:
_ 0.0002637kt
T guar?

Step 2. Determine the dimensionless radius 7.p. Note that
for an infinite-acting reservoir, the dimensionless
radius 7ep = oo.

Step 3. Using the calculated value of fp, determine the corre-
sponding pressure function pp from the appropriate
table or equations, e.g., Equation 1.2.80 or 1.2.84:
For an infinite-acting  pp = 0. 5[In(#p) + 0.80907]

reservoir

For a finite reservoir pp = 1(In(tp/7) + 0.80907]

Step 4. Solve for the pressure by applying Equation 1.2.74:

141.2Q, Bo st
b (re,t) = by — (#> o [1.2.85]

kh

Example 1.12 A well is producing at a constant flow rate
of 300 STB/day under unsteady-state flow conditions. The
reservoir has the following rock and fluid properties (see
Example 1.10):

B, = 1.25bbl/STB, o =1.5¢p, ¢ =12 x 1076 psi~!
k =60 md, h=151t, pi = 4000 psi
¢ = 15%, 7w = 0.25ft

Assuming an infinite-acting reservoir, i.e., 7.p = oo, calculate

the bottom-hole flowing pressure after 1 hour of production
by using the dimensionless pressure approach.

Solution

Step 1. Calculate the dimensionless time #p from Equation
1.2.75:

_ 0.0002637kt

tp = .
pucrl

_ 0.000264 (60) (1) 93866, 67

(0.15) (1.5) (12 x 10-6) (0.25)°

Step 2. Since fp > 100, use Equation 1.2.80 to calculate the
dimensionless pressure drop function:

pp = 0.5[In(tp) + 0.80907]

= 0.5([In(93 866.67) + 0.80907] = 6.1294
Step 3. Calculate the bottom-hole pressure after 1 hour by
applying Equation 1.2.85:
141.2Q,By 10
B — ) Pp

b (rw,t) =pi — <

£(0.25,1) = 4000 - {1‘“' 2(300) (1.25) (1. 5)}

(60) (15)
x (6.1294) = 3459 psi

This example shows that the solution as given by the pp func-
tion technique is identical to that of the Ei function approach.
The main difference between the two formulations is that the
Do function can only be used to calculate the pressure at radius
7 when the flow rate Q is constant and known. In that case,
the pp function application is essentially restricted to the
wellbore radius because the rate is usually known. On the
other hand, the Ei function approach can be used to calculate
the pressure at any radius in the reservoir by using the well
flow rate Q.

It should be pointed out that, for an infinite-acting reser-
voirwith #p > 100, the pp function is related to the Ei function
by the following relation:

P =0-5[_Ei<%)}

The previous example, i.e., Example 1.12, is not a practical
problem, but it is essentially designed to show the physical
significance of the pp solution approach. In transient flow
testing, we normally record the bottom-hole flowing pres-
sure as a function of time. Therefore, the dimensionless
pressure drop technique can be used to determine one or
more of the reservoir properties, e.g. k or kh, as discussed
later in this chapter.

[1.2.86]

1.2.6 Radial flow of compressible fluids

Gas viscosity and density vary significantly with pressure
and therefore the assumptions of Equation 1.2.64 are not
satisfied for gas systems, i.e., compressible fluids. In order
to develop the proper mathematical function for describing
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Table 1.3 pp vs. tp—finite radial system, constant rate at the inner boundary (After Lee, J., Well Testing, SPE
Textbook Series, permission to publish by the SPE, copyright SPE, 1982)

YeD = 1.5 7eD =2.0 7eD =2.5 7eD =3.0 7eD =3.5 7eD =4.0
Ip bp p bp Ip )2 p J2) Ip bo tp §20)
0.06 0.251 0.22 0.443 0.40 0.565 0.52 0.627 1.0 0.802 1.5 0.927
0.08 0.288 0.24 0.459 0.42 0.576 0.54 0.636 1.1 0.830 1.6 0.948
0.10 0.322 0.26 0.476 0.44 0.587 0.56 0.645 1.2 0.857 1.7 0.968
0.12 0.355 0.28 0.492 0.46 0.598 0.60 0.662 1.3 0.882 1.8 0.988
0.14 0.387 0.30 0.507 0.48 0.608 0.65 0.683 14 0.906 1.9 1.007
0.16 0.420 0.32 0.522 0.50 0.618 0.70 0.703 1.5 0.929 2.0 1.025
0.18 0.452 0.34 0.536 0.52 0.628 0.75 0.721 1.6 0.951 2.2 1.059
0.20 0.484 0.36 0.551 0.54 0.638 0.80 0.740 1.7 0.973 2.4 1.092
0.22 0.516 0.38 0.565 0.56 0.647 0.85 0.758 1.8 0.994 2.6 1.123
0.24 0.548 0.40 0.579 0.58 0.657 0.90 0.776 1.9 1.014 2.8 1.154
0.26 0.580 0.42 0.593 0.60 0.666 0.95 0.791 2.0 1.034 3.0 1.184
0.28 0.612 0.44 0.607 0.65 0.688 1.0 0.806 2.25 1.083 3.5 1.255
0.30 0.644 0.46 0.621 0.70 0.710 1.2 0.865 2.50 1.130 4.0 1.324
0.35 0.724 0.48 0.634 0.75 0.731 14 0.920 2.75 1.176 4.5 1.392
0.40 0.804 0.50 0.648 0.80 0.752 1.6 0.973 3.0 1.221 5.0 1.460
0.45 0.884 0.60 0.715 0.85 0.772 2.0 1.076 4.0 1.401 5.5 1.527
0.50 0.964 0.70 0.782 0.90 0.792 3.0 1.328 5.0 1.579 6.0 1.594
0.55 1.044 0.80 0.849 0.95 0.812 4.0 1.578 6.0 1.757 6.5 1.660
0.60 1.124 0.90 0.915 1.0 0.832 5.0 1.828 7.0 1.727
0.65 1.204 1.0 0.982 2.0 1.215 8.0 1.861
0.70 1.284 2.0 1.649 3.0 1.506 9.0 1.994
0.75 1.364 3.0 2.316 4.0 1.977 10.0 2.127
0.80 1.444 5.0 3.649 5.0 2.398
YeD = 4.5 YeD = 5.0 YeD = 6.0 YeD = 7.0 YeD = 8.0 YeD = 9.0 YeD = 10.0
) o p bp tp bp p bp tp bp p bp o bp
2.0  1.023 3.0 1167 40 1.275 6.0 1436 80 1556 10.0 1.651 12.0 1.732
21 1.040 31 1180 45 1322 6.5 1470 85 1582 105 1673 125 1.750
2.2 1.056 3.2 1.192 5.0 1.364 7.0 1.501 9.0 1.607 11.0 1.693 13.0 1.768
23 1702 33 1.204 55 1404 75 1531 95 1.631 115 1713 135 1.784
24 1.087 34 1.215 6.0 1.441 8.0 1.559 10.0 1.663 12.0 1.732 14.0 1.801
2.5 1.102 3.5 1.227 6.5 1.477 8.5 1.586 10.5 1.675 12.5 1.750 14.5 1.817
26 1116 36 1.238 7.0 1511 9.0 1613 11.0 1697 130 1768 15.0 1.832
2.7 1.130 3.7 1.249 7.5 1.544 9.5 1.638 115 1.717 135 1.786 15.5 1.847
2.8 1.144 3.8 1.259 8.0 1.576 10.0 1.663 12.0 1.737 14.0 1.803 16.0 1.862
29 1158 39  1.270 85 1607 11.0 1711 125 1757 145 1819 17.0 1.890
3.0 1.171 4.0 1.281 9.0 1.638 12.0 1.757 13.0 1.776 15.0 1.835 18.0 1.917
3.2 1197 42 1301 95 1668 13.0 1810 135 1795 155 1.851 19.0 1.943
34 1222 44 1321 100 1.698 140 1845 140 1813 160 1.867 20.0 1.968
3.6 1.246 4.6 1.340 11.0 1.757 15.0 1.888 14.5 1.831 17.0 1.897 22.0 2.017
3.8  1.269 48 1360 120 1815 160 1931 150 1.849 180 1926 24.0 2.063
40  1.292 50 1378 13.0 1873 17.0 1974 170 1919 190 1955 26.0 2.108
4.5 1.349 5.5 1.424 14.0 1.931 18.0 2.016 19.0 1.986 20.0 1.983 28.0 2.151
50 1403 6.0 1469 150 1988 19.0 2.058 21.0 2.051 220 2.037 30.0 2.194
5.5 1.457 6.5 1.513 16.0 2.045 20.0 2.100 23.0 2.116 24.0 2.906 32.0 2.236
6.0 1.510 7.0 1.556 17.0 2.103 22.0 2.184 25.0 2.180 26.0 2.142 34.0 2.278
7.0  1.615 75 1598 180 2160 240 2267 300 2340 280 2193 36.0 2.319
8.0 1.719 8.0 1.641 19.0 2.217 26.0 2.351 35.0 2.499 30.0 2.244 38.0 2.360
9.0 1.823 9.0 1.725 20.0 2.274 28.0 2.434 40.0 2.658 34.0 2.345 40.0 2.401
100 1927 100 1808 250 2560 300 2517 450 2817 380 2446 50.0 2.604
11.0 2.031 11.0 1.892 30.0 2.846 40.0 2.496 60.0 2.806
120 2135 120 1975 45.0 2621  70.0 3.008
13.0 2239 130 2.059 50.0 2.746  80.0 3.210
14.0 2.343 14.0 2.142 60.0 2.996 90.0 3.412
150 2447 150 2.225 70.0 3.246  100.0 3.614

Notes: For tpy smaller than values listed in this table for a given 7,y reservoir is infinite acting.
Find pp in Table 1.2.

For 25 < tp and tp larger than values in table:
1/2+2tp)

4 4 2
BreD —4reD In7ep —ZreD -1

17[)'5(

2
"eD

gt

2
’gD *1)

For wells in rebounded reservoirs with rgD > 1:

2t
pp = TD +In7ep — 3/4.
r

eD
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the flow of compressible fluids in the reservoir, the following
two additional gas equations must be considered:
(1) Gas density equation:
_ M
P = ZRT
(2) Gas compressibility equation:
L1 1z
fTp Zdp
Combining the above two basic gas equations with that of
Equation 1.2.56 gives:
Lo (0 0p)_ _ona_p o
rar \' uZ ar )~ 0.000264k uZ at
where:

[1.2.87]

= time, hours
k= permeability, md
¢i= total isothermal compressibility, psi™

¢= porosity

Al-Hussainy et al. (1966) linearized the above basic flow
equation by introducing the real-gas pseudopressure 7 (p)
into Equation 1.2.87. Recalling the previously defined m(p)
equation:

p 2p
= Z£q
m(p) /0 Z p

and differentiating this relation with respect to p, gives:
am®) _ 2p

p  uZ
The following relationships are obtained by applying the
chain rule:

am@p) _ om() op

1

[1.2.88]

[1.2.89]

= —" [1.2.90]
ar ap or
am®@) _ om(p) b [1.291]
at ap ot
Substituting Equation 1.2.89 into 1.2.90 and 1.2.91, gives:
o _ nZ dm @) [1.2.92]
ar 20 or
and:
9 _ nZ om @) [1.2.93]
at  2p ot
Combining Equations 1.2.92 and 1.2.93 with 1.2.87, yields:
%m (p) | 10m(p) _ ¢uce om(p)
or? r or  0.000264k ot [1.2.94]

Equation 1.2.94 is the radial diffusivity equation for com-
pressible fluids. This differential equation relates the real-
gas pseudopressure (real-gas potential) to the time # and the
radius 7. Al-Hussany et al. (1966) pointed out that in gas well
testing analysis, the constant-rate solution has more practi-
cal applications than that provided by the constant-pressure
solution. The authors provided the exact solution to Equa-
tion 1.2.94 that is commonly referred to as the m (p) solution
method. There are also two other solutions that approxi-
mate the exact solution. These two approximation methods
are called the pressure-squared method and the pressure
method. In general, there are three forms of mathematical
solution to the diffusivity equation:

(1) m(p) solution method (exact solution);
(2) pressure-squared method (p* approximation method);
(3) pressure-method (p approximation method).

These three solution methods are presented below.

First solution: m(p) method (exact solution)

Imposing the constant-rate condition as one of the bound-
ary conditions required to solve Equation 1.2.94, Al-Hussany
et al. (1966) proposed the following exact solution to the
diffusivity equation:

— (b — Psc \ ( QT
m () = m (B3) 57895'3<Tsc>< o )

kt
. [Iog ((Wicﬁ’%) 5 23]

pwt = bottom-hole flowing pressure, psi
pe = initial reservoir pressure
Q. = gas flow rate, Mscf/day

t = time, hours

[1.2.95]

where:

k = permeability, md
psec = standard pressure, psi
T, = standard temperature, °R
T = Reservoir temperature

7w = wellbore radius, ft

h = thickness, ft

i = gas viscosity at the initial pressure, cp

¢i = total compressibility coefficient at p;, psi~!

¢ = porosity
Setting psc = 14.7 psia and Ty, = 520°R, then Equation
1.2.95 reduces to:

1637Q, T kt
m(pur) = m (pr) — ( k}?g > |:10g (WWZ ) -3, 23]
" [1.296]

The above equation can be simplified by introducing the
dimensionless time (as defined previously by Equation
1.2.74) into Equation 1.2.96:

0.0002637 kt
th=———
Puicir?
Equivalently, Equation 1.2.96 can be written in terms of the
dimensionless time fp as:

- (507 ()]

o [1.2.97]

The parameter y is called Euler’s constant and is given by:
y =e%772 = 1,781 [1.2.98]

The solution to the diffusivity equation as given by Equa-
tions 1.2.96 and 1.2.97 expresses the bottom-hole real-gas
pseudopressure as a function of the transient flow time ¢. The
solution as expressed in terms of 7 (p) is the recommended
mathematical expression for performing gas well pressure
analysis due to its applicability in all pressure ranges.

The radial gas diffusivity equation can be expressed in a
dimensionless form in terms of the dimensionless real-gas
pseudopressure drop . The solution to the dimensionless
equation is given by:

vp = m(pi) — m(byr)
P T (1422Q, T/kh)
or:
m(put) = m (by) — (%) YD [1.2.99]
where:

Qg = gas flow rate, Mscf/day
k = permeability, md

The dimensionless pseudopressure drop ¥, can be deter-
mined as a function of #p by using the appropriate expression
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of Equations 1.2.79 through 1.2.84. When #p > 100, yp can
be calculated by applying Equation 1.2.70. That is:

¥p = 0.5[In(tp) + 0.80907] [1.2.100]
Example 1.13 A gas well with a wellbore radius of 0.3 ft
is producing at a constant flow rate of 2000 Mscf/day under
transient flow conditions. The initial reservoir pressure
(shut-in pressure) is 4400 psi at 140°F. The formation per-
meability and thickness are 65 md and 15 ft, respectively.
The porosity is recorded as 15%. Example 1.7 documents the
properties of the gas as well as values of 7 (p) as a function of
pressures. The table is reproduced below for convenience:

P g (Cp) z m(p) (psi®/cp)
0 0.01270 1.000  0.000

400 001286  0.937 13.2 x 106
800 0.01390  0.882  52.0 x 10°
1200 001530  0.832 113.1 x 106
1600  0.01680  0.794 198.0 x 108
2000  0.01840  0.770  304.0 x 108
2400  0.02010  0.763  422.0 x 105
2800  0.02170  0.775  542.4 x 105
3200 0.02340  0.797  678.0 x 10°
3600  0.02500  0.827  816.0 x 108
4000 0.02660  0.860  950.0 x 108
4400  0.02831 0.896 1089.0 x 106

Assuming that the initial total isothermal compressibility is
3 x 10~ psi~!, calculate the bottom-hole flowing pressure
after 1.5 hours.

Solution

Step 1. Calculate the dimensionless time #p:

0.0002637kt
th=——
duicrZ
(0.0002637) (65) (1.5)

= — 224498.6
(0.15) (0.02831) (3 x 10-*) (0.3%)

Step 2. Solve for m (pws) by using Equation 1.2.97:

m(pwt) = m(p;) — (%) [log (%)]

. (1637) (2000) (600)
= 1089 x 10° — o —

[ <(4)224498.6
x |log | ——5—

e0.5772

)] =1077.5 x 10°

Step 3. From the given PVT data, interpolate using the value
of m (pwr) to give a corresponding py; of 4367 psi.

An identical solution can be obtained by applying the vp
approach as shown below:

Step 1. Calculate v from Equation 1.2.100:

¥p = 0.5[In(#p) + 0.80907]
= 0.5[In (224 498. 6) + 0.8090] = 6. 565

Step 2. Calculate m(pyr) by using Equation 1.2.99:

1422Q,T
m (pwe) = m (p;) — (TQg> YD
_ 1089 x 106 — ( 1422(2000) (600) (6.565)
(65) (15)

=1077.5 x 10°

By interpolation at 7 (py;) = 1077.5 x 106, this gives
a corresponding value of py; = 4367 psi.

Second solution: pressure-squared method

The first approximation to the exact solution is to move
the pressure-dependent term (.Z) outside the integral that
defines m (pyt) and m (p;), to give:

2 [h
mp) —mpw) = — | pdp

1.2.101
EZ Dwf [ ]
or:
2 42
m(p) — m(pug) = DLt [1.2.102]
iz

The bars over u and Z represent the values of the gas viscos-
ity and deviation factor as evaluated at the average pressure
p. This average pressure is given by:

— [P
b=y

Combining Equation 1.2.102 with 1.2.96, 1.2.97, or 1.2.99,
gives:

5 2 1637Q,TiiZ kt B
Pas =14 ( log Frcar 3.23

[1.2.103]

kh
[1.2.104]
or:
1637Q,TiZ 4ty
2 gy | et P *D
Dys = b; ( o > [log( , )] [1.2.105]
Equivalently:
ba =1 — (Mzzclgzmz) [1.2.106]

The above approximation solution forms indicate that the
product (1Z) is assumed constant at the average pressure
p. This effectively limits the applicability of the p*> method to
reservoir pressures of less than 2000. It should be pointed
out that when the p? method is used to determine py; it is
perhaps sufficient to set nZ = u;Z.

Example 1.14 A gas well is producing at a constant rate
of 7454.2 Mscf/day under transient flow conditions. The
following data is available:

k=50md, k=101t
T =600°R, 7, =0.31t,

¢ =20%, p; = 1600 psi
ci = 6.25 x 10~ psi!

The gas properties are tabulated below:

P ug (cD) z m@) (psiZ/cp)
0 0.01270 1.000 0.000

400 0.01286 0.937 13.2 x 106
800 0.01390 0.882 52.0 x 10°
1200 0.01530 0.832 113.1 x 108
1600 0.01680 0.794 198.0 x 108
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Calculate the bottom-hole flowing pressure after 4 hours by
using:

(a) the m(p) method;
(b) the p* method.

Solution
(a) The m(p) method:
Step 1. Calculate #p:
0.000264 (50) (4)
0.2) (0.0168) (6.25 x 10-*) (0.3?)
=279365.1

Step 2. Calculate vyp:
¥p = 0.5[In(tp) + 0.80907]

tDZ(

= 0.5[In (279365.1) 4 0.80907] = 6.6746
Step 3. Solve for m (py;) by applying Equation 1.2.99:

1422Q,T
m(pwi) =m ;) — <Tog) ¥p
~ o[ 1422(7454.2) (600)
= (198 x 10 ) |:(50) (10) 6.6746

=113.1x10°
The corresponding value of p; = 1200 psi.

(b) The p* method:
Step 1. Calculate vp by applying Equation 1.2.100:
Yp = 0.5[In(fp) + 0.80907]
= 0.5[In (279365.1) + 0.80907] = 6.6747
Step 2. Calculate pfvf by applying Equation 1.2.106:

1422Q,THZ
2 42 g
Pu=hi kh
1422) (7454.2) (600) (0. .
(50) (10)
=1427491

Dwi=1195 psi.
Step 3. The absolute average error is 0.4%.
Third solution: pressure approximation method
The second method of approximation to the exact solution of
the radial flow of gases is to treat the gas as a pseudo-liquid.

Recal that the gas formation volume factor B, as expressed
in bbl/scf is given by:

( bw ZT
By = (5.615Tsc> (7)
By = 0.00504 (ZTT)

Solving the above expression for p/Z gives:

b ( Tpe 1
z- (5. 615Tsc> (B:)

The difference in the real-gas pseudopressure is given by:

i 2
m(po—(pwf):f 2 4
bwi

or:

A

Combining the above two expressions gives:

(o) — m(pu) = e [" (i)dp

et N 1.2.107
5.615T% J,, \ uBq [ ]

uBy

A4
=~ 3000
Pressure

Figure 1.22 Plot of 1/uBy vs. pressure.

Fetkovich (1973) suggested that at high pressures above
3000 psi (» > 3000), 1/uBg is nearly constant as shown
schematically in Figure 1.22. Imposing Fetkovich’s condition
on Equation 1.2.107 and integrating gives:

ZTPSC
5.6157siB, (b = )

Combining Equation 1.2.108 with 1.2.96, 1.2.97, or 1.2.99
gives:

162.5 x 10°Q, /1B, kt
bwt = pi — ( o [log <¢ﬁaf’3v> —3. 23}

[1.2.109]

m (pi) — m (pwi) = [1.2.108]

or:

-
p= - (122 O i (] 112110

or, equivalently, in terms of dimensionless pressure drop:

A
but = B — (WJ-MO)QM) . (12.111]

kh

where:

Qg = gas flow rate, Mscf/day
k = permeability, md

B, = gas formation volume factor, bbl/scf
t = time, hours

pp = dimensionless pressure drop

tp = dimensionless

It should be noted that the gas properties, i.e., i, By, and ¢,
are evaluated at pressure p as defined below:
—  Dit+bw

P="

Again, this method is limited only to applications above
3000 psi. When solving for py, it might be sufficient to
evaluate the gas properties at p;.

[1.2.112]

Example 1.15 The data of Example 1.13 is repeated
below for convenience.

A gas well with a wellbore radius of 0.3 ft is producing
at a constant flow rate of 2000 Mscf/day under transient
flow conditions. The initial reservoir pressure (shut-in pres-
sure) is 4400 psi at 140°F. The formation permeability and
thickness are 65 md and 15 ft, respectively. The poros-
ity is recorded as 15%. The properties of the gas as well
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as values of m(p) as a function of pressures are tabulated
below:

p pne (cp)  Z m(p) (psi/cp)
0 0.01270 1.000 0.000

400 0.01286 0.937 13.2 x 108
800 0.01390 0.882 52.0 x 106
1200 0.01530 0.832 113.1 x 10°
1600 0.01680 0.794 198.0 x 106
2000 0.01840 0.770 304.0 x 108
2400 0.02010 0.763 422.0 x 105
2800 0.02170 0.775 542.4 x 105
3200 0.02340 0.797 678.0 x 10°
3600 0.02500 0.827 816.0 x 108
4000 0.02660 0.860 950.0 x 105
4400 0.02831 0.896 1089.0 x 106

Assuming that the initial total isothermal compressibility is
3 x 10~*psi~!, calculate, the bottom-hole flowing pressure
after 1.5 hours by using the p approximation method and
compare it with the exact solution.
Solution
Step 1. Calculate the dimensionless time #p:
_0.0002637k¢
b duicirZ

(0.000264) (65) (1.5)
= (0.15) (0.02831) (3 x 104) (0.3%) 224.498.6

Step 2. Calculate B, at p;i:

B, = 0.00504 (Z;)T)

i

(0.896) (600)
4400

Step 3. Calculate the dimensionless pressure pp, by applying
Equation 1.2.80:

pp = 0.5[In(¢p) + 0.80907]
= 0.5[In (224 498.6) + 0.80907] = 6. 565

= 0.00504 = 0.0006158 bbl/scf

Step 4. Approximate py; from Equation 1.2.111:

141.210°) Q. iBy
bwi=pi— (41.210) QfiBy bo
kh
141.2 x 10%(2000) (0.02831) (0.0006158)
=4400— 6.565
(65) (15)
=4367 psi

The solution is identical to that of the exact solution of
Example 1.13.

It should be pointed out that Examples 1.10 through 1.15
are designed to illustrate the use of different solution meth-
ods. However, these examples are not practical because,
in transient flow analysis, the bottom-hole flowing pressure
is usually available as a function of time. All the previous
methodologies are essentially used to characterize the reser-
voir by determining the permeability & or the permeability
and thickness product (kh).

1.2.7 Pseudosteady state

In the unsteady-state flow cases discussed previously, it was
assumed that a well is located in a very large reservoir
and producing at a constant flow rate. This rate creates a
pressure disturbance in the reservoir that travels through-
out this “infinite-size reservoir.” During this transient flow
period, reservoir boundaries have no effect on the pres-
sure behavior of the well. Obviously, the time period when
this assumption can be imposed is often very short in
length. As soon as the pressure disturbance reaches all
drainage boundaries, it ends the transient (unsteady-state)
flow regime and the beginning of the boundary-dominated
flow condition. This different type of flow regime is called
pseudosteady (semisteady)-State Flow. It is necessary at this
point to impose different boundary conditions on the diffu-
sivity equation and drive an appropriate solution to this flow
regime.

Consider Figure 1.23 which shows a well in a radial sys-
tem that is producing at a constant rate for a long enough
period that eventually affects the entire drainage area. Dur-
ing this semisteady-state flow, the change in pressure with
time becomes the same throughout the drainage area.
Figure 1.23(b) shows that the pressure distributions become
paralleled at successive time periods. Mathematically, this
important condition can be expressed as:

a
—‘D = constant
at /,

The “constant” referred to in the above equation can be
obtained from a simple material balance using the defini-
tion of the compressibility, assuming no free gas production,
thus:

[1.2.113]

-1dV
“Va
Rearranging:
cVdp =—-dV
Differentiating with respect to time ¢:
dp dv
Y&~ @
or:
b__a
dt cV

Expressing the pressure decline rate dp/d¢ in the above
relation in psi/hr gives:

dp q Q.B,
dt T 24V T 24cV [1.2.114]
where:

q = flow rate, bbl/day
@, = flow rate, STB/day
dp/dt = pressure decline rate, psi/hr
V = pore volume, bbl

For a radial drainage system, the pore volume is given by:

2
_nrthy  Ahg
" 5,615 5.615 [1.2.115]
where:
A = drainage area, 2
Combining Equation 1.2.115 with 1.2.114 gives:
dp _ 0.23396¢ _ —0.23396g _  —0.23396¢
dt = (@b~ cAhp  c(pore volume)
[1.2.116]

Examining Equation 1.2.116 reveals the following important
characteristics of the behavior of the pressure decline rate
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Figure 1.23 Semisteady-state flow regime.

dp/dt during the semisteady-state flow:

e the reservoir pressure declines at a higher rate with
increasing fluid production rate;

e the reservoir pressure declines at a slower rate for
reservoirs with higher total compressibility coefficients;

e the reservoir pressure declines at a lower rate for reser-
voirs with larger pore volumes.

And in the case of water influx with an influx rate of ey
bbl/day, the equation can be modified as:

dp  —0.23396q + ey

dt ~ ¢ (pore volume)

Example 1.16 Anoil wellis producing at constant oil flow
rate of 120 STB/day under a semisteady-state flow regime.
Well testing data indicates that the pressure is declining at a
constant rate of 0.04655 psi/hr. The following addition data
is available:

h="T21t,
B, = 1.3 bbl/STB,

¢ = 25%,
¢ =25 x 1076 psi~!

Calculate the well drainage area.

Here:
q = Q,B, = (120) (1. 3) = 156 bbl/day
Apply Equation 1.2.116 to solve for A:

dp  0.23396g  —0.233969
clAhg

at e @rdhg
0.23396(156)
(25 x 10-9) (4) (72) (0.25)

Solution

—0.23396q
" ¢ (pore volume)

—0.04655 = —

A = 1742400 ft*
or:
A = 1742400/43 560 = 40 acres

Matthews et al. (1954) pointed out that once the reservoir
is producing under the semisteady-state condition, each well
will drain from within its own no-flow boundary indepen-
dently of the other wells. For this condition to prevail, the
pressure decline rate dp/dt must be approximately constant
throughout the entire reservoir, otherwise flow would occur
across the boundaries causing a readjustment in their posi-
tions. Because the pressure at every point in the reservoir is
changing at the same rate, it leads to the conclusion that the
average reservoir pressure is changing at the same rate. This
average reservoir pressure is essentially set equal to the vol-
umetric average reservoir pressure p,. Itis the pressure that
is used to perform flow calculations during the semisteady-
state flowing condition. The above discussion indicates that,
in principle, Equation 1.2.116 can be used to estimate the
average pressure in the well drainage area p by replacing
the pressure decline rate dp/dt with (p; — p)/t, or:

— 0.23396qt

PP = ahg)
or:

_— [0. 23396q}

= _— 1.2.117
p=p XOT) [ ]

Note that the above expression is essentially an equation
of a straight line, with a slope of m' and intercept of p;, as
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expressed by:

p=a+m't
o _[0.23396¢7 _ [ 0.23396¢
a c(Ahp) |~ | ci(pore volume)
a=p;

Equation 1.2.117 indicates that the average reservoir pres-
sure, after producing a cumulative oil production of N, STB,
can be roughly approximated by:

5o ‘_[0.23396BONP]
- ci (Aho)

It should be noted that when performing material balance
calculations, the volumetric average pressure of the entire
reservoir is used to calculate the fluid properties. This pres-
sure can be determined from the individual well drainage
properties as follows:

7
in which:

V; = pore volume of the jth well drainage volume
(p); = volumetric average pressure within the jth
drainage volume

Figure 1.24 illustrates the concept of the volumetric aver-
age pressure. In practice, the V; are difficult to determine
and, therefore, it is common to use individual well flow
rates ¢; in determining the average reservoir pressure from
individual well average drainage pressure:

- Zj (Zq)/

b= Z/‘IJ’

The flow rates are measured on a routing basis through-
out the lifetime of the field, thus facilitating the calculation
of the volumetric average reservoir pressure p.. Alterna-
tively, the average reservoir pressure can be expressed
in terms of the individual well average drainage pressure
decline rates and fluid flow rates by:

= _ 2;10);/ 3p/90);1
T Y Mg/ (0p/9D);]

[1.2.118]

s
7.
1_7 _ Zi(ﬁnfh) Pa: V4
' iai
5= > [(Pa);/(@plot)]
"X [g/@ploty]

Figure 1.24 Volumetric average reservoir pressure.

However, since the material balance equation is usually
applied at regular intervals of 3-6 months, i.e., At = 3-6
months, throughout the lifetime of the field, the average field
pressure can be expressed in terms of the incremental net
change in underground fluid withdrawal A (F) as:

3. = ijjA(F)j/AZb‘
) > A(F)j/AEj

where the total underground fluid withdrawal at time ¢ and
t + At are given by:

[1.2.119]

t
F= / [QoBo+Qu By + (@ — QoRs — QuRey) By 1dt
0

t+At
Fisi= [ 1QuBo+QuBut (@~ QuR.—QuRu)Beldt
0
with:
AF) =Fynt — F
and where:

R, = gas solubility, scf/STB
Ry, = gas solubility in the water, scf/STB
B, = gas formation volume factor, bbl/scf
Q, = oil flow rate, STB/day
q, = oil flow rate, bbl/day
Q,,= water flow rate, STB/day
qw = water flow rate, bbl/day
Qg = gas flow rate, scf/day

The practical applications of using the pseudosteady-state
flow condition to describe the flow behavior of the following
two types of fluids are presented below:

(1) radial flow of slightly compressible fluids;
(2) radial flow of compressible fluids.

1.2.8 Radial flow of slightly compressible fluids
The diffusivity equation as expressed by Equation 1.2.61 for
the transient flow regime is:

W Lap_( oue o
ar2 7 oar  \0.000264% ) ot
For the semisteady-state flow, the term 9p/dt is constant

and is expressed by Equation 1.2.116. Substituting Equation
1.2.116 into the diffusivity equation gives:

¥ 10p _( gua —0.233964
ar2 7 oar  \0.000264% cilAhg

or:
%p 1op —887.22qu
a2 T ror  Ahk
This expression can be expressed as:
10 (ﬁi’) _ 887.22qp
ror \' ar (w72) bk
Integrating this equation gives:
ral _ 887.22qu (ﬁ)
or — (e)he \2) 7

where ¢; is the constant of integration and can be evalu-
ated by imposing the outer no-flow boundary condition (i.e.,
(@p/937)re = 0) on the above relation, to give:

_ 141.2gu

T

Combining these two expressions gives:

dp _ 141.2qu (1 r>

‘1

ar —  hk \r 12
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Integrating again:

bi 141.2qu (™ (1 r
=" /rw<7E>d’

bwt

Performing the above integration and assuming 72/7? is
negligible gives:

! _ 141.2qu Te _}
=g = M2 (2 1]

A more appropriate form of the above is to solve for the flow
rate as expressed in STB/day, to give:
0.00708kh (pi — pwi)
~ uB[In (re/ry) — 0.5]
where:
@ = flow rate, STB/day

B = formation volume factor, bbl/STB
k = permeability, md

[1.2.120]

The volumetric average pressure in the well drainage area
2 is commonly used in calculating the liquid flow rate under
the semisteady-state flowing condition. Introducing p into
Equation 1.2.120 gives:

 0.00708khk (p — pu) (® — pwr)
"~ uB[In(re/ry) —0.75] ~ 141.2uB [In (re/ry) — 0.75]

[1.2.121]
In (L) —0.75=In (ﬂ)
Tw Tw

The above observation suggests that the volumetric average
pressure p occur at about 47% of the drainage radius during
the semisteady-state condition. That is:

_0.00708kh (B — pu)
" uB [In (0.4717/1)]

It should be pointed out that the pseudosteady-state flow
occurs regardless of the geometry of the reservoir. Irreg-
ular geometries also reach this state when they have been
produced long enough for the entire drainage area to be
affected.

Rather than developing a separate equation for the geom-
etry of each drainage area, Ramey and Cobb (1971) intro-
duced a correction factor called the shape factor C4 which
is designed to account for the deviation of the drainage area
from the ideal circular form. The shape factor, as listed in
Table 1.4, accounts also for the location of the well within
the drainage area. Introducing Cy4 into Equation 1.2.121 and
solving for pys gives the following two solutions:

Note that:

(1) In terms of the volumetric average pressure p:
_  162.6QB 2.2458A
5 QBu log
CA fv%,

it = o [1.2.122]

(2) Interms of the initial reservoir pressure, p;, recall Equa-
tion 1.2.117 which shows the changes of the average
reservoir pressure p as a function of time and initial
reservoir pressure p;:

~ . 0.23396qt

- CtAh(b

Combining this equation with Equation 1.2.122 gives:

ot = (i — 0.23396QBt\  162.6QBu o 2.2458A

=BT T e, e f\ G2

[1.2.123]

where:

k = permeability, md
A= drainage area, ft
C4 = shape factor
Q = flow rate, STB/day
t=time, hours
= total compressibility coefficient, psi~?

Equation 1.2.123 can be slightly rearranged as:

162.60By (224584 _(0.23396QB
RGN Ahde,

bwt= |:Pi—

The above expression indicates that under semisteady-
state flow and constant flow rate, it can be expressed as an
equation of a straight line:

pw[ = Qpss + mpsst
with ayss and ms as defined by:

Qpss = |:Pi _ 162.6QBu log (2.2458A)]

ki Car?
o <0.233%QB> o (M)
e c(Ahp) )\ c(pore volume)

Itis obvious that during the pseudosteady (semisteady)-state
flow condition, a plot of the bottom-hole flowing pressure py;
versus time ¢ would produce a straight line with a negative
slope of myss and intercept of @pss.

A more generalized form of Darcy’s equation can be devel-
oped by rearranging Equation 1.2.122 and solving for @ to
give:

_ ¥h(5 — pur)
" 162.6Blog (2.2458A4/Car2)
It should be noted that if Equation 1.2.124 is applied to a
circular reservoir of radius 7., then:

A=nr?

and the shape factor for a circular drainage area as given in
Table 1.4 as:

Q [1.2.124]

Cy=31.62
Substituting in Equation 1.2.124, it reduces to:

0.00708kh (B — pur)
" Bu[ln(re/ry) —0.75]
This equation is identical to that of Equation 1.2.123.

Example 1.17 An oil well is developed on the center of
a 40 acre square-drilling pattern. The well is producing at a
constant flow rate of 100 STB/day under a semisteady-state
condition. The reservoir has the following properties:

¢ = 15%, h =301t k =20 md
uw=1.5cp, B, =1.2bbl/STB, ¢ =25 x 1076 psi—!
pi = 4500 psi, 7y = 0.25ft, A = 40 acres

(a) Calculate and plot the bottom-hole flowing pressure as
a function of time.

(b) Based on the plot, calculate the pressure decline rate.
What is the decline in the average reservoir pressure
from ¢ = 10 to ¢t = 200 hours?

Solution
(a) For the py; calculations:

Step 1. From Table 1.4, determine Cj:
C4 = 30.8828



Table 1.4 Shape factors for various single-well drainage areas (After Earlougher, R, Advances in Well Test Analysis,
permission to publish by the SPE, copyright SPE, 1977)

In bounded Cy InCy Ly (22458 Exact Less than Use infinite system
reservoirs z 0 ( Cy ) for tpa > 1% error solution with less
for tpa > than 1% error
for tpa >
O 31.62 3.4538 ~1.3224 0.1 0.06 0.10
@ 31.6 3.4532 -1.3220 0.1 0.06 0.10
/\ 27.6 3.3178 —1.2544 0.2 0.07 0.09
27.1 3.2995 —1.2452 0.2 0.07 0.09
. \i 21.9 3.0865 ~1.1387 0.4 0.12 0.08
[ | _
3 éJ \ 0.098 2.3227 +1.5659 0.9 0.60 0.015
E] 30.8828 3.4302 —~1.3106 0.1 0.05 0.09
EB 12.9851 2.5638 —0.8774 0.7 0.25 0.03
Eg 10132 1.5070 ~0.3490 0.6 0.30 0.025
0.25 0.01
@ 3.3351 1.2045 ~0.1977 0.7
EQJ* 21.8369 3.0836 ~1.1373 03 0.15 0.025
= 108374 23830 07870 0.4 0.15 0.025
B 10141 15072 03491 15 0.50 0.06
= 2.0769 0.7309 ~0.0391 17 0.50 0.02
2
Sal 31573 1.1497 ~0.1703 0.4 0.15 0.005
@1 0.5813 —0.5425 +0.6758 2.0 0.60 0.02
%‘ 0.1109 ~2.1991 +1.5041 3.0 0.60 0.005
I 5.3790 1.6825 ~0.4367 0.8 0.30 0.01
= 2.6896 0.9894 —0.0902 0.8 0.30 0.01
== 0.2318 ~1.4619 +1.1355 4.0 2.00 0.03
—— 0.1155 ~2.1585 +1.4838 4.0 2.00 0.01
2.3606 0.8589 ~0.0249 1.0 0.40 0.025

L

In vertically fractured reservoirs use (x./¢)? in place of A/72, for fractured systems

1 041 =><‘/><e

2.6541 0.9761 —0.0835 0.175 0.08 cannot use
0.2

1 2.0348 0.7104 +0.0493 0.175 0.09 cannot use

1 1.9986 0.6924 +0.0583 0.175 0.09 cannot use

! 1.6620 0.5080 +0.1505 0.175 0.09 cannot use
0.7

' 1.3127 0.2721 +0.2685 0.175 0.09 cannot use
5 IIl water—drlve reservoirs

1 07887  —0.2374  +0.5232 0175 0.09 cannot use

@ 19.1 2.95 ~1.07 - - -

In reservoirs of unknown production character
O 25.0 3.22 ~1.20 - - -
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Figure 1.25 Bottom-hole flowing pressure as a function of time.

Step 2. Convert the area A from acres to ft*:

A = (40) (43560) = 1742400 ft*
Step 3. Apply Equation 1.2.123:

s (5, 02339608t
= ! Ah¢ct
_ 162.6QBu | (2.24584
o 2\ 12

= 4500 — 0.143¢ — 48.781og (2027 436)
or:
pwt = 4192 — 0.143t
Step 4. Calculate py; at different assumed times, as

follows:

10 4191
20 4189
50 4185
100 4178
200 4163

Step 5. Present the results of step 4 in graphical form as
shown in Figure 1.25.

(b) Itis obvious from Figure 1.25 and the above calculation
that the bottom-hole flowing pressure is declining at a
rate of 0.143 psi/hr, or:

dp

dt
The significance of this example is that the rate of pres-
sure decline during the pseudosteady state is the same
throughout the drainage area. This means that the aver-
age reservoir pressure, p;, is declining at the same rate of
0.143 psi/hr, therefore the change in p, from 10 to 200
hours is:

Apy = (0.143) (200 — 10) = 27.17 psi

—0.143 psi/hr

Example 1.18 An oil well is producing under a constant
bottom-hole flowing pressure of 1500 psi. The current aver-
age reservoir pressure p, is 3200 psi. The well is developed

in the center of 40 acre square-drilling pattern. Given the
following additional information:

¢ = 16%, h =151t k =50md,
=26 cp, B, = 1.15bbl/STB,
¢ =10 x 1078 psi~!, 7, =0.251t

calculate the flow rate.

Solution
Because the volumetric average pressure is given, solve for
the flow rate by applying Equation 1.2.124:

_ kR —pw)
162.6Bp log [%]
ATw

(50) (15) (3200 — 1500)

(162.6) (1. 15) (2. 6) log [W]

= 416 STB/day

It is interesting to note that Equation 1.2.124 can also be
presented in a dimensionless form by rearranging and
introducing the dimensionless time #, and dimensionless
pressure drop pp, to give:

[1.2.125]

1 2.3458A
pp = 2mitps + Eln

2
CA &

with the dimensionless time based on the well drainage given
by Equation 1.2.75a as:

_ 0.0002637kt _ (7%
DA = Y W1

where:

s = skin factor (to be introduced later in the chapter)
C4 = shape factor
tpa = dimensionless time based on the well drainage
area 7.
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Equation 1.2.125 suggests that during the boundary-
dominated flow, i.e., pseudosteady state, a plot of pp vs. fps on
a Cartesian scale would produce a straight line with a slope
of 2r. That is:

v _ 2

= [1.2.126]
dtpa

For a well located in a circular drainage area with no skin,
i.e.,s = 0, and taking the logarithm of both sides of Equation
1.2.125 gives:

log (pp) = log(27) + log(tpa)

which indicates that a plot of pp vs. tps on a log-log scale
would produce a 45° straight line and an intercept of 2.

1.2.9 Radial flow of compressible fluids (gases)

The radial diffusivity equation as expressed by Equation
1.2.94 was developed to study the performance of a com-
pressible fluid under unsteady-state conditions. The equa-
tion has the following form:

Fm@)  lom@®)  ¢uc  Im(p)
arz 7 ar  0.000264k ot

For semisteady-state flow, the rate of change of the real-gas
pseudopressure with respect to time is constant. That is:

am(p)
at

Using the same technique identical to that described pre-
viously for liquids gives the following exact solution to the
diffusivity equation:

ki [m(p;) — m(pwr)]

14227 [1:1 (?) —0. 75]

where:

= constant

Q = [1.2.127]

Q. = gas flow rate, Mscf/day
T = temperature, °R
k = permeability, md

Two approximations to the above solution are widely used.
These are:

(1) the pressure-squared approximation;
(2) the pressure approximation.

Pressure-squared method

As outlined previously, this method provides us with com-
patible results to that of the exact solution approach when
p < 2000 psi. The solution has the following familiar
form:

ki (b, — )
1422T7Z (ln (;) —0. 75)

The gas properties Z and [ are evaluated at:
—2
— B+
b= T

Q. = gas flow rate, Mscf/day
T = temperature, °R
k = permeability, md

Qg = [1.2.128]

where:

Pressure approximation method
This approximation method is applicable at p > 3000 psi and
has the following mathematical form:

_ kh @r — Dwi )
14227iB, [In (re/7y) —0.75]

with the gas properties evaluated at:

*_pr+pw'f
b= 2

[1.2.129]

g

where:

@ = gas flow rate, Mscf/day
Ii = permeability, md

B, = gas formation volume factor at a average
pressure, bbl/scf

The gas formation volume factor is given by the following
expression:

ZT
By = 0.00504—

In deriving the flow equations, the following two main
assumptions were made:

(1) uniform permeability throughout the drainage area;
(2) laminar (viscous) flow.

Before using any of the previous mathematical solutions to
the flow equations, the solution must be modified to account
for the possible deviation from the above two assump-
tions. Introducing the following two correction factors into
the solution of the flow equation can eliminate these two
assumptions:

(1) skin factor;
(2) turbulent flow factor.

1.2.10 Skin factor

It is not unusual during drilling, completion, or workover
operations for materials such as mud filtrate, cement slurry,
or clay particles to enter the formation and reduce the perme-
ability around the wellbore. This effect is commonly referred
to as “wellbore damage” and the region of altered perme-
ability is called the “skin zone.” This zone can extend from a
few inches to several feet from the wellbore. Many other
wells are stimulated by acidizing or fracturing, which in
effect increases the permeability near the wellbore. Thus,
the permeability near the wellbore is always different from
the permeability away from the well where the formation
has not been affected by drilling or stimulation. A schematic
illustration of the skin zone is shown in Figure 1.26.

Damaged Zone Pressure Profile

-

Undamaged Zone

Kskin

k

—p fw

Tskin

Figure 1.26 Near-wellbore skin effect.
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E Pressure Profile
E Improved \
' k
Ap<0 : 0 a '-; Qo B k .
p<0 , - oBoMo skin
' - APskin = | =—=—=——~ —1|In{ =
o Pstin <o. 00708 kh) [kskin ] ( i )
Ap>0 E v e ’ Reduced
' ’ k APein = QoBoro
: skin = | 0.00708 kh
el
; » Iskin
Figure 1.27 Representation of positive and negative skin effects.
The effect of the skin zone is to alter the pressure distri-  where s is called the skin factor and defined as:
bution around the wellbore. In case of wellbore damage, the i )
skin zone causes an additional pressure loss in the formation. ¢ — [ _ 1] In (”Sﬂ) [1.2.131]
In case of wellbore improvement, the opposite to that of well- ksiin Tw
bore damage occurs. If we refer to the pressure drop in the Depending on the permeability ratio k/kgq and if

skin zone as Apgn, Figure 1.27 compares the differences in
the skin zone pressure drop for three possible outcomes.

o First outcome: Apgin > 0, which indicates an additional
pressure drop due to wellbore damage, i.e., kskin < k.

o Second outcome: Apgiin < 0, which indicates less pressure
drop due to wellbore improvement, i.e., kg, > k.

o Third outcome: Apgqin = 0, which indicates no changes in
the wellbore condition, i.e., kg, = k.

Hawkins (1956) suggested that the permeability in the skin
Zone, i.e., ksyin, is uniform and the pressure drop across the
zone can be approximated by Darcy’s equation. Hawkins
proposed the following approach:

due to kein dueto k

Ap in skin zone Ap in the skin zone
Apsk‘m = -

Applying Darcy’s equation gives:

o QoBol‘vo 7skin
(AP)skin = (o. 00708hkskin) 1“( . )

QOBOI'LO

_ 1 7skin
0.007081k ) "\ e
orosin) [ 1) ()
kskin Yw

or:

Apsiin = <0. 00708kh

where:

k = permeability of the formation, md
kgin = permeability of the skin zone, md

The above expression for determining the additional pres-
sure drop in the skin zone is commonly expressed in the

following form:
Q0B 1o > s=141.2 <Qofhoﬂo> s [1.2.130]

0.00708kh

Ap skin = <

In(7sin/7w) is always positive, there are only three possible
outcomes in evaluating the skin factor s:

(1) Positive skin factor, s > 0: When the damaged zone near
the wellbore exists, ki, is less than 2 and hence sis a pos-
itive number. The magnitude of the skin factor increases
as kgq, decreases and as the depth of the damage 7,
increases.

(2) Negative skin factor,s < 0: When the permeability around
the well kg, is higher than that of the formation %, a
negative skin factor exists. This negative factor indicates
an improved wellbore condition.

(3) Zero skin factor, s = 0: Zero skin factor occurs when no
alternation in the permeability around the wellbore is
observed, i.e., Rgin = k.

Equation 1.2.131 indicates that a negative skin factor will
result in a negative value of Apg,. This implies that a stim-
ulated well will require less pressure drawdown to produce
at rate ¢ than an equivalent well with uniform permeability.

The proposed modification of the previous flow equation is
based on the concept that the actual total pressure drawdown
willincrease or decrease by an amount Apgi,. Assuming that
(Ap)igeal Tepresents the pressure drawdown for a drainage
area with a uniform permeability &, then:

(Ap)actual = (Ap)ideal + (Ap)skin
or:

(.bi 7pwf)actual = (Pi 7pwf)ideal + A17skin [12132]
The above concept of modifying the flow equation to account
for the change in the pressure drop due the wellbore skin
effect can be applied to the previous three flow regimes:

(1) steady-state flow;
(2) unsteady-state (transient) flow;
(3) pseudosteady (semisteady)-state flow.

Basically, Equation 1.2.132 can be applied as follows.
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Steady state radial flow (accounting for the skin factor)
Substituting Equations 1.2.15 and 1.2.130 into Equation
1.2.132, gives:

(Ap)actual = (Ap)ideal + (Ap)skin

_ QoB, 1o Te (99975
i — Dwh)actual = (m) In (E) + <m s

Solving for the flow rate gives:
_0.00708kk (p; — pws)

) = p [1.2.133]
toBo |:1n R s:|
T
where:
Q, = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor
B, = oil formation volume factor, bbl/STB
1o = oil viscosity, cp
pi = initial reservoir pressure, psi
pwi = bottom-hole flowing pressure, psi

Unsteady-state radial flow (accounting for the skin factor)
For slightly compressible fluids Combining Equations
1.2.71 and 1.2.130 with that of 1.2.132 yields:

(Ap)actual = (Ap)ideal + (AP) skin

_ QOBO,U'O kt
b bot = 162.6< & )[k)g - 23}
QOBOMO
+141.2 (T s
or:
_ QoBoMu kt

bi — pwt = 162.6 < o ) [log el —3.23+0. 873]
[1.2.134]

For compressible fluids A similar approach to that of the

above gives:

1 T
m(py) — m(pus) = 637Q, log k ~ —3.23+0.87s
kh 103 ctir\f,

[1.2.135]

and in terms of the pressure-squared approach, the differ-
ence [m(p;) — m(pwr)] can be replaced with:

bi 2 2 _ p2
mp) = mipus) = [ =2 dp = Dot
pui M I
to give:
, 1637Q,TZm kt
242 1 _
i — by h [1 Frcar 3.2340. 87sj|
[1.2.136]
where:

@, = gas flow rate, Mscf/day
T = temperature, °R

k = permeability, md

t = time, hours

Pseudosteady-state flow (accounting for the skin factor)
For slightly compressible fluids Introducing the skin factor
into Equation 1.2.123 gives:

0. - 0.00708kh (b, — pwr) [1.2.137]

1£0Bo [m <:i> —0.75+ s]

For compressible fluids

ki [m(p;) — m(pwr)]

Q= S [1.2.138]
1422T [ln (f) -0.75 +s}
or in terms of the pressure-squared approximation:
kh pZ _ ﬁ?
Q = ( ‘7 “’f) [1.2.139]
1422T0Z [ln <7e> —0.75+ s]
where :
Q¢ = gas flow rate, Mscf/day
k = permeability, md
T = temperature, °R

7, = gas viscosity at average pressure p, cp
Z, = gas compressibility factor at average pressure p

Example 1.19 Calculate the skin factor resulting from
the invasion of the drilling fluid to a radius of 2 ft. The per-
meability of the skin zone is estimated at 20 md as compared
with the unaffected formation permeability of 60 md. The
wellbore radius is 0.25 ft.

Solution
Apply Equation 1.2.131 to calculate the skin factor:

60 2
s = [% —1:|1n<m> =4.16
Matthews and Russell (1967) proposed an alternative treat-
ment to the skin effect by introducing the “effective or
apparent wellbore radius” 7y, that accounts for the pressure
drop in the skin. They define 7y, by the following equation:
Vwa = Tw€ [1.2.140]
All of the ideal radial flow equations can be also modified for
the skin by simply replacing the wellbore radius 7, with that

of the apparent wellbore radius 7y,. For example, Equation
1.2.134 can be equivalently expressed as:

. _ QoBo/lo kt _
bi — bwi = 162.6 ( o ) |:10g(¢lwt7v%a) 3.23]
[1.2.141]

1.2.11 Turbulent flow factor

All of the mathematical formulations presented so far are
based on the assumption that laminar flow conditions are
observed during flow. During radial flow, the flow velocity
increases as the wellbore is approached. This increase in
the velocity might cause the development of turbulent flow
around the wellbore. If turbulent flow does exist, it is most
likely to occur with gases and causes an additional pressure
drop similar to that caused by the skin effect. The term “non-
Darcy flow” has been adopted by the industry to describe the
additional pressure drop due to the turbulent (non-Darcy)
flow.

Referring to the additional real-gas pseudopressure drop
due to non-Darcy flow as Ayryonparcy, the total (actual) drop
is given by:

(Aw)actual = (A"/f)i(leal + (Aw)skin + (A"//)non-Darcy

Wattenbarger and Ramey (1968) proposed the following
expression for calculating (Av) non-Darcy:

[ BTy, .
(Aw)non-Darcy =3.161x 107" [Khziw} Qé

This equation can be expressed in a more convenient
form as;

(AW)non—Darcy = FQ;

[1.2.142]

[1.2.143]
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where F is called the “non-Darcy flow coefficient” and
given by:

F =3.161 x 102 [&]

" [1.2.144]
aw w

where:

Q. = gas flow rate, Mscf/day
Ugw = gas viscosity as evaluated at pys, cp
yg = gas specific gravity
h = thickness, ft
F = non-Darcy flow coefficient, psi?/cp/ (Mscf/day)?
B = turbulence parameter

Jones (1987) proposed a mathematical expression for esti-
mating the turbulence parameter g as:

B = 1.88(10710) (B) 147 (¢) 053

where:

[1.2.145]

k = permeability, md
¢ = porosity, fraction

The term FQE, can be included in all the compressible
gas flow equations in the same way as the skin factor.
This non-Darcy term is interpreted as a rate-dependent skin.
The modification of the gas flow equations to account for
the turbulent flow condition is given below for the three flow
regimes:

(1) unsteady-state (transient) flow;
(2) semisteady-state flow;
(3) steady-state flow.

Unsteady-state radial flow

The gas flow equation for an unsteady-state flow is given
by Equation 1.2.135 and can be modified to include the
additional drop in the real-gas potential, as:

m:) — m(pwr) = (1637QgT) [log( kt )

kh Puicirs

-3.23+40. 87s:| + FQZ [1.2.146]

Equation 1.2.146 is commonly written in a more convenient
form as:

o i = (58T

—3.2340.87s + 0. 87DQg] [1.2.147]

where the term D@, isinterpreted as the rate-dependent skin
factor. The coefficient D is called the “inertial or turbulent
flow factor” and given by:

Fkh
1422T

The true skin factor s which reflects the formation damage
or stimulation is usually combined with the non-Darcy rate-
dependent skin and labeled as the apparent or total skin
factor s\. That is:

D= [1.2.148]

s\ =s+DQ, [1.2.149]
or:
_ (1637Q,T kt
@) = mpu) = ( kh ) [log (¢Micti7’§,>
—-3.23+0. 878\:| [1.2.150]

Equation 1.2.50 can be expressed in the pressure-squared
approximation form as:

B~ = (163725”") [log chtﬂ ~3.23+0. 873\]
itti’y

[1.2.151]

where:

@, = gas flow rate, Mscf/day
t = time, hours
k = permeability, md
Wi = gas viscosity as evaluated at p;, cp

Semisteady-state flow
Equation 1.2.138 and 1.2.139 can be modified to account for
the non-Darcy flow as follows:

ki [m(p;) — m(pwr)]

Qy = p [1.2.152]
1422T [ln <76> —0.75+s+ DQg}
or in terms of the pressure-squared approach:
)
kh(p, — 12
Q= S ) [1.2.153]
1422TZ |:1n <—e> —0.75+s+ DQg]
where the coefficient D is defined as:
Fkh
D= T [1.2.154]

Steady-state flow
Similar to the above modification procedure, Equations
1.2.32 and 1.2.33 can be expressed as:

kh [m(p) — m(pur)] [1.2.155]

Qg:

14227 [m (i> —0.5+5s+ DQg]
kh (p2 — P2
Q= (rPe Pu) [1.2.156]
1422TaZ [ln <7—e> —0.5+s +DQg]
Example 1.20 A gas well has an estimated wellbore dam-

age radius of 2 feet and an estimated reduced permeability
of 30 md. The formation has permeability and porosity of
55 md and 12% respectively. The well is producing at a rate
of 20 MMscf/day with a gas gravity of 0.6. The following
additional data is available:

#y = 0.25, h =20 ft, T = 140°F, iy = 0.013 cp

Calculate the apparent skin factor.

Solution

Step 1. Calculate skin factor from Equation 1.2.131:

k Vskin >
s = —1{ln{ —
|:kskin j| < Tw

55 2
= [% - 1] In <ﬁ> =1.732
Step 2. Calculate the turbulence parameter 8 by applying

Equation 1.2.145:
ﬁ =1 88(10—10) (k)—1.47 (¢) —0.53

= 1.88 x 10'°(55)~147 (0. 12) 053
=159.904 x 10°



1/40  WELL TESTING ANALYSIS

Step 3. Calculate the non-Darcy flow coefficient from Equa-
tion 1.2.144:

F=3.161x107" |:

BTy, ]

Jr

159.904 x 10%(600) (0. 6)
(0.013) (20)2(0.25) ]

=3.1612 x 10712 [

=0.14
Step 4. Calculate the coefficient D from Equation 1.2.148:
_ Fkh
T 1422T
(0.14) (55) (20) 4
=————""""=1.805x%x10
(1422) (600) x
Step 5. Estimate the apparent skin factor by applying Equa-
tion 1.2.149:
s\ =5+ DQ, = 1.732 + (1.805 x 107*) (20 000)
=5.342

1.2.12 Principle of superposition

The solutions to the radial diffusivity equation as presented
earlier in this chapter appear to be applicable only for describ-
ing the pressure distribution in an infinite reservoir that was
caused by constant production from a single well. Since real
reservoir systems usually have several wells that are operat-
ing at varying rates, a more generalized approach is needed
to study the fluid flow behavior during the unsteady-state
flow period.

The principle of superposition is a powerful concept that
can be applied to remove the restrictions that have been
imposed on various forms of solution to the transient flow
equation. Mathematically the superposition theorem states
that any sum of individual solutions to the diffusivity equa-
tion is also a solution to that equation. This concept can be
applied to account for the following effects on the transient
flow solution:

o effects of multiple wells;

o effects of rate change;

o effects of the boundary;

e effects of pressure change.

Slider (1976) presented an excellent review and discussion
of the practical applications of the principle of superposition
in solving a wide variety of unsteady-state flow problems.

Effects of multiple wells

Frequently, it is desired to account for the effects of more
than one well on the pressure at some point in the reser-
voir. The superposition concept states that the total pressure
drop at any point in the reservoir is the sum of the pressure
changes at that point caused by the flow in each of the wells
in the reservoir. In other words, we simply superimpose one
effect upon another.

Consider Figure 1.28 which shows three wells that are
producing at different flow rates from an infinite-acting reser-
voir, i.e., an unsteady-state flow reservoir. The principle of
superposition states that the total pressure drop observed at
any well, e.g., well 1, is:

(AP) total drop at well 1 = (AP) drop due to well 1
+ (Ap) drop due to well 2
+ (Aﬁ) drop due to well 3

The pressure drop at well 1 due to its own production is
given by the log approximation to the Ei function solution

Well 2

Well 3

Well 1

Figure 1.28 Well layout for Example 1.21.

presented by Equation 1.2.134, or:

162.60013()#0 lo kt
kh & ducer?

(01 —b,5) = (AD)wems =

—-3.23+0. 87si|

where:

t = time, hours
s = skin factor
k = permeability, md
Q.1 = oil flow rate from well 1

The additional pressure drops at well 1 due to the production
from wells 2 and 3 must be written in terms of the Ei func-
tion solution, as expressed by Equation 1.2.66, since the log
approximation cannot be applied in calculating the pressure
at a large distance 7 from the well where x > 0. 1. Therefore:

70.6QuuBy | o, [ ~948¢pocir”
kh kt

Applying the above expression to calculate the additional
pressure drop due to two wells gives:

p(rD) = by + [

70.6Q01140B,
(Ap)dropduetoweIIZ =pi—p (71,1,‘) = — [&]

kh
< Ei —948¢uocri
kt
70.6Qu2110B
(Ap)dropduetowellii =pi—p(rn,t) =— [Tm]
x Ei M
kt

The total pressure drop is then given by:

162.6Q01B, 1t kt
(Bi — Dwh)total at well 1 = ( k;l o ) |:10g < d)/‘wtr‘% )

-3.23 + 0.878]
70. 6Q02B0 Mo o 948¢/L€t 7’12
kh kt

_(T0-6QusBoo \ [ 9480nc
Th kt

where Q,1, @2, and @3 refer to the respective producing
rates of wells 1, 2, and 3.
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The above computational approach can be used to calcu-
late the pressure at wells 2 and 3. Further, it can be extended
to include any number of wells flowing under the unsteady-
state flow condition. It should also be noted that if the point
of interest is an operating well, the skin factor s must be
included for that well only.

Example 1.21 Assume that the three wells as shown in
Figure 1.28 are producing under a transient flow condition
for 15 hours. The following additional data is available:

Qo1 = 100 STB/day, Q.2 = 160 STB/day
Qo3 = 200 STB/day, p; = 4500 psi,

B, = 1.20 bbl/STB, ¢ = 20 x 10~ psi~,
(S)wemr = —0.5, h =20ft,

¢ =15%, k=40md,
rw =0.25ft, o, =2.0cp,
r =4001ft, 7 =700 ft.

If the three wells are producing at a constant flow rate,
calculate the sand face flowing pressure at well 1.

Solution

Step 1. Calculate the pressure drop at well 1 caused by its
own production by using Equation 1.2.134:

162.6Q,1B, 110
kh

x [log (quctrz ) ~3.2340. 873]
t'w

(162.6) (100) (1.2) (2.0)
(40) (20)

(6 — ;) = (AD)yerr1 =

(AD)wen1 =

y [lo < (40) (15) >
€1 0.15)(2) (20 x 10-9) (0. 25)2

—-3.23+0. 87(0)] = 270.2 psi

Step 2. Calculate the pressure drop at well 1 due to the
production from well 2:
(Ap)drop due towell2 = Pi - P(”ly t)

_ 70«6Q01,U«0B0 Ei _948¢//voct712
- kh kt

(70.6) (160) (1.2) (2)
@y

Ei [_ (948) (0.15) (2.0) (20 x 107) (400)2 :|
*H (40) (15)

= 33.888 [—FEi(-1.5168)]
= (33.888)(0.13) = 4.41 psi

(AD)due towell2 = —

Step 3. Calculate the pressure drop due to production from
well 3:

(Ap)drop duetowell3 = Di — P (72, t)

_ 70.6Q02140B, Fi 7948¢U-oct7’22
- kh kt

(70.6) (200) (1.2) (2)
(40 (20)

Ei (948) (0.15) (2.0) (20 x 1076) (700)2
‘[_ (40) (15) ]

= (42.36) [~Ei(—4.645)]

(AD)due towell 3 = —

= (42.36) (1.84 x 107%) = 0.08 psi
Step 4. Calculate the total pressure drop at well 1:
(AD)otatat wen 1 = 270.2 + 4.41 4 0.08 = 274. 69 psi
Step 5. Calculate py at well 1:

Pyt = 4500 — 274.69 = 4225. 31 psi

Effects of variable flow rates

All of the mathematical expressions presented previously
in this chapter require that the wells produce at a con-
stant rate during the transient flow periods. Practically all
wells produce at varying rates and, therefore, it is impor-
tant that we are able to predict the pressure behavior when
the rate changes. For this purpose, the concept of superpo-
sition states that “Every flow rate change in a well will result
in a pressure response which is independent of the pres-
sure responses caused by the other previous rate changes.”
Accordingly, the total pressure drop that has occurred at
any time is the summation of pressure changes caused
separately by each net flow rate change.

Consider the case of a shut-in well, i.e., @ = 0, that was
then allowed to produce at a series of constant rates for the
different time periods shown in Figure 1.29. To calculate the
total pressure drop at the sand face at time #,, the composite
solution is obtained by adding the individual constant-rate
solutions at the specified rate-time sequence, or:

(AD)total = (AP)due to(@51-0) T (AP)due to(Qep—Q01)
+ (AP)due t0(Qp3—Q02) + (AD)que t0(Qo4—@03)

The above expression indicates that there are four contri-
butions to the total pressure drop resulting from the four
individual flow rates:

The first contribution results from increasing the rate from
0 to @ and is in effect over the entire time period #4, thus:

162.6 (@, — 0) B,
(AD)g -0 = |:(klh)li:|

x |:10g <¢ ;f?r? ) ~3.23+0. 873]
t'w

It is essential to notice the change in the rate, i.e., (new rate —
old rate), that is used in the above equation. It is the change
in the rate that causes the pressure disturbance. Further, it
should be noted that the “time” in the equation represents
the total elapsed time since the change in the rate has been
in effect.

The second contribution results from decreasing the rate
from @ to @, at #;, thus:

162.6 — B
(AP)QTQl — [%Ql)"}

X [log <%> —3.23+0. 873]
HCtT
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Step 2. Calculate the additional pressure change due to the
change of the flow rate from 100 to 70 STB/day:
162.6) (70 — 100) (1.1) (2.5

(o = LD 1000 )

Flow

Rate « |Tog (1) (15-2) _3.93

(0.15) (25) (20x10-6) (0.3)° )
t1=2 12:5 t3=10 t4:15 Time, hr

Puwt

Figure 1.29 Production and pressure history of a well.

Using the same concept, the two other contributions from
@> to @3 and from @3 to @4 can be computed as:

162.6 -@)B
(B)es o, = {(th%)ﬂ]

x |:10g (%) —3.23+40. 873}
t'w

162.6 - B,
(BPYoy 0, = {(Q;h@s)ﬂ}

x [Iog <M> —3.23+0. 873}

Pucer?
The above approach can be extended to model a well with
several rate changes. Note, however, that the above approach
is valid only if the well is flowing under the unsteady state
flow condition for the total time elapsed since the well began
to flow at its initial rate.

Example 1.22 Figure 1.29 shows the rate history of a
well that is producing under transient flow conditions for
15 hours. Given the following data:

i = 5000 psi, h=20f, B, =1.1bbl/STB
¢ = 15%, o =2.5¢p, ry=0.31t
¢ =20x10"%psi-!, s=0, k=40 md

calculate the sand face pressure after 15 hours.

Solution

Step 1. Calculate the pressure drop due to the first flow rate
for the entire flow period:

(162.6) (100—0) (1.1) (2.5)
(40) (20)
(40)(15)
) {log ( (0.15) (2.5) (20 x 10-5) (0.3)? ) _3'23+0}

=319.6 psi

(AP)gy-0=

= —94. 85 psi

Step 3. Calculate the additional pressure change due to the
change of the flow rate from 70 to 150 STB/day:

(162.6) (150 — 70) (1.1) (2.5)
(40) (20)

(40) (15-5) _
x [log <(0,15)(2A5)(20x10*ﬁ)(043)2> 3 23]

= 249.18 psi

Step 4. Calculate the additional pressure change due to the
change of the flow rate from 150 to 85 STB/day:

(162.6) (85 — 150) (1.1) (2.5)
(40) (20)

(ADP)y—0, =

(ap) Q-Q3 =

(40) (15-10) B
x [log [(0.15) (25) (20><10_6)(0,3)2:| 3 23]

= —190. 44 psi

Step 5. Calculate the total pressure drop:
(AD)tota1 = 319.6 + (—94. 85) + 249.18 + (—190.44)

= 283.49 psi

Step 6. Calculate the wellbore pressure after 15 hours of
transient flow:

Dwt = 5000 — 283.49 = 4716.51 psi

Effects of the reservoir boundary

The superposition theorem can also be extended to pre-
dict the pressure of a well in a bounded reservoir. Consider
Figure 1.30 which shows a well that is located a distance
L from the non-flow boundary, e.g., sealing fault. The no-
flow boundary can be represented by the following pressure
gradient expression:

ap )
= =0
( oL Boundary

Mathematically, the above boundary condition can be met by
placing an image well, identical to that of the actual well, on
the other side of the fault at exactly distance L. Consequently,
the effect of the boundary on the pressure behavior of a well
would be the same as the effect from an image well located
a distance 2L from the actual well.

In accounting for the boundary effects, the superposition
method is frequently called the method of images. Thus, for
the problem of the system configuration given in Figure 1.30,
the problem reduces to one of determining the effect of the
image well on the actual well. The total pressure drop at the
actual well will be the pressure drop due to its own produc-
tion plus the additional pressure drop caused by an identical
well at a distance of 2L, or:

(Aﬂ) total = (Aﬂ) actual well + (AP) due to image well
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Figure 1.30 Method of images in solving boundary problems.

or: Fault 2

162.6Q. By kt
(AD)iotal = th |:10 <¢ t?’&) —-3.23+0. 878]

B (70. 6Q0BM) - (_ 948¢pu¢; (2L)° )

kh kt
[1.2.157]

Notice that this equation assumes the reservoir is infinite
except for the indicated boundary. The effect of boundaries is
always to cause a greater pressure drop than those calculated
for infinite reservoirs.
The concept of image wells can be extended to generate
the pressure behavior of a well located within a variety of
boundary configurations. Fault 1

100’ ¢
Example 1.23 Figure 1.31 shows a well located between Imag.e Well
two sealing faults at 400 and 600 feet from the two faults.

The well is producing under a transient flow condition at a Figure 1.31 Well layout for Example 1.23.
constant flow rate of 200 STB/day. Given:

$i=500psi, k=600md, B,=11bbl/STB
& =17% o =2.0cp, h=25ft

Step 2. Determine the additional pressure drop due to the
first fault (i.e., image well 1):

(Ap)image welll = Pi — P (2L1, t)

e =0.3ft, s=0, ¢ =25 x 1076 psi—!
_ 2
Calculate the sand face pressure after 10 hours. =— [70' GQk‘ZuOBO :| Ei[ 948(25/1;;& Ly ]
Solution ~(70.6) (200) (1.1) (2.0)
Step 1. Calculate the pressure drop due to the actual well (AP)image well1 = — (60) (25)
flow rate:
2
162. 6Qo1Bosto [ (948) (0.17) (2) (25 x 10-5) (2 x 100)
. — = — - ¥orrolo Ei|—
(pl pw-f) (Ap)actual kh x Bl |: (60) (10)
X [log <¢ kctrz ) —-3.23+0. 87sj| =20.71 [—Ei(—O. 537)] = 10. 64 psi
WCt Ty
A _ (162.6) (200) (1.1) (2.0) Step 3. Calculate the effect of the second fault (i.e., image
(AD)actual = (60) (25) well 2):
(60) (10) (A.b) image well 2 = pi - ﬁ(ZLg, t)
x [l"g ( ©0.17) @) 5 x 109 0. 3)2) mE O]

_ |:70 6Qo2110B, :| Ei |: —948¢ ot (2L2)2 :|

= 270.17 kh kt
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(AD) image well 2

[ 948 (0.17) (2) (25 x 1075) (2 x 200)*
o (e B0 207

=20.71[—Ei(—2.15)] = 1.0 psi
Step 4. The total pressure drop is:
(AD)iotal = 270.17 +10.64 + 1.0 = 28.18 psi

Step 5. bwi = 5000 — 281.8 = 4718.2 psi.

Accounting for pressure-change effects

Superposition is also used in applying the constant-pressure
case. Pressure changes are accounted for in this solution in
much the same way that rate changes are accounted for in
the constant-rate case. The description of the superposition
method to account for the pressure-change effect is fully
described in Chapter 2 in this book.

1.3 Transient Well Testing

Detailed reservoir information is essential to the petroleum
engineer in order to analyze the current behavior and future
performance of the reservoir. Pressure transient testing is
designed to provide the engineer with a quantitative analy-
sis of the reservoir properties. A transient test is essentially
conducted by creating a pressure disturbance in the reser-
voir and recording the pressure response at the wellbore,
i.e., bottom-hole flowing pressure py;, as a function of time.
The pressure transient tests most commonly used in the
petroleum industry include:

e pressure drawdown;
e pressure buildup;

e multirate;

e interference;

e pulse;

e drill stem (DST);

o falloff;

e injectivity;

® step rate.

It should be pointed out that when the flow rate is changed
and the pressure response is recorded in the same well, the
test is called a “single-well” test. Drawdown, buildup, injec-
tivity, falloff, and step-rate tests are examples of a single-well
test. When the flow rate is changed in one well and the pres-
sure response is measured in another well(s), the test is
called a “multiple-well” test.

Several of the above listed tests are briefly described in
the following sections.

It has long been recognized that the pressure behavior
of a reservoir following a rate change directly reflects the
geometry and flow properties of the reservoir. Some of the
information that can be obtained from a well test includes:

Drawdown tests Pressure profile
Reservoir behavior
Permeability

Skin

Fracture length
Reservoir limit and shape
Reservoir behavior
Permeability
Fracture length
Skin

Reservoir pressure
Boundaries

Buildup tests

DST Reservoir behavior
Permeability

Skin

Fracture length
Reservoir limit
Boundaries

Mobility in various banks
Skin

Reservoir pressure
Fracture length

Location of front
Boundaries
Communication between wells
Reservoir-type behavior
Porosity

Interwell permeability
Vertical permeability
Horizontal permeability
Vertical permeability
Skin

Average layer pressure
Outer boundaries
Formation parting pressure
Permeability

Skin

Falloff tests

Interference and
pulse tests

Layered reservoir
tests

Step-rate tests

There are several excellent technical and reference books
that comprehensively and thoroughly address the subject of
well testing and transient flow analysis, in particular:

e (. S. Matthews and D. G. Russell, Pressure Buildup and
Flow Test in Wells (1967);

o Energy Resources Conservation Board (ERBC), Theory

and Practice of the Testing of Gas Wells (1975);

Robert Earlougher, Advances in Well Test Analysis (1977);

John Lee, Well Testing (1982);

M. A. Sabet, Well Test Analysis (1991);

Roland Horn, Modern Well Test Analysis (1995).

1.3.1 Drawdown test

A pressure drawdown test is simply a series of bottom-hole
pressure measurements made during a period of flow at con-
stant producing rate. Usually the well is shut in prior to the
flow test for a period of time sufficient to allow the pressure to
equalize throughout the formation, i.e., to reach static pres-
sure. A schematic of the ideal flow rate and pressure history
is shown in Figure 1.32.

The fundamental objectives of drawdown testing are to
obtain the average permeability, k, of the reservoir rock
within the drainage area of the well, and to assess the
degree of damage of stimulation induced in the vicinity
of the wellbore through drilling and completion practices.
Other objectives are to determine the pore volume and to
detect reservoir inhomogeneities within the drainage area
of the well.

When a well is flowing at a constant rate of @, under
the unsteady-state condition, the pressure behavior of the
well will act as if it exists in an infinite-size reservoir.
The pressure behavior during this period is described by
Equation 1.2.134 as:

162.6Q,Bos [, kt
kh © oucr?

thw

bwt = Di — >—3.23+0.87s]

where:

k = permeability, md
t = time, hours

rw = wellbore radius, ft
s = skin factor
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Figure 1.32 |dealized drawdown test.

The above expression can be written as:

. 162.6QBu
pw[ = P1 rh

x [log ) + log ( ) —3.23+0. 873] [1.3.1]

k
pucer?
This relationship is essentially an equation of a straight line
and can be expressed as:

bwt = a+mlog(?)
where:

. 162.6Q,B,u o k
- kh e
and the slope m is given by:

—162.6Q,B, 140

m= o [1.3.2]
Equation 1.3.1 suggests that a plot of py; versus time ¢ on
semilog graph paper would yield a straight line with a slope
m in psi/cycle. This semilog straight-line portion of the draw-
down data, as shown in Figure 1.33, can also be expressed in
another convenient form by employing the definition of the
slope:

) -3.2340. 873]

m— Dwt —P1ue Pwi —Dinr
~ log(t) —log(1) ~ log(®) — 0

or:

put = mlog(®) + p1ne

Notice that Equation 1.3.2 can also be rearranged to deter-
mine the capacity kz of the drainage area of the well. If
the thickness is known, then the average permeability is
given by:

_162.6Q,B, 110

- lm| h
where:

k = average permeability, md
|m| = absolute value of slope, psi/cycle

Clearly, kh/u or k/ ;. may also be estimated.

The skin effect can be obtained by rearranging Equa-
tion 1.3.1 as:

s=1.151 [1"_”“"

k
—logt—log| —— +3.23]
m| £ g((buctr&)

or, more conveniently, if selecting pws = p1 nr Which is found
on the extension of the straight line at ¢ = 1 hr, then:

bi— b1 k
() oz

s=1.151 [7
|7m|
where |m| is the absolute value of the slope .

In Equation 1.2.3, p; 1, must be obtained from the semilog
straightline. If the pressure data measured at 1 hour does not
fall on that line, the line must be extrapolated to 1 hour and
the extrapolated value of p; 1, must be used in Equation 1.3.3.
This procedure is necessary to avoid calculating an incorrect
skin by using a wellbore-storage-influenced pressure. Figure
1.33 illustrates the extrapolation to py ;.

Note that the additional pressure drop due to the skin was
expressed previously by Equation 1.2.130 as:

_ (99197
Abain = 141.2 (T s

[1.3.3]

This additional pressure drop can be equivalently written in
terms of the semilog straight-line slope . by combining the
above expression with that of Equation 1.3.3 to give:
Apskin =0.87 |m| N

Another physically meaningful characterization of the skin
factor is the flow coefficient E as defined by the ratio of the
well actual or observed productivity index J,cqua and its ideal
productivity index Jiqea. The ideal productivity index Jigea is
the value obtained with no alternation of permeability around
the wellbore. Mathematically, the flow coefficient is given by:

E= ]actual _ 13 — Dwt — Apskin
Jideal 5 — Dwt
where p is the average pressure in the well drainage area.
If the drawdown test is long enough, the bottom-hole pres-
sure will deviate from the semilog straight line and make the
transition from infinite acting to pseudosteady state. The rate

of pressure decline during the pseudosteady-state flow is
defined by Equation 1.2.116 as:

dp 0.23396g  —0.23396¢ —0.23396¢q

dat - T (wr2)he = ¢ (A)ho = ¢ (pore volume)
Under this condition, the pressure will decline at a constant
rate at any point in the reservoir including the bottom-hole
flowing pressure py;. That is:

dpwr _ . —0.23396¢
dt CtAh¢

This expression suggests that during the semisteady-state

flow, a plot of pyr vs. t on a Cartesian scale would produce a
straight line with a negative slope of 7" that is defined by:

| —0.23396¢
- ClAh¢

where:

m\ = slope of the Cartesian straight line
during the pseudosteady state, psi/hr

q = flow rate, bbl/day

A = drainage area, ft

Example 1.24¢ Estimate the oil permeability and skin
factor from the drawdown data of Figure 1.34.

%This example problem and the solution procedure are given in
Earlougher, R. Advances in Well Test Analysis, Monograph Series,
SPE, Dallas (1997).



1/46  WELL TESTING ANALYSIS

° Deviation from straight
line caused by skin and
o 4 wellbore storage effects

T~

m= —162. SQQBQ//LO

a kh
&
End of /\
transient flow .
L]
Wellbore Storage Region| Transient Flow Region Pseudosteady-State Region
N " 1 " L
1.0 10 leia 100
Time, hrs

Figure 1.33 Semilog plot of pressure drawdown data.
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Figure 1.34 Earlougher’s semilog data plot for the drawdown test (Permission to publish by the SPE, copyright
SPE, 1977).

The following reservoir data are available: e the skin factor;
h=130ft ¢ =20%, ry = 0.25f, o the additional pressure drop due to the skin.
pi = 1154 psi, @, = 348 STB/D, m = —22 psi/cycle Solution
B, = 1.14 bbl/STB, 1o =3.93¢cp, ¢, =8.74 x 108 psi™t  Step 1. From Figure 1.34, calculate p1 p,:
Assuming that the wellbore storage effect is not significant, D1nr = 954 psi
calculate: Step 2. Determine the slope of the transient flow line:

o the permeability; m = —22 psi/cycle
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Step 3. Calculate the permeability by applying Equation

1.3.2:
b —162.6Q,B, 10
mh
_ - (162.6) (348) (1.14) (3.93) — 89 md
(—22) (130)
Step 4. Solve for the skin factor s by using Equation 1.3.3:
s=1.151 [pi_p“" —log( k 2) +3.23}
|| pueery

1154 — 954
=1.151 S
° [( 2 )

89
e ((o. 2) (3.93) (8.74 x 10-6) (0. 25)2>

+3. 2275} =4.6

Step 5. Calculate the additional pressure drop:
Apsiin = 0.87 |m|s = 0.87(22) (4.6) = 88 psi

It should be noted that for a multiphase flow, Equations
1.3.1 and 1.3.3 become:

162. 6q; At
bwt = Di — i [IOg ) + log (¢Ct7’v2v> —3.23+0. 873]
s=1151 [ 2P o (M) 503
|| der?
with:
At = ky + L3 + L3

Ko Mw Hg

qt = QoBo + Qwa + (Qg - QoRs)Bg
or equivalently in terms of GOR as:
qr = QoBo + Qwa + (GOR - Rs)QoBg

where:
g; = total fluid voidage rate, bbl/day
Q, = oil flow rate, STB/day
Q. = water flow rate, STB/day
Q. = total gas flow rate, scf/day

Ry = gas solubility, scf/STB
B, = gas formation volume factor, bbl/scf

A¢ = total mobility, md/cp
k, = effective permeability to oil, md
ky = effective permeability to water, md

ks = effective permeability to gas, md

The above drawdown relationships indicate that a plot of py¢
vs. t on a semilog scale would produce a straight line with a
slope m that can be used to determine the total mobility A,
from:
162. 6,
YT mh

Perrine (1956) showed that the effective permeability of each
phase, i.e., &, ky, and kg, can be determined as:

162.6QoBojto

o =

mh
162.6Qy By jtw
by = ————
mh
b 162.6(Qg — QoRy) By jig
. =

mh
If the drawdown pressure data is available during both the
unsteady-state flow period and the pseudosteady-state flow

period, it is possible to estimate the drainage shape and the
drainage area of the test well. The transient semilog plot
is used to determine its slope m and py,; the Cartesian
straight-line plot of the pseudosteady-state data is used to
determine its slope m\ and its intercept pi,.. Earlougher
(1977) proposed the following expression to determine the
shape factor Cy:

2.303(p1hr — Din
Cy = 5.456 <ﬁ> exp [7@“' ? t):|
m\ m
where:
m = slope of transient semilog straight line, psi/log
cycle
m\ = slope of the semisteady-state Cartesian

straight line

P1ne = pressure at ¢ = 1 hour from transient semilog
straight line, psi
pmt = pressure at t = 0 from pseudosteady-state
Cartesian straight line, psi

The calculated shape factor from applying the above rela-
tionship is compared with those values listed in Table 1.4
to select the geometry of well drainage with a shape factor
closest to the calculated value. When extending the draw-
down test time with the objective of reaching the drainage
boundary of the test well, the test is commonly called the
“reservoir limit test.”

The reported data of Example 1.24 was extended by
Earlougher to include the pseudosteady-state flow period
and used to determine the geometry of the test well drainage
area as shown in the following example.

Example 1.25 Use the data in Example 1.24 and the
Cartesian plot of the pseudosteady-state flow period, as
shown in Figure 1.35, to determine the geometry and
drainage area of the test well.

Solution

Step 1. From Figure 1.35, determine the slope s\ and
intercept pin:

m\ = —0.8 psi/hr
Dint = 940 psi
Step 2. From Example 1.24:
m = —22 psi/cycle
D1nr = 954 psi
Step 3. Calculate the shape factor C4 from Earlougher’s

equation:
Ca=5.456 () exp [M]
m\ m
_ —22 2.303(954 — 940)
— 5.456 (-o. 8) exp [ o ]
=34.6

Step 4. From Table 1.4, C4 = 34.6 corresponds to a well in
the center of a circle, square, or hexagon:

For a circle: C4 = 31.62
For a square: C4 = 30.88
For a hexagon: C4 = 31.60

Step 5. Calculate the pore volume and drainage area from
Equation 1.2.116:
dp y_ —0.23396(Q.B,)  —0.23396(Q,B,)

- "= c(A)ho " ¢ (pore volume)
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Figure 1.35 Cartesian plot of the drawdown test data (Permission to publish by the SPE, copyright SPE, 1977).

Solving for the pore volume gives:
—0.23396g  —0.23396(348) (1.4)
com\ T (8.74 x 10-6) (—0.8)

= 2.37 MMbbl

Pore volume =

and the drainage area:
2.37 x 10%(5.615)

= 43460(0.9)(130) -7 acres

The above example indicates that the measured bottom-
hole flowing pressures are 88 psi more than they would be
in the absence of the skin. However, it should be pointed out
that when the concept of positive skin factor +s indicates for-
mation damage, whereas a negative skin factor —s suggests
formation stimulation, this is essentially a misleading inter-
pretation of the skin factor. The skin factor as determined
from any transient well testing analysis represents the com-
posite “total” skin factor that includes the following other
skin factors:

e skin due to wellbore damage or stimulation sg;

e skin due to partial penetration and restricted entry s,;
¢ skin due to perforations s,;

e gkin due to turbulence flow s;

e skin due to deviated well sqy.

That is:
S=S8d4+S +3p+st+sdw

where s is the skin factor as calculated from transient flow
analysis. Therefore, to determine if the formation is damaged
or stimulated from the skin factor value s obtained from well
test analysis, the individual components of the skin factor in
the above relationship must be known, to give:

Sd=S—S —Sp — St — Sdw

There are correlations that can be used to separately esti-
mate these individual skin quantities.

Wellbore storage
Basically, well test analysis deals with the interpretation of
the wellbore pressure response to a given change in the flow

rate (from zero to a constant value for a drawdown test, or
from a constant rate to zero for a buildup test). Unfortunately,
the producing rate is controlled at the surface, not at the sand
face. Because of the wellbore volume, a constant surface flow
rate does not ensure that the entire rate is being produced
from the formation. This effect is due to wellbore storage.
Consider the case of a drawdown test. When the well is first
open to flow after a shut-in period, the pressure in the well-
bore drops. This drop in pressure causes the following two
types of wellbore storage:

(1) awellbore storage effect caused by fluid expansion;
(2) awellbore storage effect caused by changing fluid level
in the casing-tubing annulus.

As the bottom-hole pressure drops, the wellbore fluid
expands and, thus, the initial surface flow rate is not from the
formation, but basically from the fluid that had been stored
in the wellbore. This is defined as the wellbore storage due to
fluid expansion.

The second type of wellbore storage is due to a change
in the annulus fluid level (falling level during a drawdown
test, rising level during a drawdown test, and rising fluid
level during a pressure buildup test). When the well is open
to flow during a drawdown test, the reduction in pressure
causes the fluid level in the annulus to fall. This annulus fluid
production joins that from the formation and contributes to
the total flow from the well. The falling fluid level is generally
able to contribute more fluid than that by expansion.

The above discussion suggests that part of the flow will be
contributed by the wellbore instead of the reservoir. That is:

q = q; + qwp
where:

q = surface flow rate, bbl/day
q; = formation flow rate, bbl/day
qwb = flow rate contributed by the wellbore, bbl/day

During this period when the flow is dominated by the
wellbore storage, the measured drawdown pressures will
not produce the ideal semilog straight-line behavior that
is expected during transient flow. This indicates that the



pressure data collected during the duration of the wellbore
storage effect cannot be analyzed by using conventional
methods. As production time increases, the wellbore con-
tribution decreases and the formation rate increases until it
eventually equals the surface flow rate, i.e., ¢ = g¢, which
signifies the end of the wellbore storage effect.

The effect of fluid expansion and changing fluid level can
be quantified in terms of the wellbore storage factor C which
is defined as:

AV
= b

C

where:

C = wellbore storage coefficient, bbl/psi
AVy, = change in the volume of fluid in the wellbore, bbl

The above relationship can be applied to mathematically
represent the individual effect of wellbore fluid expansion
and falling (or rising) fluid level, to give:

Wellbore storage effect caused by fluid expansion

Cre = Vantws
where:
Crr = wellbore storage coefficient due to fluid expansion,
bbl/psi

Vap = total wellbore fluid volume, bbl

cwh = average compressibility of fluid in the wellbore,
1

psi
Wellbore storage effect due to changing fluid level
144A,
L= 5 6150
with:
A - 7[(IDc)? — (OD1)?]
: 4(144)
where:

Crr, = wellbore storage coefficient due to changing
fluid level, bbl/psi

A, = annulus cross-sectional area, ft>
ODr = outside diameter of the production tubing, inches
IDc = inside diameter of the casing, inches

p = wellbore fluid density, 1b/ft®

This effect is essentially small if a packer is placed near the
producing zone. The total storage effect is the sum of both
coefficients. That is:

C=Crp+CrL

It should be noted during oil well testing that the fluid
expansion is generally insignificant due to the small com-
pressibility of liquids. For gas wells, the primary storage
effect is due to gas expansion.

To determine the duration of the wellbore storage effect,
it is convenient to express the wellbore storage factor in a
dimensionless form as:

5.615C 0.8936C
Cp

— = 1.34
2rhger? dher? [1.34]
where:

Cp = dimensionless wellbore storage factor
C = wellbore storage factor, bbl/psi
¢, = total compressibility coefficient, psi—!
7w = wellbore radius, ft
h = thickness, ft

Horn (1995) and Earlougher (1977), among other authors,
have indicated that the wellbore pressure is directly pro-
portional to the time during the wellbore storage-dominated
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period of the test and is expressed by:
pp =tp/Cp [1.3.5]
where:

pp = dimensionless pressure during wellbore storage
domination time
tp = dimensionless time

Taking the logarithm of both sides of this relationship
gives:

log (pp) = log(tp) — log(Cp)

This expression has a characteristic that is diagnostic of well-
bore storage effects. It indicates that a plot of pp vs. fp on a
log-log scale will yield a straight line of a unit slope, i.e., a
straight line with a 45° angle, during the wellbore storage-
dominated period. Since pp is proportional to pressure drop
Ap and tp is proportional to time ¢, it is convenient to plot
log (p; — pwi) versus log(f) and observe where the plot has
a slope of one cycle in pressure per cycle in time. This unit
slope observation is of major value in well test analysis.

The log-log plot is a valuable aid for recognizing wellbore
storage effects in transient tests (e.g., drawdown or buildup
tests) when early-time pressure recorded data is available. It
is recommended that this plot be made a part of the transient
testanalysis. As wellbore storage effects become less severe,
the formation begins to influence the bottom-hole pressure
more and more, and the data points on the log-log plot fall
below the unit-slope straight line and signify the end of the
wellbore storage effect. At this point, wellbore storage is no
longer important and standard semilog data-plotting analysis
techniques apply. As a rule of thumb, the time that indicates
the end of the wellbore storage effect can be determined
from the log-log plot by moving 1 to 1% cycles in time after
the plot starts to deviate from the unit slop and reading the
corresponding time on the x axis. This time may be estimated
from:

tp > (60 + 3.5s)Cp
or:
(200000 + 12 000s)C
(kh/ )

>

where:

t = total time that marks the end of the wellbore
storage effect and the beginning of the
semilog straight line, hours

permeability, md

skin factor

viscosity, cp

wellbore storage coefficient, bbl/psi

AT o =

In practice, itis convenient to determine the wellbore storage
coefficient C by selecting a point on the log-log unit-slope
straight line and reading the coordinate of the point in terms
of t and Ap, to give:

gt QBt
T24Ap T 24Ap
where:

t = time, hours
Ap = pressure difference (p; — pws), psi
q = flow rate, bbl/day
Q = flow rate, STB/day
B = formation volume factor, bbl/STB

It is important to note that the volume of fluids stored in
the wellbore distorts the early-time pressure response and
controls the duration of wellbore storage, especially in deep
wells with large wellbore volumes. If the wellbore storage
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effects are not minimized or if the test is not continued
beyond the end of the wellbore storage-dominated period,
the test data will be difficult to analyze with current conven-
tional well testing methods. To minimize wellbore storage
distortion and to keep well tests within reasonable lengths
of time, it may be necessary to run tubing, packers, and
bottom-hole shut-in devices.

Example 1.26 The following data is given for an oil well
that is scheduled for a drawdown test:

o volume of fluid in the wellbore = 180 bbl

e tubing outside diameter = 2 inches

e production oil density in the wellbore = 7.675 inches
e average oil density in the wellbore = 45 Ib/ft

h =501t, ¢ =15%,
7w=0.25ft, [,Lozch
k:SOmd, s=0

¢ =20 x 105 psi-!, ¢, =10 x 106 psi~!

If this well is placed under a constant production rate, cal-
culate the dimensionless wellbore storage coefficient Cp.
How long will it take for wellbore storage effects to end?

Solution

Step 1. Calculate the cross-sectional area of the annulus A,:

A — 7[(IDc)? — (ODr)?]

4(144)
7[(7.675)% — (2)*] 2
=——————— "~ =0.2995 ft
(4)(144)
Step 2. Calculate the wellbore storage factor caused by fluid
expansion:

Cre = Vaptws

= (180) (10 x 10~%) = 0.0018 bbl/psi
Step 3. Determine the wellbore storage factor caused by the

falling fluid level:
144A,
CrL = 5 615,

144(0. 2995)

~ (5.615) (45)

Step 4. Calculate the total wellbore storage coefficient:
C=Cp+CrL

=0.0018 + 0.1707 = 0.1725 bbl/psi

The above calculations show that the effect of fluid expansion
Crg can generally be neglected in crude oil systems.

= 0.1707 bbl/psi

Step 5. Calculate the dimensionless wellbore storage coeffi-
cient from Equation 1.3.4:

0.8936C 0.8936(0.1707)
dherz — 0.15(50) (20 x 10-6) (0. 25)2

=16271

Step 6. Approximate the time required for wellbore storage
influence to end from:
(200000 + 12000s) Cpe

kh

(200000 4 0) (0.1725) (2)
B (30) (50)

G =

t

= 46 hours

The straight-line relationship as expressed by Equation
1.3.2 is only valid during the infinite-acting behavior of the

well. Obviously, reservoirs are not infinite in extent, so
the infinite-acting radial flow period cannot last indefinitely.
Eventually the effects of the reservoir boundaries will be felt
at the well being tested. The time at which the boundary
effect is felt is dependent on the following factors:

permeability k;

total compressibility ¢;
porosity ¢;

viscosity u;

distance to the boundary;
shape of the drainage area.

Earlougher (1977) suggested the following mathematical
expression for estimating the duration of the infinite-acting
period:

pucA
foin = | —— | (¢t .
eia [O 0002637kj| ( DA)ela

where:

teia = time to the end of infinite-acting period, hours
A = well drainage area, ft
¢; = total compressibility, psi~
(tpa)eia = dimensionless time to the end of the infinite-
acting period

1

This expression is designed to predict the time that marks
the end of transient flow in a drainage system of any geome-
try by obtaining the value of tp4 from Table 1.4. The last three
colummns of the table provide with values of tp,4 that allow the
engineer to calculate:

o the maximum elapsed time during which a reservoir is
infinite acting;

o the time required for the pseudosteady-state solution to
be applied and predict pressure drawdown within 1%
accuracy;

o the time required for the pseudosteady-state solution
(equations) to be exact and applied.

As an example, for a well centered in a circular reservoir,
the maximum time for the reservoir to remain as an infinite-
acting system can be determined using the entry in the final
column of Table 1.4 to give (tpa)eia = 0.1, and accordingly:

T pucA (ton)eia = pucA 0
¢2 = 10.0002637k | - P4’ = | 0.0002637% |
or:
380¢c A
teia = T

For example, for awell thatislocated in the center of a40 acre
circular drainage area with the following properties:

k = 60 md, ¢ =0.12
the maximum time, in hours, for the well to remain in an
infinite-acting system is:
380puciA  380(0.12) (1.4) (6 x 10-5) (40 x 43560)
leia = =
k 60
=11.1hours

Similarly, the pseudosteady-state solution can be applied
any time after the semisteady-state flow begins at %, as
estimated from:

¢ =6x10"%psi!, u=15cp,

_ pucA
foss = [o. 0002637k} (tpa)pss
where (fpa) pss can be found from the entry in the fifth column
of the table.
Hence, the specific steps involved in a drawdown test analysis
are:

(1) Plot p; — pwt vs. t on a log-log scale.
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(2) Determine the time at which the unit-slope line ends.

(3) Determine the corresponding time at 1% log cycle,
ahead of the observed time in step 2. This is the time
that marks the end of the wellbore storage effect and
the start of the semilog straight line.

(4) Estimate the wellbore storage coefficient from:

qt QBt
T 24Ap T 24Ap
where t and Ap are values read from a point on the
log-log unit-slope straight line and ¢ is the flow rate in
bbl/day.

(5) Plot pys vs. t on a semilog scale.

(6) Determine the start of the straight-line portion as sug-
gested in step 3 and draw the best line through the
points.

(7) Calculate the slope of the straight line and deter-
mine the permeability £ and skin factor s by applying
Equations 1.3.2 and 1.3.3, respectively:

—162.6Q,B, 1o

mh

s:1.151|:pi_plhr—log< i 2)+3.23]
| puery

(8) Estimate the time to the end of the infinite-acting (tran-
sient flow) period, i.e., t.j,, which marks the beginning
of the pseudosteady-state flow.

(9) Plotallthe recorded pressure data after #.;, as a function
of time on a regular Cartesian scale. This data should
form a straight-line relationship.

(10) Determine the slope of the pseudosteady-state line, i.e.,
dp/dt (commonly referred to as m') and use Equation
1.2.116 to solve for the drainage area A:

_ —0.23396QB _ —0.23396QB
T oehe(dp/dt) T chgm)

k

where:

m\ = slope of the semisteady-state Cartesian
straight line
@ = fluid flow rate, STB/day
B = formation volume factor, bbl/STB

(11) Calculate the shape factor C4 from the expression that
was developed by Earlougher (1977):

m
where:
m = slope of transient semilog straight line,
psi/log cycle
m\ = slope of the pseudosteady-state Cartesian
straight line

Dp1ne = pressure at ¢t = 1 hour from transient semilog

straight line, psi
pint = pressure at ¢t = 0 from semisteady-state
Cartesian straight line, psi

(12) Use Table 1.4 to determine the drainage configuration
of the tested well that has a value of the shape factor Cy4
closest to that of the calculated one, i.e., step 11.

Radius of investigation

The radius of investigation 7, of a given test is the effective
distance traveled by the pressure transients, as measured
from the tested well. This radius depends on the speed with
which the pressure waves propagate through the reservoir
rock, which, in turn, is determined by the rock and fluid
properties, such as:

e porosity;

e permeability;
o fluid viscosity;
e total compressibility.

Astime tincreases, more of the reservoir is influenced by the
well and the radius of drainage, or investigation, increases
as given by:
kt
ouc

iy = 0.0325

where:

t = time, hours
k = permeability, md
¢, = total compressibility, psi~!

It should be pointed out that the equations developed for
slightly compressible liquids can be extended to describe
the behavior of real gases by replacing the pressure with the
real-gas pseudopressure 7 (p), as defined by:

? 2p
= —d,
m(p) /0 oz p

with the transient pressure drawdown behavior as described
by Equation 1.2.151, or:

mpu) = m(B) —[

x [log (quct ) ) —3.2340. 873\]
icqr’

Under constant gas flow rate, the above relation can be
expressed in a linear form as:

m(pur) = {m@o— [%]

k 1637Q,1
\ 1
X |:10g< icti7’2> 3.23+0.87s ]} [ ? ]log(t)

or:

1637QgTi|
kh

m(pwr) = a+mlog(t)

which indicates that a plot of 7 (pw¢) vs. log(t) would produce
a semilog straight line with a negative slope of:

. _ 16370, T
- kh

Similarly, in terms of the pressure-squared approximation
form:

1637Q,TZ%

2 _ 42 i
P =P { o ]
X [log <Lz> —3.23+0. 875\]
Puiciry

or:

.. [1637Q,7Z1

X [log (ﬁ) —3.23+O.87s\]}
iCt?y

1637Q,TZ 1t
0]

This equation is an equation of a straight line that can be
simplified to give:

P2 =a+mlog(d
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which indicates that a plot of ﬁfvf vs. log () would produce a
semilog straight line with a negative slope of:

_ 1637Q,TZH
)

The true skin factor s which reflects the formation damage
or stimulation is usually combined with the non-Darcy rate-
dependent skin and labeled as the apparent or total skin
factor:

s\ =5+ DQ,

with the term D@, interpreted as the rate-dependent skin
factor. The coefficient D is called the inertial or turbulent
flow factor and given by Equation 1.2.148:

_ Fkh
T 1422T
where
Q, = gas flow rate, Mscf/day

time, hours
k = permeability, md
Wi = gas viscosity as evaluated at p;, cp

The apparent skin factor s\ is given by:
For pseudopressure approach:

s\ =1.151 [m(l’i) — 1) —10g( i 2) +3.23]
Puichry

|2

For pressure-squared approach:

2 42
s =1.151 | AL Pin —log< i 2>+3.23
] dueery,

If the duration of the drawdown test of the gas well is long
enough to reach its boundary, the pressure behavior during
the boundary-dominated period (pseudosteady-state condi-
tion) is described by an equation similar to that of Equation
1.2.125 as:

For pseudopressure approach:

m(p;) — m(Pwr) _ Am(p) _ 711T <1 4A )

q q kh 1.781C472,
[ 2.356T :|
¢ (Mg Cg)iAh
and as a linear equation by:
AW;(P) — bpss +m\t

This relationship indicates that a plot of Am(p)/q vs. t will
form a straight line with:

Intercept:  bpss = mr In 44
PE O = T M 1781012,
2.356T 2.356T
Slope:

T (uge)i(@hA) ~ (igey); (pore volume)

For pressure-squared approach:

PE-pi A  TNEZT : 44
g g kh 1.781C472,
2.356 ZT
¢(/Lgcg)iAh
and in a linear form as:
2
AR _ By + 't

This relationship indicates that a plot of A(»?)/q vs. t on a
Cartesian scale will form a straight line with:

., TIEZT 4A
Intercept: bpss = W <1n 1781 CA”VZVa)
2.356mZT 2.356mZT
Slope: = =
(uge)i(phA)  (ugcr)i(pore volume)
where:

q = flow rate, Mscf/day
A = drainage area, ft

T = temperature, °R

t = flow time, hours

Meunier et al. (1987) suggested a methodology for
expressing the time ¢ and the corresponding pressure p
that allows the use of liquid flow equations without spe-
cial modifications for gas flow. Meunier and his co-authors
introduced the following normalized pseudopressure p,,, and
normalized pseudotime #,,

HiZi> ?p ]
n=Di+ —d
Pm =0 [( b ) Jo nZ

1
fpn = HiCi —d
= |:/0 e p]

“

The subscript “i” on u, Z, and ¢, refers to the evaluation of
these parameters at the initial reservoir pressure p;. By using
the Meunier et al. definition of the normalized pseudopres-
sure and normalized pseudotime there is no need to modify
any of the liquid analysis equations. However, care should
be exercised when replacing the liquid flow rate with the gas
flow rate. It should be noted that in all transient flow equa-
tions when applied to the oil phase, the flow rate is expressed
as the product of @,B, in bbl/day; that is, in reservoir bar-
rels/day. Therefore, when applying these equations to the
gas phase, the product of the gas flow rate and gas forma-
tion volume factor @B, should be given in bbl/day. For
example, if the gas flow rate is expressed in scf/day, the
gas formation volume factor must be expressed in bbl/scf.
The recorded pressure and time are then simply replaced by
the normalized pressure and normalized time to be used in
all the traditional graphical techniques, including pressure
buildup.

1.3.2 Pressure buildup test

The use of pressure buildup data has provided the reservoir
engineer with one more useful tool in the determination of
reservoir behavior. Pressure buildup analysis describes the
buildup in wellbore pressure with time after a well has been
shut in. One of the principal objectives of this analysis is
to determine the static reservoir pressure without waiting
weeks or months for the pressure in the entire reservoir
to stabilize. Because the buildup in wellbore pressure will
generally follow some definite trend, it has been possible to
extend the pressure buildup analysis to determine:

o the effective reservoir permeability;

o the extent of permeability damage around the wellbore;

o the presence of faults and to some degree the distance
to the faults;

e any interference between producing wells;

o the limits of the reservoir where there is not a strong
water drive or where the aquifer is no larger than the
hydrocarbon reservoir.

Certainly all of this information will probably not be available
from any given analysis, and the degree of usefulness of any
of this information will depend on the experience in the area



WELL TESTING ANALYSIS  1/53

Flowing Period
Q
©
i
2
o
[T
Shut-In Period
0
jf€e—— At —>
t .
Time, t
g
o}
%]
(%]
o
o
<
[e}
I
€
el
8 <— p,;(At=0)

|
f—— At —>
t

P Time, t

Figure 1.36 Idealized pressure buildup test.

and the amount of other information available for correlation
purposes.

The general formulas used in analyzing pressure buildup
data come from a solution of the diffusivity equation. In pres-
sure buildup and drawdown analyses, the following assump-
tions, as regards the reservoir, fluid, and flow behavior, are
usually made:

e Reservoir: homogeneous; isotropic; horizontal of uniform
thickness.

e Fluid: single phase; slightly compressible; constant s,
and B,.

o Flow: laminar flow; no gravity effects.

Pressure buildup testing requires shutting in a producing
well and recording the resulting increase in the wellbore
pressure as a function of shut-in time. The most common
and simplest analysis techniques require that the well pro-
duce at a constant rate for a flowing time of #,, either from
startup or long enough to establish a stabilized pressure
distribution, before shut in. Traditionally, the shut-in time
is denoted by the symbol At. Figure 1.36 schematically
shows the stabilized constant flow rate before shut-in and the
ideal behavior of the pressure increase during the buildup
period. The pressure is measured immediately before shut-
in and is recorded as a function of time during the shut-in
period. The resulting pressure buildup curve is then ana-
lyzed to determine reservoir properties and the wellbore
condition.

Stabilizing the well at a constant rate before testing is
an important part of a pressure buildup test. If stabiliza-
tion is overlooked or is impossible, standard data analysis
techniques may provide erroneous information about the
formation.

Two widely used methods are discussed below; these
are:

(1) the Horner plot;
(2) the Miller-Dyes—-Hutchinson method.

1.3.3 Horner plot
Apressure buildup testis described mathematically by using
the principle of superposition. Before the shut-in, the well is
allowed to flow at a constant flow rate of @, STB/day for ¢,
days. At the end of the flowing period, the well is shut in with
acorresponding change in the flow rate from the “old” rate of
Q, to the “new” flow rate of Q"% = 0,i.e., Q¥ —Q°M = —Q,.
Calculation of the total pressure change which occurs at
the sand face during the shut-in time is basically the sum of
the pressure changes that are caused by:

o flowing the well at a stabilized flow rate of @°, i.e., the
flow rate before shut-in @,, and is in effect over the entire
time of £, + Af;

o the net change in the flow rate from @, to 0 and is in effect
over At.

The composite effect is obtained by adding the indi-
vidual constant-rate solutions at the specified rate-time
sequence, as:

Di = bws = (AD)total = (AD)due to(@0-0)
+ (AD)due to(0-0o)
where:
pi = initial reservoir pressure, psi

pws = wellbore pressure during shut in, psi

The above expression indicates that there are two contribu-
tions to the total pressure change at the wellbore resulting
from the two individual flow rates.

The first contribution results from increasing the rate from
0 to @, and is in effect over the entire time period £, + At,

thus:
162.6(Q, —
(AD)gy—0 = [ (Qkh

k(t, + At
x |:10g (W) —3.23+0.87s]

The second contribution results from decreasing the rate
from @, to 0 at £, i.e., shut-in time, thus:

162.6 (0 — o) Boto
(Abog, = [(khQ)M}

x | log kAt —3.23+0.87s
¢Hoctrv2v

The pressure behavior in the well during the shut-in period
is then given by:

O)Bolioj|

162. 6@ 1408, k(ty + At)
pl _ﬁws = T |:10g ¢[Loct7v2v —3.23
162.6(—Q,) 1o B, kAt
— —-3.2
kh o8 DloCt?Z 3.23
Expanding this equation and canceling terms gives:
162.6Q0 1108, ty+ At
ws = Di — 1 1.3.
DPws =D i [og( AL ) [1.3.6]
where:
pi = initial reservoir pressure, psi
pws = sand face pressure during pressure buildup, psi
t, = flowing time before shut-in, hours
@, = stabilized well flow rate before shut-in, STB/day
At = shut-in time, hours

The pressure buildup equation, i.e., Equation 1.3.6 was intro-
duced by Horner (1951) and is commonly referred to as the
Horner equation.
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Figure 1.37 Horner plot (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE,

copyright SPE, 1977).

Equation 1.3.6 is basically an equation of a straight line
that can be expressed as:

o t, + At
o=l (2]

This expression suggests that a plot of pys vs. (t, + Af)/At
on a semilog scale would produce a straight-line relationship
with intercept p; and slope m, where:
o 162.6QuBuu

- kh

[1.3.7]

[1.3.8]

or:
_162.6Q,B, 1,

k mh

and where:

m = slope of straight line, psi/cycle
k = permeability, md

This plot, commonly referred to as the Horner plot, is illus-
trated in Figure 1.37. Note that on the Horner plot, the scale
of time ratio (¢, + At)/At increases from right to left. It is
observed from Equation 1.3.6 that pys = p; when the time
ratio is unity. Graphically this means that the initial reservoir
pressure, p;, can be obtained by extrapolating the Horner
plot straight line to (£, + At)/At = 1.

The time corresponding to the point of shut-in, #, can be
estimated from the following equation:

24N,
T Q

t

where:

N, = well cumulative oil produced before shut in, STB
@, = stabilized well flow rate before shut in, STB/day
¢, = total production time, hours

Earlougher (1977) pointed out that a result of using the
superposition principle is that the skin factor, s, does not
appear in the general pressure buildup equation, Equation
1.3.6. That means the Horner-plot slope is not affected by
the skin factor; however, the skin factor still does affect
the shape of the pressure buildup data. In fact, an early-
time deviation from the straight line can be caused by the
skin factor as well as by wellbore storage, as illustrated in
Figure 1.36. The deviation can be significant for the large
negative skins that occur in hydraulically fractured wells.
The skin factor does affect flowing pressure before shut-in
and its value may be estimated from the buildup test data
plus the flowing pressure immediately before the buildup
test, as given by:

s=1.151 [’M ~log (%) + 3.23]
| puery
[1.3.9]

with an additional pressure drop across the altered
zone of:

APskin = 0.87 [m|s
where:

Dwi atat—o = bottom-hole flowing pressure immediately
before shut in, psi
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skin factor

absolute value of the slope in the Horner
plot, psi/cycle

7w = wellbore radius, ft

S
[m|

The value of p; ,, must be taken from the Horner straight
line. Frequently, the pressure data does not fall on the
straight line at 1 hour because of wellbore storage effects or
large negative skin factors. In that case, the semilog line must
be extrapolated to 1 hour and the corresponding pressure is
read.

It should be noted that for a multiphase flow, Equations
1.3.6 and 1.3.9 become:

162. 64, t+ At
ws = Pi — 1
bus =P Ath [Og< At )]

s— 1151 [P1 hr — Dwf atar=0
||

At
()]

ko kw Ry
Ko Hw Hg
qt = QoBo + QWBW + (Qg - QORS)Bg
or equivalently in terms of GOR as:
qc = QoBo + Qwa + (GOR - Rs) QoBg

with:

A=

where:
q; = total fluid voidage rate, bbl/day
@, = oil flow rate, STB/day
Qv = water flow rate, STB/day
Q. = gas flow rate, scf/day

R, = gas solubility, scf/STB

B, = gas formation volume factor, bbl/scf
A¢ = total mobility, md/cp

k, = effective permeability to oil, md

k effective permeability to water, md

ky = effective permeability to gas, md

S

2
([

The regular Horner plot would produce a semilog straight
line with a slope m that can be used to determine the total
mobility A; from:

YT
Perrine (1956) showed that the effective permeability of each
phase, i.e., ko, ky,and &g, can be determined as:

162.6QuBo st

o =

mh
162. 6Qy By i
fy = —= 2wl
mh
k _ 1626(Qg - QoRs)Bgllfg
e =

mh

For gas systems, a plot of m (pys) or p2, vs. (f, + At)/At on
a semilog scale would produce a straight line relationship
with a slope of m and apparent skin factor s as defined by:
For pseudopressure approach:

157 0,T
)
s\'=1.151 |:m(p1 hr) 7|;”1|(pw[ at At=0)

k
8 () +22]

For pressure-squared approach:

1637 Q,Z7,
(O 7A

S\ —1.151 p?hr_pgvfat At=0
||

k
4 () +22

where the gas flow rate @, is expressed in Mscf/day.

It should be pointed out that when a well is shut in for
a pressure buildup test, the well is usually closed at the
surface rather than the sand face. Even though the well
is shut in, the reservoir fluid continues to flow and accu-
mulates in the wellbore until the well fills sufficiently to
transmit the effect of shut-in to the formation. This “after-
flow” behavior is caused by the wellbore storage and it has
a significant influence on pressure buildup data. During the
period of wellbore storage effects, the pressure data points
fall below the semilog straight line. The duration of these
effects may be estimated by making the log-log data plot
described previously of 1og(pws — pwr) Vs. log (Af) with py¢
as the value recorded immediately before shut-in. When
wellbore storage dominates, that plot will have a unit-slope
straight line; as the semilog straight line is approached, the
log-log plot bends over to a gently curving line with a low
slope.

The wellbore storage coefficient C is, by selecting a
point on the log-log unit-slope straight line and reading the
coordinate of the point in terms of At and Ap:

_ gAt  QBAt
T 24Ap T 24Ap

where

At = shut-in time, hours

Ap = pressure difference (pys — pwi), psi
q = flow rate, bbl/day
Q = flow rate, STB/day

B = formation volume factor, bbl/STB

with a dimensionless wellbore storage coefficient as given
by Equation 1.3.4 as:

0.8936C
P Tpher?

In all the pressure buildup test analyses, the log-log data
plot should be made before the straight line is chosen on
the semilog data plot. This log—log plot is essential to avoid
drawing a semilog straightline through the wellbore storage-
dominated data. The beginning of the semilog line can be
estimated by observing when the data points on the log-log
plot reach the slowly curving low-slope line and adding 1
to 1% cycles in time after the end of the unit-slope straight
line. Alternatively, the time to the beginning of the semilog
straight line can be estimated from:

170000 Ce® 14

At > /1)

where:

¢ = calculated wellbore storage coefficient, bbl/psi
k = permeability, md

s = skin factor

h = thickness, ft
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Table 1.5 Earlougher’s pressure buildup data
(Permission to publish by the SPE, copyright

SPE, 1977.)

At(hr)  t,+ Atthr)  t, + AtAE Py (psig)
0.0 - - 2761
0.10 310.30 3101 3057
0.21 310.21 1477 3153
0.31 310.31 1001 3234
0.52 310.52 597 3249
0.63 310.63 493 3256
0.73 310.73 426 3260
0.84 310.84 370 3263
0.94 310.94 331 3266
1.05 311.05 296 3267
1.15 311.15 271 3268
1.36 311.36 229 3271
1.68 311.68 186 3274
1.99 311.99 157 3276
2.51 312.51 125 3280
3.04 313.04 103 3283
3.46 313.46 90.6 3286
4.08 314.08 77.0 3289
5.03 315.03 62.6 3293
5.97 315.97 52.9 3297
6.07 316.07 52.1 3297
7.01 317.01 45.2 3300
8.06 318.06 39.5 3303
9.00 319.00 354 3305

10.05 320.05 31.8 3306

13.09 323.09 24.7 3310

16.02 326.02 20.4 3313

20.00 330.00 16.5 3317

26.07 336.07 12.9 3320

31.03 341.03 11.0 3322

34.98 344.98 9.9 3323

37.54 347.54 9.3 3323

Example 1.27¢ Table 1.5 shows the pressure buildup data
from an oil well with an estimated drainage radius of 2640 ft.
Before shut-in, the well had produced at a stabilized rate of
4900 STB/day for 310 hours. Known reservoir data is:

depth = 10476 ft, 7, = 0.354ft, ¢ =22.6 x 1076 psi~!
Q, = 4900 STB/D, h =4821t, pyui(At =0) = 2761 psig
B, = 1.55bbl/STB, ¢ = 0.09

7e = 2640 ft

o = 0.20 cp,
t, = 310 hours,

Calculate:

o the average permeability ;
e the skin factor;
o the additional pressure drop due to skin.

Solution

Step 1. Plot pys vs. (f, + At) /At on a semilog scale as shown
in Figure 1.38).

Step 2. Identify the correct straight-line portion of the curve
and determine the slope m:

m = 40 psi/cycle

%This example problem and the solution procedure are given in
Earlougher, R. Advance Well Test Analysis, Monograph Series, SPE,
Dallas (1977).

Step 3. Calculate the average permeability by using Equa-

tion 1.3.8:
162.6Q,B, 1o
k= ——
mh
_ (162.6)(4900) (1.55) (0.22)
= @0) (482) =12.8 md

Step 4. Determine pys after 1 hour from the straight-line
portion of the curve:

D1 = 3266 psi
Step 5. Calculate the skin factor by applying Equation 1.3.9

s=1.151 [1’1 hr = Pwtar0 —log( k ) +3‘23}
m duer?

3266 — 2761
40

:1.151[

—lo (12.8)
log ( (0.09) (0.20) (22.6 x 10-5) (0. 354)2) +3. 23}

=8.6

Step 6. Calculate the additional pressure drop by using:

Aﬁskin =0.87 |m| s
= 0.87(40) (8.6) = 299. 3 psi

It should be pointed out that Equation 1.3.6 assumes the
reservoir to be infinite in size, i.e., 7o = oo, which implies
that at some point in the reservoir the pressure would be
always equal to the initial reservoir pressure p; and the
Horner straight-line plot will always extrapolate to p;. How-
ever, reservoirs are finite and soon after production begins,
fluid removal will cause a pressure decline everywhere in
the reservoir system. Under these conditions, the straight
line will not extrapolate to the initial reservoir pressure p;
but, instead, the pressure obtained will be a false pressure as
denoted by p*. The false pressure, as illustrated by Matthews
and Russell (1967) in Figure 1.39, has no physical meaning
butitis usually used to determine the average reservoir pres-
sure p. It is clear that p* will only equal the initial (original)
reservoir pressure p; when a new well in a newly discovered
field is tested. Using the concept of the false pressure p*,
Horner expressions as given by Equations 1.3.6 and 1.3.7
should be expressed in terms of p* instead of p; as:

_162.6QuuoBy [, (fh+ At)
kh B\ A
and:

o t+ At
po o (2220

Bossie-Codreanu (1989) suggested that the well drainage
area can be determined from the Horner pressure buildup
plot or the MDH plot, discussed next, by selecting the
coordinates of any three points located on the semilog
straight-line portion of the plot to determine the slope of
the pseudosteady-state line #,s. The coordinates of these
three points are designated as:

bws = 17*

[1.3.10]

e shut-in time A#; and with a corresponding shut-in pres-
sure pysi;

e shut-in time At and with a corresponding shut-in pres-
sure pwsZ;

e shut-in time A#; and with a corresponding shut-in pres-
SUre Pyss-

The selected shut-in times satisfy At; < Af; < Ats. The
slope of the pseudosteady-state straightline s, is then
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Figure 1.39 Typical pressure buildup curve for a well in a finite (After Earlougher, R. Advances in Well Test Analysis)

(Permission to publish by the SPE, copyright SPE, 1977).

approximated by:

mpss

_ (pws2 _ﬁwsl) IOg(AtS/Atl) - (pws3 _pwsl) IOg[AtZ/Atl]

T (A — Ah) log(AbAL) — (At — At) log(Ats/At)
[1.3.11]

The well drainage area can be calculated from Equation
1.2.116:

0.23396Q,B,
i
Solving for the drainage area gives:
_0.23396Q,B,
T compsshe

m\ = Mpss =
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where:

Mpss Or m\ = slope of straight line during the
pseudosteady-state flow, psi/hr
Q, = flow rate, bbl/day

A = well drainage area, ft?

1.3.4 Miller-Dyes-Hutchinson method

The Horner plot may be simplified if the well has been pro-
ducing long enough to reach a pseudosteady state. Assuming
that the production time #, is much greater than the total
shut-in time At, i.e., #, 3> At, the term #, + At >~ #, and:

og (tp + At) ~ log <Lp> —log(t,) — log (A1)

At At
Applying the above mathematical assumption to Equation
1.3.10, gives:

Dws = p* — mflog(4,) —log(AD)]
or:

Dws = [P* —m lOg(tp)] + mlog(At)
This expression indicates that a plot of p vs. log (Af) would
produce a semilog straight line with a positive slope of +m
that is identical to that obtained from the Horner plot. The
slope is defined mathematically by Equation 1.3.8 as:
e 162.6Q,B, 110
- kh

The semilog straight-line slope m has the same value as
of the Horner plot. This plot is commonly called the Miller—
Dyes-Hutchinson (MDH) plot. The false pressure p* may
be estimated from the MDH plot by using:

P =pin +mlog(t, + 1) [1.3.12]

where p1 1, is read from the semilog straight-line plotat At =
1 hour. The MDH plot of the pressure buildup data given in
Table 1.5 in terms of pys vs. log (Af) is shown in Figure 1.40.

Figure 1.40 shows a positive slope of m = 40 psi/cycle
that is identical to the value obtained in Example 1.26 with a
D1ne = 3266 psig.

Asin the Horner plot, the time that marks the beginning of
the MDH semilog straight line may be estimated by making
the log-log plot of (pws — pwr) vs. At and observing when the
data points deviate from the 45° angle (unit slope). The exact
time is determined by moving 1 to 1% cycles in time after the
end of the unit-slope straight line.

The observed pressure behavior of the test well following
the end of the transient flow will depend on:

e shape and geometry of the test well drainage area;

e the position of the well relative to the drainage
boundaries;

o length of the producing time £, before shut-in.

If the well is located in a reservoir with no other wells,
the shut-in pressure would eventually become constant (as
shown in Figure 1.38) and equal to the volumetric aver-
age reservoir pressure p.. This pressure is required in many
reservoir engineering calculations such as:

material balance studies;

water influx;

pressure maintenance projects;
secondary recovery;

degree of reservoir connectivity.

Finally, in making future predictions of production as a
function of p,, pressure measurements throughout the reser-
voir’s life are almost mandatory if one is to compare such
a prediction to actual performance and make the neces-
sary adjustments to the predictions. One way to obtain this
pressure is to shut in all wells producing from the reser-
voir for a period of time that is sufficient for pressures to
equalize throughout the system to give p.. Obviously, such
a procedure is not practical.
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To use the MDH method to estimate average drainage
region pressure p, for a circular or square system producing
at pseudosteady state before shut-in:

(1) Choose any convenient time on the semilog straight line
At and read the corresponding pressure pys.

(2) Calculate the dimensionless shut-in time based on the
drainage area A from:

0.0002637k At
ouca

(3) Enter Figure 1.41 with the dimensionless time AfpA and
determine an MDH dimensionless pressure ppypy from
the upper curve of Figure 1.41.

(4) Estimate the average reservoir pressure in the closed
drainage region from:

Alpg =

— MPDMDH
be=bwst 503

where m is the semilog straight line of the MDH plot.

There are several other methods for determining p, from
a buildup test. Three of these methods are briefly presented
below:

(1) the Matthews-Brons-Hazebroek (MBH) method;
(2) the Ramey-Cobb method,;
(3) the Dietz method.

1.3.5 MBH method

As noted previously, the buildup test exhibits a semilog
straight line which begins to bend down and become flat
at the later shut-in times because of the effect of the bound-
aries. Matthews et al. (1954) proposed a methodology for
estimating average pressure from buildup tests in bounded
drainage regions. The MBH method is based on theoreti-
cal correlations between the extrapolated semilog straight
line to the false pressure p* and current average drainage
area pressure p. The authors point out that the average pres-
sure in the drainage area of each well can be related to p*
if the geometry, shape, and location of the well relative to

the drainage boundaries are known. They developed a set
of correction charts, as shown in Figures 1.42 through 1.45,
for various drainage geometries.

The y axis of these figures represents the MBH dimen-
sionless pressure ppyvpy that is defined by:

2.303(p* — p)

bomeH =
7]

or:

p=p— (52 )s
- 2.303 ) FPMEH

where m is the absolute value of the slope obtained from the
Horner semilog straight-line plot. The MBH dimensionless
pressure is determined at the dimensionless producing time
tppa that corresponds to the flowing time #,. That is:

_ 0.0002637%
ppa = ducA .

[1.3.13]

[1.3.14]
where:

t, = flowing time before shut-in, hours
A = drainage area, ft*

k = permeability, md

¢, = total compressibility, psi~!

The following steps summarize the procedure for applying
the MBH method:

Step 1.
Step 2.

Make a Horner plot.

Extrapolate the semilog straight line to the value of
P at (b + At)/At = 1.0.

Evaluate the slope of the semilog straight line .
Calculate the MBH dimensionless producing time
t,pa from Equation 1.3.14:

P 0.0002637%
ppA = pucA P
Find the closest approximation to the shape of the

well drainage area in Figures 1.41 through 1.44 and
identify the correction curve.

Step 3.
Step 4.

Step 5.
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Step 6. Read the value of ppvpn from the correction curve

at tppa _
Step 7. Calculate the value of p from Equation 1.3.13:

Z; =p*— ﬂ P
- 2.303 ) FPMBH
As in the normal Horner analysis technique, the producing
time t,, is given by:

24N,
t, =

Q

where N, is the cumulative volume produced since the last
pressure buildup test and @, is the constant flow rate just
before shut-in. Pinson (1972) and Kazemi (1974) indicate

that ¢, should be compared with the time required to reach
the pseudosteady state, #,:

P pucA
P71 0.0002367k

For a symmetric closed or circular drainage area, (fpa)pss =
0.1 as given in Table 1.4 and listed in the fifth column.

If t, > tpss, then t,s should ideally replace #, in both
the Horner plot and for use with the MBH dimensionless
pressure curves. _

The above methodology gives the value of p in the drainage
area of one well, e.g., well i. If anumber of wells are producing
from the reservoir, each well can be analyzed separately to
give p for its own drainage area. The reservoir average pres-
sure p, can be estimated from these individual well average
drainage pressures by using one of the relationships given by
Equations 1.2.118 and 1.2.119. That is:

5 _ > (pa)i/ (9p/at);
' > ai/ (3p/dt);

] (tDA)pss [1315]

or:
—  NpAF)/ApY;
NN
with:

t
Fi= / [QoBo+Q@uBy +(Qu — QoRs — QuRey) By dt
0

t+At
Ft+At :/ [QoBo + Qwa + (Qg - QoRs - QWRSW)Bg] dt
0

and:
A(F) =Fa — F

Similarly, it should be noted that the MBH method and the
Figures 1.41 through 1.44 can be applied for compressible
gases by defining ppypy as:

For the pseudopressure approach

_ 2.303[m (p*) — m(p)]

PpMBH [1.3.16]
]
For the pressure-squared approach
2.303[(p")2 — (p)?
bomMBH = —[(p ) @71 [1.3.17]

||

Example 1.28 Using the information given in Example
1.27 and pressure buildup data listed in Table 1.5, calcu-
late the average pressure in the well drainage area and the
drainage area by applying Equation 1.3.11. The data is listed
below for convenience:

7e = 26401, 7y =0.3541t, ¢ =22.6x 107 psi~!
Q, = 4,900 STB/D, h =482f1t,

Dwtat at=0 = 2761 psig

o =0.20cp, B, =1.55bbl/STB, ¢ =0.09
t, = 310 hours, depth = 10476 ft,

reported average pressure = 3323 psi

Solution

Step 1. Calculate the drainage area of the well:
A= 7'[1’3 = 7 (2640)2
Step 2. Compare the production time #,, i.e., 310 hours, with
the time required to reach the pseudosteady state
tyss by applying Equation 1.3.15. Estimate #,s using
(tpa)pss = 0.1 to give:
_ pucA
foss = [o. 0002367k} (a)pss
_ [(0.09)(0.2) (22.6 x 107%) (;7) (2640)2 0.1
- (0.0002637) (12. 8) ’

= 264 hours

Thus, we could replace £, by 264 hours in our analy-
sis because #, > t,.s. However, since {,, is only about
1.2t,ss, we use the actual production time of 310
hours in the calculation.

Step 3. Figure 1.38 does not show p* since the semilog
straight line is not extended to (, + At)/At = 1.0.
However, p* can be calculated from pys at (t, +
At)/ At = 10.0 by extrapolating one cycle. That is:

p* = 3325+ (1 cycle) (40 psi/cycle) = 3365 psig

Step 4. Calculate #,p4 by applying Equation 1.3.14 to give:

_ 0.0002637k
ppa pucA P
B 0.0002637(12. 8)
1 (0.09) (0.2) (22.6 x 10-6) (r) (2640)2

=0.117
Step 5. From the curve of the circle in Figure 1.42, obtain
the value of ppmpn at fypa = 0. 117, to give:
pomer = 1.34
Step 6. Calculate the average pressure from Equation 1.3.13:

Z)_p*_ ﬂ b
- 2.303 ) FPMEH

40 .

3365 <2. 303> (1.34) = 3342 psig
This is 19 psi higher than the maximum pressure
recorded of 3323 psig.

Step 7. Select the coordinates of any three points located on
the semilog straight line portion of the Horner plot,
to give:

o (Aty, pwst) = (2.52,3280)
L4 (AtZprSZ) = (9 00, 3305)
o (At pws3) = (20.0,3317)

Step 8. Calculate i, by applying Equation 1.3.11:

:| 310

o (pwsZ _pwsl)IOg (AtS/Atl) - (pwsii _pwsl) IOg(AtZ/Atl)
PST (At — At log (Ate/ Aty) — (Aty— Aty log (Ats/ Aty)

_ (3305-3280)log (20/2.51) — (3317 —3280) log (9/2.51)
T (20—2.51)log(9/2.51) — (9—2.51)log (20/2.51)

=0.52339 psi/hr
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Step 9. The well drainage area can then be calculated from
Equation 1.2.116:

_0.23396Q,B,
Ct mpssh¢

_ 0.23396(4900) (1. 55)
T (22.6 x 10-) (0. 52339) (482) (0. 09)

= 3462938 ft?

3363938
T 43560

= 80 acres

The corresponding drainage radius is 1050 ft which dif-
fers considerably from the given radius of 2640 ft. Using the
calculated drainage radius of 1050 ft and repeating the MBH
calculations gives:

L _[©.09(0.2)(22.6 x 10) (1) (1050
pss_[ (0.0002637) (12. 8) ] :

= 41.7 hours

A 0.0002637(12.8)
pbA = [(0. 09) (0.2) (226 x 10-5) () (1050)2

pomer = 3.15

:| 310 =0.743

_ 40 .
b = 3365 — <m> (3.15) = 3311 psig
The value is 12 psi higher than the reported value of average
reservoir pressure.

1.3.6 Ramey-Cobb method

Ramey and Cobb (1971) proposed that the average pressure
inthe well drainage area can be read directly from the Horner
semilog straight line if the following data is available:

o shape of the well drainage area;
e Jocation of the well within the drainage area;
e size of the drainage area.

The proposed methodology is based on calculating the
dimensionless producing time #,p4 as defined by Equation
1.3.14:
0.0002637k ]

A P

t =
e [ pucA

where:

t, = producing time since the last shut-in, hours
A = drainage area, ft?

Knowing the shape of the drainage area and well location,
determine the dimensionless time to reach pseudosteady
state (#pa)pss, as given in Table 1.4 in the fifth column.
Compare tyng With (tpa) pss:

o Ift,pa < (fpa)pss, then read the average pressure p from
the Horner semilog straight line at:

1, At
( p+ ) — exp (4rtps) [1.3.18]
At
or use the following expression to estimate p:
p =p* —mlog [exp (4mtypa) ] [1.3.19]

o Iff,pa > (fpa)pss, then read the average pressure p from
the Horner semilog straight-line plot at:
f, + At
= Cyt
( AL ) AlpDA

where C4 is the shape factor as determined from
Table 1.4.s Equivalently, the average pressure can be

[1.3.20]

estimated from:

p =p* —mlog(Catypa)

where:

[1.3.21]

m = absolute value of the semilog straight-line slope,
psi/cycle

p* = false pressure, psia

C4= shape factor, from Table 1.4

Example 1.29 Using the data given in Example 1.27,
recalculate the average pressure using the Ramey and Cobb
method.

Solution

Step 1. Calculate ,p4 by applying Equation (1.3.14):
0.0002637k ]

— W

t =
ppA |: pucA

_ 0.0002637(12.8)
N |: (0.09) (0.2) (22.6 x 10-%) () (2640)2

=0.1175

} (310)

Step 2. Determine Ca and (#pa)pss from Table 1.4 for a well
located in the centre of a circle, to give:

Cy = 31.62
(tDA)pss =0.1

Step 3. Since tpa > (fpa)pss, calculate p from Equation
3.21:

p = p* — mlog(Catypa)
= 3365 — 4010g[31.62(0.1175)] = 3342 psi

This value is identical to that obtained from the MBH
method.

1.3.7 Dietz method

Dietz (1965) indicated that if the test well has been producing
long enough to reach the pseudosteady state before shut-in,
the average pressure can be read directly from the MDH
semilog straight-line plot, i.e., pys vs.log (A?), at the following
shut-in time:

pucA

A0z =15, 0002637Cak

[1.3.22]

where:

At = shut-in time, hours
A = drainage area, ft?
C4 = shape factor

k = permeability, md

¢ = total compressibility, psi~!

Example 1.30 Using the Dietz method and the buildup
data given in Example 1.27, calculate the average pressure:

Solution

Step 1. Using the buildup data given in Table 1.5, construct
the MDH plot of pys vs. log (At) as shown in Figure
1.40. From the plot, read the following values:

m = 40 psi/cycle
D1nr = 3266 psig
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Step 2. Calculate false pressure p* from Equation 1.3.12 to
give:

" =pin +mlog(t, +1)
= 3266 + 401og (310 + 1) = 3365.7 psi

Step 3. Calculate the shutin time (Af); from Equation
1.3.20:

(AD)s — (0.09) (0.2) (22.6 x 1075) () (2640)*
r (0.0002637) (12. 8) (31.62)

= 83.5 hours

Step 4. Since the MDH plot does not extend to 83.5 hours,
the average pressure can be calculated from the
semilog straight-line equation as given by:
b =bin +mlog(At —1)
or:

[1.3.23]

P = 3266 +4010g(83.5 — 1) = 3343 psi

As indicated earlier, the skin factor s is used to calculate
the additional pressure drop in the altered permeability area
around the wellbore and to characterize the well through the
calculation of the flow coefficient E. That is:

Apskin =0.87 Im‘ N
and:
_ ]actual _ Z) —ow - A,ﬁskin
]ideal 5 — Dwt
where p is the average pressure in the well drainage area.
Lee (1982) suggested that for rapid analysis of the pressure
buildup, the flow efficiency can be approximated by using
the extrapolated straight-line pressure p*, to give:
E= ]actual ~ p* — Pwi — APskin
Jideal E — Dwt
Earlougher (1977) pointed out that there are a surprising
number of situations where a single pressure point or “spot
pressure” is the only pressure information available about
a well. The average drainage region pressure p can be esti-

mated from the spot pressure reading at shut-in time At
using:

E

162.6Q, 1108, log pucA
kh 0.0002637kC4 At

For a closed square drainage region Cy = 30. 8828 and:
162.6Q, 1o Bo o 122. 8¢ A
kh kAt

‘5=pwsatAt+

E:pwsalAt‘i‘

where pys at ar is the spot pressure reading at shut-in time
At and:

At = shut-in time, hours
A = drainage area, ft*
C4 = shape factor

k = permeability, md

¢ = total compressibility, psi~!

It is appropriate at this time to briefly introduce the concept
of type curves and discuss their applications in well testing
analysis.

1.4 Type Curves

The type curve analysis approach was introduced in the
petroleum industry by Agarwal et al. (1970) as a valuable tool
when used in conjunction with conventional semilog plots.
A type curve is a graphical representation of the theoretical
solutions to flow equations. The type curve analysis consists
of finding the theoretical type curve that “matches” the actual

response from a test well and the reservoir when subjected
to changes in production rates or pressures. The match can
be found graphically by physically superposing a graph of
actual test data with a similar graph of type curve(s) and
searching for the type curve that provides the best match.
Since type curves are plots of theoretical solutions to tran-
sient and pseudosteady-state flow equations, they are usually
presented in terms of dimensionless variables (e.g., pp, tp,
7p, and Cp) rather than real variables (e.g., Ap, ¢, 7, and
C). The reservoir and well parameters, such as permeabil-
ity and skin, can then be calculated from the dimensionless
parameters defining that type curve.

Any variable can be made “dimensionless” by multiplying
it by a group of constants with opposite dimensions, but the
choice of this group will depend on the type of problem to be
solved. For example, to create the dimensionless pressure
drop pp, the actual pressure drop Ap in psi is multiplied by
the group A with units of psi~?, or:

pp =AAp
Finding the group A that makes a variable dimension-
less is derived from equations that describe reservoir fluid
flow. To introduce this concept, recall Darcy’s equation

that describes radial, incompressible, steady-state flow as
expressed by:

oo kh N
= | 1. 2Bulintro/re) —0.5] | 27

where 7y, is the apparent (effective) wellbore radius and
defined by Equation 1.2.140 in terms of the skin factor s as:

[1.4.1]

Fwa = Fw€™*

Group A can be defined by rearranging Darcy’s equa-

tion as:
In r—e 1— 7kh Ap
Ywa 2 7 | 141.2QBu

Because the left-hand slide of this equation is dimensionless,
the right-hand side must be accordingly dimensionless. This
suggests that the term kh/141. 2QB is essentially group A
with units of psi~! that defines the dimensionless variable
pp, or:

B kh N
o= 157 208, | 2

Taking the logarithm of both sides of this equation gives:

[1.4.2]

log (pp) = log(Ap) + log ( [1.4.3]

kh
141.2QBpu
where:

@ = flow rate, STB/day
B = formation, volume factor, bbl/STB
= viscosity, cp

For a constant flow rate, Equation 1.4.3 indicates that the
logarithm of dimensionless pressure drop, log (pp), will dif-
fer from the logarithm of the actual pressure drop, log(Ap),
by a constant amount of:

1 kh
%8\ 141.20Bx

Similarly, the dimensionless time #p is given by Equation
1.2.75 as:

[ 0.0002637k ]
Ip=|———5—
pucr?
Taking the logarithm of both sides of this equation gives:
0.0002637k :|

144
Pucer? [ ]

log(tp) = log(¢) + log[
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Figure 1.46 Concept of type curves.
where:

t = time, hours
¢; = total compressibility coefficient, psi~!
¢ = porosity

Hence, a graph of log (Ap) vs. log () will have an identical
shape (i.e., parallel) to agraph oflog (pp) vs. log (fp), although
the curve will be shifted by log[kh/(141. 2QB)] vertically in
pressure and log[0. 0002637k/ (¢ 1ec72) 1 horizontally in time.
This concept is illustrated in Figure 1.46.

Not only do these two curves have the same shape, but
if they are moved relative to each other until they coincide or
“match”, the vertical and horizontal displacements required
to achieve the match are related to these constants in Equa-
tions 1.4.3 and 1.4.4. Once these constants are determined
from the vertical and horizontal displacements, it is possible
to estimate reservoir properties such as permeability and
porosity. This process of matching two curves through the
vertical and horizontal displacements and determining the
reservoir or well properties is called type curve matching.

As shown by Equation 1.2.83, the solution to the diffusivity
equation can be expressed in terms of the dimensionless
pressure drop as:

1 72
— __Eil -2
b =-3 1( 4tD)

Equation 1.2.84 indicates that when tp/ rg > 25, pp can be
approximated by:

o = 5 [In (tp/73) +0.080907]

DO =

Notice that:
th (0. 0002637k>

pucer?
Taking the logarithm of both sides of this equation, gives:

log ( t% ) _log <0. 00026§7k) T log(®)
6 ducr

Equations 1.4.3 and 1.4.5 indicate that a graph of log(Ap)
vs. log(¢) will have an identical shape (i.e., parallel) to a
graph of log(pp) vs. log(tD/r%), although the curve will
be shifted by log (kh141.2/@QB) vertically in pressure and
log (0.0002637k/pucir?) horizontally in time. When these
two curves are moved relative to each other until they coin-
cide or “match,” the vertical and horizontal movements, in
mathematical terms, are given by:

o\ _ kh
Ap)yp  141.2QBpu

> =
6))

[1.4.5]

[1.4.6]

The subscript “MP” denotes a match point.

A more practical solution then to the diffusivity equation
is a plot of the dimensionless pp vs. tp/ r]% as shown in
Figure 1.47 that can be used to determine the pressure at
any time and radius from the producing well. Figure 1.47 is
basically a type curve thatis mostly used in interference tests
when analyzing pressure response data in a shut-in observa-
tion well at a distance » from an active producer or injector
well.

In general, the type curve approach employs the flowing
procedure that will be illustrated by the use of Figure 1.47:

Step 1. Select the proper type curve, e.g., Figure 1.47.

Step 2. Place tracing paper over Figure 1.47 and construct a
log-log scale having the same dimensions as those
of the type curve. This can be achieved by tracing
the major and minor grid lines from the type curve
to the tracing paper.

Step 3. Plot the well test data in terms of Ap vs. ¢ on the
tracing paper.

Step 4. Overlay the tracing paper on the type curve and slide
the actual data plot, keeping the x and y axes of
both graphs parallel, until the actual data point curve
coincides or matches the type curve.

Step 5. Select any arbitrary point match point MP, such as an
intersection of major grid lines, and record (Ap)mp
and (f)mp from the actual data plot and the corre-
sponding values of (pp)mp and (¢p/ r%)Mp from the
type curve.

Step 6. Using the match point, calculate the properties of
the reservoir.

The following example illustrates the convenience of using
the type curve approach in an interference test for 48 hours
followed by a falloff period of 100 hours.

Example 1.31¢ During an interference test, water was
injected at a 170 bbl/day for 48 hours. The pressure response
in an observation well 119 ft away from the injector is given
below:

t (hrs) ? (psig) Apws = pi — p(psi)
0 5=0 0

4.3 22 -22

21.6 82 -82

28.2 95 -95

45.0 119 -119
48.0 injection ends
51.0 109 —-109
69.0 55 —55

73.0 47 —47

93.0 32 -32
142.0 16 -16
148.0 15 -15

Other given data includes:

pi =0psi, By =1.00bbl/STB

%This example problem and the solution procedure are given in
Earlougher, R. Advanced Well Test Analysis, Monograph Series, SPE,
Dallas (1977).
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Figure 1.47 Dimensionless pressure for a single well in an infinite system, no wellbore storage, no skin.
Exponential-integral solution (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by
the SPE, copyright SPE, 1977).
¢ =9.0x 108 psi7!, h=451t and:
uw = 1.3¢cp, g = —170 bbl/day _ 0. 0002623713
weer®[(tn/r8) /Hhvp
Calculate the reservoir permeability and porosity. ‘ D
0.0002637(5.1) 0.11

Solution

Step 1. Figure 1.48 show a plot of the well test data during
the injection period, i.e., 48 hours, in terms of Ap vs.
t on tracing paper with the same scale dimensions as
in Figure 1.47. Using the overlay technique with the
vertical and horizontal movements, find the segment
of the type curve that matches the actual data.

Step 2. Select any point on the graph that will be defined as
a match point MP, as shown in Figure 1.48. Record
(Ap)mp and (#)yp from the actual data plot and the
corresponding values of (pp)mp and (&p /' 7']2))1\/[12 from
the type curve, to give:

Type curve match values:

(p)mp =0.96,  (p/73)mp = 0.94

Actual data match values:
(Ap)mp = —100 psig, (#)mp = 10 hours

Step 3. Using Equations 1.4.6 and 1.4.7, solve for the perme-

ability and porosity:
141.2QBu <17D >
h=—7——""(=
h AD ) vp

~141.2(-170) (1.0) (1.0) (096) —51md
= 45 100 /yp

~ 1.0)(9.0 x 10-5) (119)2[0. 94/10]wp

Equation 1.2.83 shows that the dimensionless pressure is
related to the dimensionless radius and time by:

1 r2
— __FRi(-
bp 3 i( 4tD)

At the wellbore radius where » = 7y, i.e., 7p=1, and p(r, 1) =
bwi, the above expression is reduced to:

1../-1
w=-3(z)

The log approximation as given by Equation 1.2.80 can be
applied to the above solution to give:

pp = %[ln(tn) + 0.80901]
and, to account for the skin s, by:
bp = %[ln(tn) +0.80901] + s
or:
o = %[hl(tn) +0.80901 + 2s]

Notice that the above expressions assume zero wellbore
storage, i.e., dimensionless wellbore storage Cp = 0. Sev-
eral authors have conducted detailed studies on the effects
and duration of wellbore storage on pressure drawdown and
buildup data. Results of these studies were presented in the
type curve format in terms of the dimensionless pressure as
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Figure 1.48 lllustration of type curve matching for an interference test using the type curve (After Earlougher, R.
Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
a function of dimensionless time, radius, and wellbore stor-  In(Cp) inside the brackets of the above equation gives:
age, i.e., pp = f (fp, 7p, Cp). The following two methods that 1
utilize the concept of the type curve approach are briefly pp = =[In(tp) — In(Cp) + 0.80901 + In(Cp) + 2s]
introduced below: 2
(1) the Gringarten type curve; or, equivalently:
2) th ivati h 1 t
(2) the pressure derivative method o = 5 |:ln<ci> 10.80907 4 ln(CDezs)j| [1.4.8]
D

1.4.1 Gringarten type curve

During the early-time period where the flow is dominated by
the wellbore storage, the wellbore pressure is described by
Equation 1.3.5 as:

_b
pp = o
or:
log (pp) = log (tp) — log(Cp)

This relationship gives the characteristic signature of well-
bore storage effects on well testing data which indicates that
aplot of pp vs. fp on alog—log scale will yield a straight line of
a unit slope. At the end of the storage effect, which signifies
the beginning of the infinite-acting period, the resulting pres-
sure behavior produces the usual straight line on a semilog
plot as described by:

1
= E[ln(tD) +0.80901 + 2s]
It is convenient when using the type curve approach in well
testing to include the dimensionless wellbore storage coef-
ficient in the above relationship. Adding and subtracting

§20)

where:

pp = dimensionless pressure
Cp = dimensionless wellbore storage coefficient
tp = dimensionless time

s = skin factor

Equation 1.4.8 describes the pressure behavior of a well
with a wellbore storage and a skin in a homogeneous
reservoir during the transient (infinite-acting) flow period.
Gringarten et al. (1979) expressed the above equation in the
graphical type curve format shown in Figure 1.49. In this
figure, the dimensionless pressure pp is plotted on a log—log
scale versus dimensionless time group #p/Cp. The resulting
curves, characterized by the dimensionless group Cpe®, rep-
resent different well conditions ranging from damaged wells
to stimulated wells.

Figure 1.49 shows that all the curves merge, in early
time, into a unit-slope straight line corresponding to pure
wellbore storage flow. At a later time with the end of the
wellbore storage-dominated period, curves correspond to
infinite-acting radial flow. The end of wellbore storage and
the start of infinite-acting radial flow are marked on the
type curves of Figure 1.49. There are three dimensionless
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Figure 1.49 Type curves for a well with wellbore storage and skin in a reservoir with homogeneous behavior

(Copyright ©1983 World Oil, Bourdet et al., May 1983).

groups that Gringarten et al. used when developing the type
curve:

(1) dimensionless pressure pp;
(2) dimensionless ratio #p/Cp;
(3) dimensionless characterization group Cpe®.

The above three dimensionless parameters are defined
mathematically for both the drawdown and buildup tests as
follows.

For drawdown
Dimensionless pressure pp
by = kh(pi —pwi)  kRAPD (1.4.9]

141.2QBr ~ 141.2QBu
where:
k = permeability, md
pwi = bottom-hole flowing pressure, psi

@ = flow rate, bbl/day
B = formation volume factor, bbl/STB

Taking logarithms of both sides of the above equation gives:

k

log (pp) = log (p; — pwi) + log (m)
log(pp) = log(Ap) +1 _ [1.4.10]
og(pp) = log(AP) +log\ ;75055 &
Dimensionless ratio tp/Cp

tl _ 0.0002637kt ¢hctr‘f,

Cp duers 0.8396C
Simplifying gives:
tp 0.0002951kh
— = — ¢ 1.4.11
Co ( nC ) [ ]
where:

t = flowing time, hours
C = wellbore storage coefficient, bbl/psi
Taking logarithms gives:
log b =log(¢) + log 0. 0002951k [1.4.12]
Cp nC

Equations 1.4.10 and 1.4.12 indicate that a plot of the
actual drawdown data of log(Ap) vs. log(f) will produce
a parallel curve that has an identical shape to a plot of
log (pp) vs. log (tp/Cp). When displacing the actual plot, ver-
tically and horizontally, to find a dimensionless curve that
coincides or closely fits the actual data, these displacements
are given by the constants of Equations 1.4.9 and 1.4.11 as:

J20) _ kh
<A7>>MP = 141.2QBu [1.4.13]
and:
<tD/CD> - [1.4.14]
t MP uC

where MP denotes a match point.

Equations 1.4.13 and 1.4.14 can be solved for the perme-
ability & (or the flow capacity k%) and the wellbore storage
coefficient C respectively:

141.2QBu <1)D >
k= —""——— =
h AP ) wp
and:
_0.0002951%h

th/Cp
M( ¢ )MP

Dimensionless characterization group Cpe® The math-
ematical definition of the dimensionless characterization
group Cpe® as given below is valid for both the drawdown
and buildup tests:

5.615C
2s 2s
Cpe” = [m] e [1.4.15]
where:
¢ = porosity

¢ = total isothermal compressibility, psi ™

7w = wellbore radius, ft

When the match is achieved, the dimensionless group
Cpe® describing the matched curve is recorded.

For buildup
It should be noted that all type curve solutions are obtained
for the drawdown solution. Therefore, these type curves



cannot be used for buildup tests without restriction or mod-
ification. The only restriction is that the flow period, i.e., t,,
before shut-in must be somewhat large. However, Agarwal
(1980) empirically found that by plotting the buildup data
Dws — Dwfat ar—0 versus “equivalent time” Af. instead of
the shut-in time Af, on a log-log scale, the type curve
analysis can be made without the requirement of along draw-
down flowing period before shut-in. Agarwal introduced the
equivalent time At, as defined by:

At

= 14.1
1+ (At/t,) [1.4.16]

At = [At/t, + At]t,

where:

At = shut-in time, hours
t, = total flowing time since the last shut-in, hours
At. = Agarwal equivalent time, hours

Agarwal’s equivalent time Af. is simply designed to
account for the effects of producing time £, on the pressure
buildup test. The concept of At. is that the pressure change
Ap = pws — Dwi at time At during a buildup test is the same
as the pressure change Ap = p; — pyr at At during a draw-
down test. Thus, a graph of buildup test in terms of pys — pwt
vs. At will overlay a graph of pressure change versus flow-
ing time for a drawdown test. Therefore, when applying the
type curve approach in analyzing pressure buildup data, the
actual shut-in time At is replaced by the equivalent time Af..

In addition to the characterization group Cpe® as defined
by Equation 1.4.15, the following two dimensionless param-
eters are used when applying the Gringarten type curve in
analyzing pressure buildup test data.

Dimensionless pressure pp

_ kh@ws _ﬁwf) _ khAp

P> = 41 2QB. ~ 141.2QBg [1.4.17]

where:

pws = shut-in pressure, psi
pwi = flow pressure just before shut-in, i.e., at At = 0, psi

Taking the logarithms of both sides of the above equation
gives:

kh
log (pp) = log(Ap) + log <m> [1.4.18]
Dimensionless ratio tp/Cp
tp 0.0002951kk
CT) = [T] Ate [1.4.19]

Taking the logarithm of each side of Equation 1.4.9 gives:

0.0002951kh )

C [1.4.20]

log <t£) = log(At,) + log <
Cp

Similarly, a plot of actual pressure buildup data of
log(Ap) vs. log(At.) would have a shape identical to that
of log (pp) vs. log(tp/Cp). When the actual plot is matched
to one of the curves of Figure 1.49, then:

(3, = w505
Ap)yp  141.2QBu

which can be solved for the flow capacity ki or the perme-
ability k. That is:

e [%] (@) [1.4.21]
h Ap wp
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and:
(tD/CD ) _ 0.0002951kh [1.4.22]
Ate ) yp uC
Solving for C gives:
0.0002951k27T (Ate)mp
C= 1.4.23
[ " } (tn/Cp)mp [ ]

The recommended procedure for using the Gringarten
type curve is given by the following steps:

Step 1. Using the test data, perform conventional test analy-
sis and determine:

wellbore storage coefficient C and Cp;
permeability k;

false pressure p*;

average pressure p;

skin factor s;

shape factor Cy;

drainage area A.

Step 2. Plot p; — pwt versus flowing time ¢ for a drawdown test
or (pws—pwp) versus equivalent time At, for abuildup
test on log —log paper (tracing paper) with the same
size log cycles as the Gringarten type curve.

Step 3. Check the early-time points on the actual data plot for
the unit-slope (45° angle) straight line to verify the
presence of the wellbore storage effect. If a unit-slope
straight line presents, calculate the wellbore storage
coefficient C and the dimensionless Cp from any
point on the unit-slope straight line with coordinates
of (Ap, t) or (Ap, At.), to give:

QBt QB < t >

For drawdown C= ———

24(pi — pwr) Y Ap
[1.4.24]
. _ QBAt. QB (At
For buildup C = M —pu) — o4 (?p)
[1.4.25]
Estimate the dimensionless wellbore storage coeffi-
cient from:
0.8936
Cp = [dihctf‘%} C [1.4.26]

Step 4. Overlay the graph of the test data on the type
curves and find the type curve that nearly fits most
of the actual plotted data. Record the type curve
dimensionless group (Cpe®)yp.

Step 5. Select a match point MP and record the corre-
sponding values of (pp, Ap)mp from the y axis and
(tn/Cp, Hwmp or (tp/Cp, Ate)mp from the x axis.

Step 6. From the match, calculate:

[141.2423“} ( pD>
p= | 2P [ £D
h Ap ) mp

and:
0.0002951kh t
C= for drawdown
|: 1z ] ((tD/CD))MP
or:
0.0002951kh At,
C= ¢ for buildu
|: M ] ((tD/CD) )MP P
and:
0.8936
= [¢th"£ ] ¢
1 (Coe®)mp
s= 3 In [T} [1.4.27]



1/70  WELL TESTING ANALYSIS

Sabet (1991) used the buildup data presented by Bourdet
et al. (1983) to illustrate the use of Gringarten type curves.
The data is used in the following example:

Example 1.32 Table 1.6 summarizes the pressure
buildup data for an oil well that has been producing at a
constant flow rate of 174 STB/day before shut-in. Additional
pertinent data is given below:

¢ =25%, ¢ =4.2x107°psi?

@ =174 STB/day, t, = 15hours

B =1.06bbl/STB, », =0.291ft

w=2>5cp, h=1071t

Perform the conventional the pressure buildup analysis by

using the Horner plot approach and compare the results with
those obtained by using the Gringarten type curve approach.

Table 1.6 Pressure buildup test with afterflow
(After Sabet, M. A. “Well Test Analysis” 1991, Gulf
Publishing Company)

At e (S) AP (s) Z tAt At,

0.00000 3086.33 0.00 - 0.00000
0.00417 3090.57 4.24 3600.71 0.00417
0.00833 3093.81 7.48 1801.07 0.00833
0.01250 3096.55 10.22 1201.00 0.01249
0.01667 3100.03 13.70 900.82 0.01666
0.02083 3103.27 16.94 721.12 0.02080
0.02500 3106.77 20.44 601.00 0.02496
0.02917 3110.01 23.68 515.23 0.02911
0.03333 3113.25 26.92 451.05 0.03326
0.03750 3116.49 30.16 401.00 0.03741
0.04583 3119.48 33.15 328.30 0.04569
0.05000 3122.48 36.15 301.00 0.04983
0.05830 3128.96 42.63 258.29 0.05807
0.06667 3135.92 49.59 225.99 0.06637
0.07500 3141.17 54.84 201.00 0.07463
0.08333 3147.64 61.31 181.01 0.08287
0.09583 3161.95 75.62 157.53 0.09522
0.10833 3170.68 84.35 139.47 0.10755
0.12083 3178.39 92.06 125.14 0.11986
0.13333 3187.12 100.79 113.50 0.13216
0.14583 3194.24 107.91 103.86 0.14443
0.16250 3205.96 119.63 93.31 0.16076
0.17917 3216.68 130.35 84.72 0.17706
0.19583 3227.89 141.56 77.60 0.19331
0.21250 3238.37 152.04 71.59 0.20953
0.22917 3249.07 162.74 66.45 0.22572
0.25000 3261.79 175.46 61.00 0.24590
0.29167 3287.21 200.88 52.43 0.28611
0.33333 3310.15 223.82 46.00 0.32608
0.37500 3334.34 248.01 41.00 0.36585
0.41667 3356.27 269.94 37.00 0.40541
0.45833 3374.98 288.65 33.73 0.44474
0.50000 3394.44 308.11 31.00 0.48387
0.54167 3413.90 327.57 28.69 0.52279
0.58333 3433.83 347.50 26.71 0.56149
0.62500 3448.05 361.72 25.00 0.60000
0.66667 3466.26 379.93 23.50 0.63830
0.70833 3481.97 395.64 22.18 0.67639
0.75000 3493.69 407.36 21.00 0.71429
0.81250 3518.63 432.30 19.46 0.77075
0.87500 3537.34 451.01 18.14 0.82677
0.93750 3553.55 467.22 17.00 0.88235

Table 1.6 continued

T, AT

At (hr) pws (si)  Ap (psi) N At

1.00000 3571.75 485.42 16.00 0.93750
1.06250  3586.23  499.90 15.12 0.99222
1.12500 3602.95 516.62 14.33 1.04651
1.18750 3617.41 531.08 13.63 1.10039
1.25000  3631.15  544.82 13.00 1.15385
1.31250 3640.86 554.53 12.43 1.20690
1.37500  3652.85  566.52 11.91 1.25954
143750  3664.32  577.99 11.43 1.31179
1.50000 3673.81 587.48 11.00 1.36364
1.62500  3692.27  605.94 10.23 1.46617
1.75000 370552  619.19 9.57 1.56716
1.87500 3719.26 632.93 9.00 1.66667
2.00000 373223  645.90 8.50 1.76471
2.25000 3749.71 663.38 7.67 1.95652
2.37500 3757.19 670.86 7.32 2.05036
2.50000 376344  677.11 7.00 2.14286
2.75000 3774.65 688.32 6.45 2.32394
3.00000 3785.11 698.78 6.00 2.50000
3.25000  3794.06  707.73 5.62 2.67123
3.50000 3799.80 713.47 5.29 2.83784
3.75000  3809.50  723.17 5.00 3.00000
4.00000 381597  729.64 4.75 3.15789
4.25000 3820.20 733.87 4.53 3.31169
450000 3821.95  735.62 433 3.46154
475000  3823.70  737.37 4.16 3.60759
5.00000 3826.45 740.12 4.00 3.75000
5.25000  3829.69  743.36 3.86 3.88889
5.50000 3832.64 746.31 3.73 4.02439
5.75000 3834.70 748.37 3.61 4.15663
6.00000 3837.19  750.86 3.50 4.28571
6.25000 3838.94 752.61 3.40 4.41176
6.75000  3838.02  751.69 3.22 4.65517
7.25000  3840.78  754.45 3.07 4.88764
7.75000 3843.01 756.68 2.94 5.10989
825000 384452  758.19 2.82 5.32258
875000 384627  759.94 2.71 5.52632
9.25000 3847.51 761.18 2.62 5.72165
9.75000 384852  762.19 2.54 5.90909
10.25000 3850.01 763.68 2.46 6.08911
10.75000 3850.75 764.42 2.40 6.26214
11.25000  3851.76  765.43 2.33 6.42857
11.75000 3852.50 766.17 2.28 6.58879
12.25000 3853.51 767.18 2.22 6.74312
12.75000  3854.25  767.92 2.18 6.89189
13.25000 3855.07 768.74 2.13 7.03540
13.75000  3855.50  769.17 2.09 7.17391
14.50000  3856.50  770.17 2.03 7.37288
15.25000 3857.25 770.92 1.98 7.56198
16.00000  3857.99  771.66 1.94 7.74194
16.75000 385874  772.41 1.90 7.91339
17.50000 3859.48 773.15 1.86 8.07692
18.25000  3859.99  773.66 1.82 8.23308
19.00000 3860.73 774.40 1.79 8.38235
19.75000 3860.99 774.66 1.76 8.52518
20.50000 386149  775.16 1.73 8.66197
21.25000 3862.24 775.91 1.71 8.79310
2225000  3862.74 77641 1.67 8.95973
2325000  3863.22  776.89 1.65 9.11765
24.25000 3863.48 777.15 1.62 9.26752
25.25000  3863.99  777.66 1.59 9.40994
26.25000 386449  778.16 1.57 9.54545
27.25000 3864.73 778.40 1.55 9.67456
2850000 386523  778.90 1.53 9.82759
30.00000 3865.74 779.41 1.50 10.00000

Adapted from Bourdet et al. (1983).
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Figure 1.50 Log-log plot. Data from Table 1.6 (After Sabet, M. A. Well Test Analysis, 1991, Gulf Publishing Company).

Solution

Step 1. Plot Ap vs. At. on a log-log scale, as shown in
Figure 1.50. The plot shows that the early data form
a straight line with a 45° angle, which indicates the
wellbore storage effect. Determine the coordinates
of a point on the straight line, e.g., Ap = 50 and
Ate = 0.06, and calculate C and Cp:

_ @BAt.  (174)(1.06)(0.06) .
C= 2y @0 (50) = 0.0092 bbl/psi
Co = 0.8936C 0.8936(0.0092) _37m

dher? ~ (0.25)(107) (4.2 x 10-6) (0.29)2

Step 2. Make aHorner plot of pys vs. (#,-+At)/ At on semilog
paper, as shown in Figure 1.51, and perform the
conventional well test analysis, to give:

m=65.62 psi/cycle

b 162.6QBu (162.6) (174) (2.5)
- mh (65.62) (107)

P11 =3797 psi

D11 —Dwr ( k ) ]
—lo +3.23
m E\guar
3797 —-3086.33
65.62

=10.1 md

s=1.151[

=1.151[

10.1
_1og< (0.25) (2.5) (4.2 x 10-5) (0.29)2 ) +3.23]

=737

4000 Straight line parameters:
M=6562pg; Slope, m = 65.62 psi/cycle
\’PSl/cy\c[e Intercept, p*= 3878 psi
.... pAt = 3797 psi
5 3750 * Results: |
Q. kh=1142 md ft
[ p* = 3878 psi
5 s =74
23500
j<i
o
3250
3000
1 10 100 1000
(tp + Ab)/At

Figure 1.51 The Horner plot: data from Table 1.6
(Copyright ©1983 World Oil, Bourdet et al., May 1983).

Apsiin = (0.87) (65.62) (7.37) =421 psi
p*=3878 psi

Step 3. Plot Apvs. At.,onlog-log graph paper with the same
size log cycles as the Gringarten type curve. Overlay
the actual test data plot on the type curve and find
the type curve that matches the test data. As shown
in Figure 1.52, the data matched the curve with the
dimensionless group of Cpe® = 10'° and a match
point of:

(p)mp =1.79
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Figure 1.52 Buildup data plotted on log-log graph paper and matched to type curve by Gringarten et al. (Copyright

© 1983 World Oil, Bourdet et al., May 1983).

(Ap)mp = 100
(tp/Cp) = 14.8
(At) =1.0

Step 4. From the match, calculate the following properties:

'141.2QBM] ( pD)
k= | PR (PD
L h Aﬁ MP

141.2(174) (1.06) (2.5) (1.79
= o7 (W) =10.9md

[0. 0002951khi| [ Ate ]
123 (tn/Cp) MP

[0.0002951(10.9)(107) 1[ 1.0 | _
55 ] [TS] =0.0093

[0.8936
G = | pheer ]
i 0.8936

~ | (0.25)(107) (4.2 x 10-5) (0. 29)2] (0.0093)

=879
_ 1 (CDezs)Mp _ 1 1010 _
s= §IH[T] = 5111[%] =8.12

Results of the example show a good agreement between the
conventional well testing analysis and that of the Gringarten
type curve approach.

Similarly, the Gringarten type curve can also be used for gas
systems by redefining the dimensionless pressure drop and
time as:

kh Alm(p)]
For th h =<7
or the gas pseudopressure approach pp 1422Q,T
khA[p?]
For the pressure-squared approach pp = W

with the dimensionless time as:
; [ 0.0002637% ]
D=|——"7%—

e’
where:

Q, = gas flow rate, Mscf/day
T = temperature,” R

Alm(p)] = m(Pws) — M (Pwi at at=o) for the buildup test
= m(p;) — m(pwi) for the drawdown test
AlP?] = (bws)? — (Pwi at armo)® for the buildup test

= ()2 — (pwp)? for the drawdown test
and for buildup, the shut-in time A# replaces flowing time ¢
in the above equation.

1.5 Pressure Derivative Method

The type curve approach for the analysis of well testing
data was developed to allow for the identification of flow
regimes during the wellbore storage-dominated period and
the infinite-acting radial flow. As illustrated through Exam-
ple 1.31, it can be used to estimate the reservoir properties
and wellbore condition. However, because of the similarity
of curves shapes, it is difficult to obtain a unique solution.
As shown in Figure 1.49, all type curves have very similar
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Figure 1.53 Pressure derivative type curve in terms of P}, (tp/Cp) (Copyright ©1983 World Qil, Bourdet et al., May

1983).

shapes for high values of Cpe® which lead to the problem
of finding a unique match by a simple comparison of shapes
and determining the correct values of £, s, and C.

Tiab and Kumar (1980) and Bourdet et al. (1983)
addressed the problem of identifying the correct flow regime
and selecting the proper interpretation model. Bourdet and
his co-authors proposed that flow regimes can have clear
characteristic shapes if the “pressure derivative” rather than
pressure is plotted versus time on the log-log coordinates.
Since the introduction of the pressure derivative type curve,
well testing analysis has been greatly enhanced by its use.
The use of this pressure derivative type curve offers the
following advantages:

o Heterogeneities hardly visible on the conventional plot of
well testing data are amplified on the derivative plot.

e Flow regimes have clear characteristic shapes on the
derivative plot.

o The derivative plotis able to display in a single graph many
separate characteristics that would otherwise require
different plots.

o The derivative approach improves the definition of
the analysis plots and therefore the quality of the
interpretation.

Bourdet et al. (1983) defined the pressure derivative as the
derivative of pp with respect to #p/Cp as:

\ d(Pp)

D7 d(tn/Cp)
It has been shown that during the wellbore storage-
dominated period the pressure behavior is described by:

[1.5.1]

Ip
Pp=—+—
D=7
Taking the derivative of pp with respect to #p/Cp gives:
d(Pp) \
———— =P =10
d(#p/Cp) D

Since p\D = 1, this implies that multiplying pg by tp/Cp gives
tD/ CD, or:
t t
(o D
bo ( (&) )

=0 [1.5.2]

Equation 1.5.2 indicates that a plot of p}) (tp/Cp) vs. tp/Cp
in log-log coordinates will produce a unit-slope straight line
during the wellbore storage-dominated flow period.

Similarly, during the radial infinite-acting flow period, the
pressure behavior is given by Equation 1.5.1 as:

1T, <t£) +0.80907 + In(Cpe®)
2™ &

Differentiating with respect to tp/Cp, gives:
d(pp) v 1 |: 1 i|

40

dt/Co) ~ 7 2 /Co)
Simplifying gives:

\ 2>_1
pD(cD =3

This indicates that a plot of p}) (tp/Cp) vs. tp/Cp onalog—
log scale will produce a horizontal line at p}) (tp/Cp) = %
during the transient flow (radial infinite-acting) period. As
shown by Equations 1.5.2 and 1.5.3 the derivative plot of
p}, (tp/Cp) vs. tp/ Cp for the entire well test data will produce
two straight lines that are characterized by:

[1.5.3]

e a unit-slope straight line during the wellbore storage-
dominated flow;

e ahorizontal line at p}) (tp/Cp) = 0.5 during the transient
flow period.

The fundamental basis for the pressure derivative
approach is essentially based on identifying these two
straight lines that can be used as reference lines when
selecting the proper well test data interpreting model.

Bourdet et al. replotted the Gringarten type curve in
terms of p}) (tp/Cp) vs. tp/Cp on a log-log scale as shown
in Figure 1.53. It shows that at the early time during the
wellbore storage-dominated flow, the curves follow a unit-
slope log-log straight line. When infinite-acting radial flow
is reached, the curves become horizontal at a value of
p}) (tp/Cp) = 0.5 as indicated by Equation 1.5.3. In addition,
notice that the transition from pure wellbore storage to
infinite-acting behavior gives a “hump” with a height that
characterizes the value of the skin factor s.
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Figure 1.53 illustrates that the effect of skin is only man-
ifested in the curvature between the straight line due to
wellbore storage flow and the horizontal straight line due
to the infinite-acting radial flow. Bourdet et al. indicated
that the data in this curvature portion of the curve is not
always well defined. For this reason, the authors found it
useful to combine their derivative type curves with that of
the Gringarten type curve by superimposing the two type
curves, i.e., Figures 1.49 and 1.53, on the same scale. The
result of superimposing the two sets of type curves on the
same graph is shown in Figure 1.54. The use of the new
type curve allows the simultaneous matching of pressure-
change data and derivative data since both are plotted on the
same scale. The derivative pressure data provides, without
ambiguity, the pressure match and the time match, while the
Cpe® value is obtained by comparing the label of the match
curves for the derivative pressure data and pressure drop
data.

The procedure for analyzing well test data using the
derivative type curve is summarized by the following
steps:

Step 1. Using the actual well test data, calculate the pres-
sure difference Ap and the pressure derivative
plotting functions as defined below for drawdown
and buildup tests.

For the drawdown tests, for every recorded draw-
down pressure point, i.e., flowing time ¢ and a
corresponding bottom-hole flowing pressure pys,
calculate:

The pressure difference Ap = p; — pwr

d(Ap) )
d(@)
[1.5.4]

For the buildup tests, for every recorded buildup
pressure point, i.e., shut-in time A¢ and correspond-
ing shut-in pressure pys, calculate:

The derivative function tAp = —t (

The pressure difference Ap = pws — Pwt at at=0

The derivative function

ty+ At [d(Ap)
)]

The derivatives included in Equations 1.5.4 and
1.5.5, i.e., [dpws/dt] and [d(Apws)/d(AF)], can be
determined numerically at any data point ¢ by using
the central difference formula for evenly spaced
time or the three-point weighted average approx-
imation as shown graphically in Figure 1.55 and
mathematically by the following expressions:
Central differences:

At. AP\ = At < [1.5.5]

dp\ _ pis1 —pin
(dx >1 T Xy — X [1.5.6]
Three-point weighted average:
di’) _ (Ap1/Axy) Axp + (Ap2/ Axs) Axy
e/ Ax1 + Axp
[1.5.7]

It should be pointed out that selection of the
method of numerical differentiation is a problem
that must be considered and examined when apply-
ing the pressure derivative method. There are
many differentiation methods that use only two
points, e.g., backward difference, forward differ-
ence, and central difference formulas, and very
complex algorithms that utilize several pressure

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

points. It is important to try several different meth-
ods in order to find one which best smoothes the
data.

On tracing paper with the same size log cycles
as the Bourdet-Gringarten type curve graph, i.e.,
Figure 1.54, plot:

e (Ap) and (tAp‘) as a function of the flow-
ing time ¢ when analyzing drawdown test data.
Notice that there are two sets of data on the same
log-log graph as illustrated in Figure 1.56; the
first is the analytical solution and the second is
the actual drawdown test data.

e The pressure difference Ap versus the equiv-
alent time Af. and the derivative function
(At.Ap\) versus the actual shut-in time At.
Again, there are two sets of data on the same
graph as shown in Figure 1.56.

Check the actual early-time pressure points, i.e.,
pressure difference versus time on a log-log scale,
for the unit-slope line. If it exists, draw a line
through the points and calculate the wellbore stor-
age coefficient C by selecting a point on the unit-
slope line as identified with coordinates of (¢, Ap) or
(Ate, Ap) and applying Equation 1.4.24 or Equation
1.4.25, as follows:

For drawdown C = @ < f >

24 \ Ap
. QB [ At
For buildup C = 7S (A—p)

Calculate the dimensionless wellbore storage coef-
ficient Cp by applying Equation 1.4.26 and using the
value of C as calculated in Step 3. That is:

0.8936
G = |:q>hctrvzv ] ¢

Check the late-time data points on the actual pres-
sure derivative plot to see if they form a horizontal
line which indicates the occurrence of transient
(unsteady-state) flow. If it exists, draw a horizontal
line through these derivative plot points.

Place the actual two sets of plots, i.e., the pres-
sure difference plot and derivative function plot, on
the Gringarten-Bourdet type curve of Figure 1.54,
and force a simultaneous match of the two plots
to Gringarten—-Bourdet type curves. The unit-slope
line should overlay the unit slope on the type curve
and the late-time horizontal line should overlay the
horizontal line on the type cure which corresponds
to a value of 0.5. Note that it is convenient to match
both pressure and pressure derivative curves, even
though it is redundant. With the double match, a
high degree of confidence in the results is obtained.
From the match of the best fit, select a match point
MP and record the corresponding values of the
following:

e From the Gringarten type curve, determine
(pp, Ap)mp and the corresponding (tp/Cp, ) mp
or(tp/Cp, Ate)mp.

e Record the value of the type curve dimension-
less group (Cpe®)yp from the Bourdet type
curves.

Calculate the permeability by applying Equation

1.4.21:
[141.2QB;4] [pD ]
= | _—————_° 72

h Ap |vp
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Figure 1.55 Differentiation algorithm using three points.
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Figure 1.56 Type curve matching. Data from Table 1.6 (Copyright ©1983 World Oil, Bourdet et al., May 1983).

Step 9. Recalculate the wellbore storage coefficient C For buildup C:|:
and Cp by applying Equations 1.4.23 and
1.4.26, or: with:

0. 0002951kh:| (Ate)mp
w (tn/Cp)mp

0.8936
o = [¢hct7v2v:| ¢

Compare the calculated values of C and Cp with
(tn/Co)mp those calculated in steps 3 and 4.

For drawdown C — [0. 0002951kh} ®)mp

n
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Step 10. Calculate the skin factor s by applying Equation
1.4.27 and using the value of Cp in step 9 and the
value of (Cpe®)yp in step 7, to give:

s i (Coe™)mp
T2 Cp

Example 1.33 Using the same data of Example 1.31, ana-
lyze the given well test data using the pressure derivative
approach.

Solution

Step 1. Calculate the derivative function for every recorded
data point by applying Equation 1.5.5 or the approx-
imation method of Equation 1.5.6 as tabulated
Table 1.7 and shown graphically in Figure 1.57.

Table 1.7 Pressure derivative method. Data of Table 6.6
After Sabet, M.A. “Well Test Analysis” 1991, Gulf
Publishing Company

At Ap Slope Ap\ AtAR

(hr) (psi) (psi/hr) (psi/hr) (t, + ADL,
0.00000 0.00  1017.52 - -
0.00417 4.24 777.72 897.62 3.74
0.00833 7.48 657.55  717.64 5.98
0.01250 10.22 834.53 746.04 9.33
0.01667 13.70 778.85 806.69 13.46
0.02083 16.94 839.33  809.09 16.88
0.02500 20.44 776.98 808.15 20.24
0.02917 23.68 778.85  777.91 22.74
0.03333 26.92 776.98 77791 25.99
0.03750 30.16 358.94 567.96 21.35
0.04583 33.15 71942  539.18 24.79
0.05000 36.15 780.72  750.07 37.63
0.05830 42.63 831.54 806.13 47.18
0.06667 49.59 630.25  730.90 48.95
0.07500 54.84 776.71 703.48 53.02
0.08333 61.31 1144.80 960.76 80.50
0.09583 75.62 698.40  921.60 88.88
0.10833 84.35 616.80 657.60 71.75
0.12083 92.06 698.40 657.60 80.10
0.13333  100.79 569.60  634.00 85.28
0.14583 107.91 703.06 636.33 93.70
0.16250  119.63 643.07  673.07 110.56
0.17917  130.35 672.87  657.97 119.30
0.19583 141.56 628.67 650.77 129.10
0.21250  152.04 641.87  635.27 136.91
0.22917  162.74 610.66  626.26 145.71
0.25000 175.46 610.03 610.34 155.13
0.29167  200.88 550.65  580.34 172.56
0.33333 223.82 580.51 565.58 192.71
0.37500 248.01 526.28 553.40 212.71
0.41667  269.94 449.11  487.69 208.85
0.45833 288.65 467.00 458.08 216.36
0.50000 308.11 467.00 467.00 241.28
0.54167  327.57 47840  472.70 265.29
0.58333 347.50 341.25 409.82 248.36
0.62500  361.72 437.01  389.13 253.34
0.66667  379.93 377.10  407.05 283.43
0.70833 395.64 281.26 329.18 244.18
0.75000  407.36 399.04  340.15 267.87
0.81250  432.30 299.36  349.20 299.09
0.87500 451.01 259.36 279.36 258.70
0.93750  467.22 29120 27528 274.20
1.00000 485.42 231.68 261.44 278.87
1.06250 499.90 267.52 249.60 283.98

Table 1.7 continued

At Ap Slope AP AtAL
(hr) (psi) (psi/hr) (psi/hr) (t, + ADL,
1.12500 516.62 231.36 249.44 301.67
1.18750  531.08 219.84 225.60 289.11
1.25000 544.82 155.36 187.60 254.04
1.31250 554.53 191.84 173.60 247.79
1.37500  566.52 183.52 187.68 281.72
1.43750 577.99 151.84 167.68 264.14
1.50000  587.48 147.68 149.76 247.10
1.62500  605.94 106.00 126.84 228.44
1.75000 619.19 109.92 107.96 210.97
1.87500  632.93 103.76 106.84 225.37
2.00000  645.90 69.92 86.84 196.84
2.25000 663.38 59.84 64.88 167.88
237500  670.66 50.00 54.92 151.09
2.50000  677.11 44.84 47.42 138.31
2.75000 688.32 41.84 43.34 141.04
3.00000  698.78 35.80 38.82 139.75
3.25000 707.73 22.96 29.38 118.17
3.50000 713.47 38.80 30.88 133.30
3.75000  723.17 25.88 32.34 151.59
4.00000 729.64 16.92 21.40 108.43
4.25000  733.87 7.00 11.96 65.23
450000  735.62 7.00 7.00 40.95
4.75000 737.37 11.00 9.00 56.29
5.00000  740.12 12.96 11.98 79.87
5.25000  743.36 11.80 12.38 87.74
5.50000 746.31 8.24 10.02 75.32
5.75000  748.37 9.96 9.10 72.38
6.00000 750.86 7.00 8.48 71.23
6.25000 752.51 —-1.84 2.58 22.84
6.75000  751.69 5.52 1.84 18.01
7.25000 754.45 4.46 4.99 53.66
7.75000 756.68 3.02 3.74 43.96
8.25000  758.19 3.50 3.26 41.69
8.75000 759.94 248 2.99 41.42
9.25000  761.18 2.02 2.25 33.65
9.75000  762.19 2.98 2.50 40.22
10.25000 763.68 1.48 2.23 38.48
10.75000  764.42 2.02 1.75 32.29
11.25000  765.43 1.48 1.75 34.45
11.75000 766.17 2.02 1.75 36.67
12.25000  767.18 1.48 1.75 38.94
12.75000 767.92 1.64 1.56 36.80
13.25000 768.74 0.86 1.25 31.19
13.75000  769.17 1.33 1.10 28.90
14.50000 770.17 1.00 1.17 33.27
1525000  770.92 0.99 0.99 30.55
16.00000  771.66 1.00 0.99 32.85
16.75000 772.41 0.99 0.99 35.22
17.50000  773.15 0.68 0.83 31.60
18.25000  773.66 0.99 0.83 33.71
19.00000 774.40 0.35 0.67 28.71
19.75000  774.66 0.67 0.51 23.18
20.50000 775.16 1.00 0.83 40.43
21.25000 775.91 0.50 0.75 38.52
22.25000  776.41 0.48 0.49 27.07
23.25000 776.89 0.26 0.37 21.94
24.25000 777.15 0.51 0.38 24.43
25.25000  777.66 0.50 0.50 34.22
26.25000 778.16 0.24 0.37 26.71
27.25000  778.40 0.40° 0.32? 24.56°
28.50000 778.90 0.34 0.37 30.58
30.00000  779.41 25.98 13.16 1184.41

a(778.9 — 778.4) /(28.5 — 27.25) = 0.40.
8(0.40 +0.24)/2 = 0.32.

€27.25—0.32 — (15 + 27.25) /15 = 24.56.
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Figure 1.57 Log-log plot. Data from Table 1.7.
Step 2. Draw a straight line with a 45° angle that fits the  Step 5. Calculate C and Cp:
early-time test points, as shown in Figure 1.57, and
select the coordinates of a point on the straight line, C= [0- 0002951khj| (Afe)mp
to give (0.1, 70). Calculate C and Cp: 2 (tp/Cp)mp
_ [0. 0002951(10.9) (107)] ( 1 )
_ g)fAApt _ 1740((22.)0((;)050. 1 — 0.00976 2.5 14.8
= 0.0093 bbl/psi
Co— 0.89367 0.8936(0.00976)
D= | Gher? | = (0.25)(107) (&2 x 10-)(0.29)? cp = %-896C _ 0.8936(0.0093)
dheer? (0.25) (107) (4.2 x 10-%) (0. 29)2
=923
=879
Step 3. Overlay the pressure difference data and pressure  Step 6. Calculate the skin factor s:

derivative data over the Gringarten-Bourdet type
curve to match the type curve, as shown in Figure
1.57, with the following match points:
(CDezx)Mp =4 x 109
(bp/Ap)mp = 0.0179
[(tn/Cp)/At]y = 14.8

Step 4. Calculate the permeability k:

|:141.ZQBM:| (pD )
k= | o 2¥OR | (PD
h AP e

_ [141.2(174) (1.06) (2.5)
- [ 107

] (0.0179)

=10.9md

1 [ (Goe®)we] 1, [4x10°7
S_EIH[T}_QIH[ 379 :|_7.7

Notice that the derivative function, as plotted in Figure
1.57, shows an appreciable amount of scatter points and
the horizontal line which signifies the radial infinite-acting
state is not clear. A practical limitation associated with the
use of the pressure derivative approach is the ability to
measure pressure transient data with sufficient frequency
and accuracy so that it can be differentiated. Generally, the
derivative function will show severe oscillations unless the
data is smoothed before taking the derivative.

Smoothing of any time series, such as pressure-time data,
is not an easy task, and unless it is done with care and know-
how, a portion of the data which is representative of the
reservoir (signal) could be lost. Signal filtering, smoothing,
and interpolation is a very advanced subject of science and
engineering, and unless the proper smoothing techniques
are applied to the field data, the results could be utterly
misleading.
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Figure 1.58 Log-log plot of a typical drawdown.

In addition to the reservoir heterogeneity, there are many
inner and outer reservoir boundary conditions that will
cause the transient state plot to deviate from the expected
semilog straight-line behavior during the infinite-acting
behavior of the test well, such as:

faults and other impermeable flow barriers;
partial penetration;

phase separation and packer failures;
interference;

stratified layers;

naturally and hydraulically fractured reservoirs;
boundary;

lateral increase in mobility.

The theory which describes the unsteady-state flow data
is based on the ideal radial flow of fluids in a homogeneous
reservoir system of uniform thickness, porosity, and perme-
ability. Any deviation from this ideal concept can cause the
predicted pressure to behave differently from the actual mea-
sured pressure. In addition, a well test response may have dif-
ferent behavior at different times during the test. In general,
the following four different time periods can be identified on
alog-log plot of Ap vs. At as shown in Figure 1.58:

(1) The wellbore storage effect is always the first flow regime
to appear.

Evidence of the well and reservoir heterogeneities effect
will then appear in the pressure behavior response. This
behavior may be a result of multilayered formation, skin,
hydraulic fractures, or fissured formation.

The pressure response exhibits the radial infinite-active
behavior and represents an equivalent homogeneous
system.

The last period represents the boundary effects that may
occur at late time.

@

(&)

@

Thus, many types of flow regimes can appear before and
after the actual semilog straight line develops, and they

follow a very strict chronology in the pressure response.
Only global diagnosis, with identification of all successive
regimes present, will indicate exactly when conventional
analysis, e.g., the semilog plot technique, is justified. Recog-
nition of the above four different sequences of responses is
perhaps the mostimportant elementin well test analysis. The
difficulty arises from the fact that some of these responses
could be missing, overlapping, or undetectable through the
traditional graphical semilog straight-line approach. Selec-
tion of the correct reservoir interpretation model is a prerequi-
site and an important step before analyzing well test data and
interpreting the test results. With proper well test design and
sufficient test length for the response to be detected, most
pressure transient data can provide an unambiguous indi-
cator of the type and the associated characteristics of the
reservoir. However, many well tests cannot or are not run
for sufficient test duration to eliminate ambiguity in select-
ing the proper model to analyze test data. With a sufficient
length of well testing time, the reservoir response during
well testing is then used to identify a well test interpretation
model from which well and reservoir parameters, such as
permeability and skin, can be determined. This model iden-
tification requirement holds for both traditional graphical
analyses as well as for computer-aided techniques.

It should be pointed out that both the semilog and log—log
plots of pressure versus time data are often insensitive to
pressure changes and cannot be solely used as diagnostic
plots to find the interpretation model that best represents
the dynamic behavior of the well and reservoir during the
test. The pressure derivative type curve, however, is the
most definitive of the type curves for identifying the proper
interpretation model. The pressure derivative approach has
been applied with tremendous success as a diagnostic tool
for the following reasons:

e It magnifies small pressure changes.
o Flow regimes have clear characteristic shapes on the
pressure derivative plot.
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Figure 1.59 A p and its derivative vs. elapsed time.

e It clearly differentiates between responses of various
reservoir models; such as:
— dual-porosity behavior;
— naturally and hydraulically fractured reservoirs;
— closed boundary systems;
— constant pressure boundaries;
— faults and impermeable boundaries;
— infinite acting systems
o [tidentifies variousreservoir behavior and conditions that
are not apparent in the traditional well analysis approach.
e It defines a clear recognizable pattern of various flow
periods.
o Itimproves the overall accuracy of test interpretation.
e It provides an accurate estimation of relevant reservoir
parameters.

Al-Ghamdi and Issaka (2001) pointed out that there are
three major difficulties during the process of identifying the
proper interpretation model:

(1) The limited number of available interpretation models
that is restricted to prespecified setting and idealized
conditions.

(2) The limitation of the majority of existing heterogeneous
reservoir models to one type of heterogeneities and its
ability to accommodate multiple heterogeneities within
the same model.

(3) The non-uniqueness problem where identical responses
are generated by completely different reservoir models
of totally different geological configuration.

Lee (1982) suggested that the best approach of identifying
the correct interpretation model incorporates the following
three plotting techniques:

(1) The traditional log-log type curve plot of pressure
difference Ap versus time.
(2) The derivative type curve.

(3) The “specialized graph” such as the Horner plot for a
homogeneous system among other plots.

Based on knowledge of the shape of different flow
regimes, the double plot of pressure and its derivative is used
to diagnose the system and choose a well/reservoir model
to match the well test data. The specialized plots can then be
used to confirm the results of the pressure-derivative type
curve match. Therefore, after reviewing and checking the
quality of the test raw data, the analysis of well tests can be
divided into the following two steps:

(1) The reservoir model identification and various flow
regimes encountered during the tests are determined.

(2) The values of various reservoir and well parameters are
calculated.

1.5.1 Model identification

The validity of the well test interpretation is totally depen-
dent on two important factors, the accuracy of the measured
field data and the applicability of the selected interpreta-
tion model. Identifying the correct model for analyzing the
well test data can be recognized by plotting the data in sev-
eral formats to eliminate the ambiguity in model selection.
Gringarten (1984) pointed out that the interoperation model
consists of three main components that are independent of
each other and dominate at different times during the test
and they follow the chronology of the pressure response.
These are:

(1) Inner boundaries. Identification of the inner boundaries
is performed on the early-time test data. There are only
five possible inner boundaries and flow conditions in
and around the wellbore:

(1) wellbore storage;
(2) skin;
(3) phase separation;
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(4) partial penetration;
(5) fracture.

(II) Reservoir behavior. Identification of the reservoir is
performed on the middle-time data during the infinite
acting behavior and includes two main types:

(1) homogeneous;
(2) heterogeneous.

(II) Outer boundaries. Identification of the outer boundaries
is performed on the late-time data. There are two outer
boundaries:

(1) no-flow boundary;
(2) constant-pressure boundary.

Each of the above three components exhibits a distinctly
different characteristic that can be identified separately, and
described by different mathematical forms.

1.5.2 Analysis of early-time test data

Early-time data is meaningful and can be used to obtain
unparalleled information on the reservoir around the well-
bore. During this early-time period, wellbore storage, frac-
tures, and other inner boundary flow regimes are the
dominant flowing conditions and exhibit a distinct differ-
ent behavior. These inner boundary conditions and their
associated flow regimes are briefly discussed below.

Wellbore storage and skin

The most effective procedure for analyzing and under-
standing the entire recorded transient well test data is by
employing the log-log plot of the pressure difference Ap
and its derivative Ap\ versus elapsed time. Identification of
the inner boundaries is performed on early-time test data and
starts with the wellbore storage. During this time when the
wellbore storage dominates, Ap and its derivative Ap\ are
proportional to the elapsed time and produce a 45° straight
line on the log-log plot, as shown in Figure 1.59. On the
derivative plot, the transition from the wellbore storage to
the infinite-acting radial flow gives a “hump” with a maximum
that indicates wellbore damage (positive skin). Conversely,
the absence of a maximum indicates a non-damaged or
stimulated well.

Phase separation in tubing

Stegemeier and Matthews (1958), in a study of anomalous
pressure buildup behavior, graphically illustrated and dis-
cussed the effects of several reservoir conditions on the
Horner straight-line plot, as shown in Figure 1.60. The prob-
lem occurs when gas and oil are segregated in the tubing
and annulus during shut-in, which can cause the wellbore
pressure to increase. This increase in the pressure could
exceed the reservoir pressure and force the liquid to flow
back into the formation with a resulting decrease in the well-
bore pressure. Stegemeier and Matthews investigated this
“humping” effect, as shown in Figure 1.60, which means
that bottom-hole pressure builds up to a maximum and
then decreases. They attributed this behavior to the rise of
bubbles of gas and the redistribution of fluids within the
wellbore. Wells which show the humping behavior have the
following characteristics:

o They are completed in moderately permeable formations
with a considerable skin effect or restriction to flow near
the wellbore.

e The annulus is packed off.

The phenomenon does not occur in tighter formations
because the production rate is small and thus there is ample
space for the segregated gas to move into and expand. Simi-
larly, if there is no restriction to flow near the wellbore, fluid
can flow easily back into the formation to equalize the pres-
sure and prevent humping. If the annulus is not packed off,

Pws

log [ (t+ Ab/At] 1

Figure 1.60 Phase separation in tubing (After
Stegemeier and Matthews, 1958).

bubble rise in the tubing will simply unload liquid into the
casing-tubing annulus rather than displace the fluid back
into the formation.

Stegemeier and Matthews also showed how leakage
through the wellbore between dually completed zones at dif-
ferent pressure can cause an anomalous hump in measured
pressures. When this leakage this occurs, the pressure dif-
ferential between zones becomes small, allowing fluid to
flow, and causes a hump in the pressure observed in the
other zone.

Effect of partial penetration
Depending on the type of wellbore completion configura-
tion, it is possible to have spherical or hemispherical flow
near the wellbore. If the well penetrates the reservoir for
a short distance below the cap rock, the flow will be hemi-
spherical. When the well is cased through a thick pay zone
and only a small part of the casing is perforated, the flow
in the immediate vicinity of the wellbore will be spherical.
Away from the wellbore, the flow is essentially radial. How-
ever, for a short duration of transient test, the flow will remain
spherical during the test.

In the case of a pressure buildup test of a partially depleted
well, Culham (1974) described the flow by the following
expression:

b p._ MS3QBu[ 1 1
R ZE R BV R A

This relationship suggests that a plot of (p; — pws) Vs.
[1/V/At — 1//t, + At] on a Cartesian scale would be a
straight line that passes through the origin with a slope of
m as given by:

2453QB
For spherical flow = %
For hemispherical flow = 122:2%

with the total skin factor s defined by:

pre [w+;}_l
C m VAt

s =34.Trew
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The dimensionless parameter 7., is given by:
hy
TYew =
2In(hy/ry)

Yow = 7%
o In(2hy /1)

For spherical flow

For hemispherical flow

where:

(pws) ar = the shut-in pressure at any shut-in time Af¢,
hours
hy, = perforated length, ft
rw = wellbore radius, ft

An important factor in determining the partial penetration
skin factor is the ratio of the horizontal permeability &y, to the
vertical permeability ky, i.e., k,/k,. If the vertical permeabil-
ity is small, the well will tend to behave as if the formation
thickness / is equal to the completion thickness #p. When the
vertical permeability is high, the effect of the partial penetra-
tion is to introduce an extra pressure drop near the wellbore.
This extra pressure drop will cause a large positive skin fac-
tor or smaller apparent wellbore radius when analyzing well
test data. Similarly, opening only a few holes in the casing can
also cause additional skin damage. Saidikowski (1979) indi-
cated that the total skin factor s as calculated from a pressure
transient test is related to the true skin factor caused by for-
mation damage sq and skin factor due to partial penetration
sp by the following relationship:

s= (i )sa+s
= hP d P

Saidikowski estimated the skin factor due to partial pene-
tration from the following expression:

h ho [k
5p_<h—P—1> In ik -2

where:
rw = wellbore radius, ft
h, = perforated interval, ft
h = total thickness, ft
kn, = horizontal permeability, md
ky = vertical permeability, md

1.5.3 Analysis of middle-time test data

Identification of the basic reservoir characteristics is per-
formed during the reservoir infinite-acting period and by
using the middle-time test data. Infinite-acting flow occurs
after the inner boundary effects have disappeared (e.g.,
wellbore storage, skin, etc.) and before the outer boundary
effects have been felt. Gringarten et al. (1979) suggested
that all reservoir behaviors can be classified as homoge-
neous or heterogeneous systems. The homogeneous sys-
tem is described by only one porous medium that can be
characterized by average rock properties through the con-
ventional well testing approach. Heterogeneous systems are
subclassified into the following two categories:

(1) double porosity reservoirs;
(2) multilayered or double-permeability reservoirs.

A brief discussion of the above two categories is given
below.

Naturally fractured (double-porosity) reservoirs

Naturally fractured reservoirs are typically characterized
by a double-porosity behavior; a primary porosity that rep-
resents the matrix ¢, and a secondary porosity ¢; that
represents the fissure system. Basically, “fractures” are cre-
ated hydraulically for well stimulation while “fissures” are

considered natural fractures. The double- or dual-porosity
model assumes two porous regions of distinctly different
porosities and permeabilities within the formation. Only
one, the “fissure system,” has a permeability k¢ high enough
to produce to the well. The matrix system does not pro-
duce directly to the well but acts as a source of fluid to the
fissure system. Avery important characteristic of the double-
porosity system is the nature of the fluid exchange between
the two distinct porous systems. Gringarten (1984) pre-
sented a comprehensive treatment and an excellent review
of the behavior of fissured reservoirs and the appropriate
methodologies of analyzing well test data.

Warren and Root (1963) presented extensive theoreti-
cal work on the behavior of naturally fractured reservoirs.
They assumed that the formation fluid flows from the matrix
system into the fractures under pseudosteady-state condi-
tions with the fractures acting like conduits to the wellbore.
Kazemi (1969) proposed a similar model with the main
assumption that the interporosity flow occurs under tran-
sient flow. Warren and Root indicated that two characteristic
parameters, in addition to permeability and skin, control the
behavior of double-porosity systems. These are:

(1) The dimensionless parameter o that defines the storativ-
ity of the fractures as a ratio to that of the total reservoir.
Mathematically, it is given by:

o= (phey)s _ (phey)s [1.5.8]
(Bhedsim  (Phed)s + (Phc)m o
where:
w = storativity ratio
h = thickness
¢ = total compressibility, psi~?
¢ = porosity

The subscripts f and m refer to the fissure and matrix
respectively. A typical range of w is 0.1 to 0.001.

(2) The second parameter A is the interporosity flow coef-
ficient which describes the ability of the fluid to flow
from the matrix into the fissures and is defined by the
following relationship:

ko \ -
AZ“(E)T‘%’

where:

[1.5.9]

A = interporosity flow coefficient
k = permeability
7w = wellbore radius

The factor « is the block-shape parameter that depends
on the geometry and the characteristic shape of the
matrix—fissures system and has the dimension of a recip-
rocal of the area defined by the following expression:

_4
“T W
where:
A = surface area of the matrix block, ft*
V' = volume of the matrix block
x = characteristic length of the matrix block, ft

Most of the proposed models assume that the matrix—
fissures system can be represented by one the following
four geometries:

(a) Cubic matrix blocks separated by fractures with A as

given by:
A= @ kﬂ 72
TR\ k)Y

where [, is the length of a block side.
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Figure 1.61 Pressure drawdown according to the model by Warren and Root (Copyright ©1969 SPE, Kazemi, SPEJ,

Dec. 1969).

(b) Spherical matrix blocks separated by fractures with

A as given by:
A= Lf <l€ﬂ> 7’5,
[~ kf

where 7, is the radius of the sphere.
(c) Horizontal strata (rectangular slab) matrix blocks
separated by fractures with A as given by:
12 (km\ ,
== (=)~
K2 ( ke ) v
where /; is the thickness of an individual fracture or
high-permeability layer.
(d) Vertical cylinder matrix blocks separated by frac-
tures with A as given by:

=2 (k)2
7’1% k[

where 7, is the radius of the each cylinder

A

In general, the value of the interporosity flow param-
eter ranges between 10~ and 10~?. Cinco and Samaniego
(1981) identified the following extreme interporosity flow
conditions:

e Restricted interporosity flow which corresponds to a high
skin between the least permeable media (matrix) and the
highest permeable media (fissures) and is mathemati-
cally equivalent to the pseudosteady-state solution, i.e.,
the Warren and Root model.

e Unrestricted interporosity flow that corresponds to zero
skin between the most and highest permeable media and
is described be the unsteady-state (transient) solution.

Warren and Root proposed the first identification method
of the double-porosity system, as shown by the drawdown

semilog plot of Figure 1.61. The curve is characterized by
two parallel straight lines due to the two separate porosities in
the reservoir. Because the secondary porosity (fissures) has
the greater transmissivity and is connected to the wellbore, it
responds first as described by the first semilog straight line.
The primary porosity (matrix), having a much lower trans-
missivity, responds much later. The combined effect of the
two porosities gives rise to the second semilog straight line.
The two straight lines are separated by a transition period
during which the pressure tends to stabilize.

The first straight line reflects the transient radial flow
through the fractures and, thus, its slope is used to deter-
mine the system permeability—thickness product. However,
because the fracture storage is small, the fluid in the frac-
tures is quickly depleted with a combined rapid pressure
decline in the fractures. This pressure drop in the fracture
allows more fluid to flow from the matrix into the fractures,
which causes a slowdown in the pressure decline rate (as
shown in Figure 1.61 by the transition period). As the matrix
pressure approaches the pressure of the fractures, the pres-
sure is stabilized in the two systems and yields the second
semilog straight line. It should be pointed out that the first
semilog straight line may be shadowed by wellbore storage
effects and might not be recognized. Therefore, in practice,
only parameters characterizing the homogeneous behavior
of the total system k¢h can be obtained.

Figure 1.62 shows the pressure buildup data for a nat-
urally fractured reservoir. As for the drawdown, wellbore
storage effects may obscure the first semilog straight line.
If both semilog straight lines develop, analysis of the total
permeability-thickness product is estimated from the slope
m of either straight line and the use of Equation 1.3.8, or:

162.6QB
(ki) = 2025981
m
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Figure 1.62 Buildup curve from a fractured reservoir (After Warren and Root, 1963).

The skin factor s and the false pressure p* are calculated as
described by using the second straight line. Warren and Root
indicated that the storativity ratio @ can be determined from
the vertical displacement between the two straight lines,
identified as Ap in Figures 1.61 and 1.62, by the following
expression:

o = 1022/ [1.5.10]

Bourdet and Gringarten (1980) indicated that by drawing
a horizontal line through the middle of the transition curve
to intersect with both semilog straight lines, as shown in
Figures 1.61 and 1.62, the interporosity flow coefficient A
can be determined by reading the corresponding time at the
intersection of either of the two straight lines, e.g. ; or f5, and
applying the following relationships:
In drawdown tests:

L[ [ @hedmpri] T 1 (phe)mprl
_|:1—w]_ 1781kt ]_[l—a)][ 1781kt ]
[1.5.11]

In buildup tests:

" [ o (Phemurl] (t, + At
T ll1-w]| 1.781kt, At )y

or:
1 [ (phedmurZ] (t, + At
A= v 1.5.12
|:1—w:| | 1.781kst, At >2 [1.5.12]
where:
k¢ = permeability of the fracture, md

¢, = producing time before shut-in, hours
rw = wellbore radius, ft
1 = viscosity, cp

The subscripts 1 and 2 (e.g., t;) refer to the first and second
line time intersection with the horizontal line drawn through
the middle of the transition region pressure response during
drawdown or buildup tests.

The above relationships indicate that the value of A is
dependent on the value of w. Since w is the ratio of fracture
to matrix storage, as defined in terms of the fofal isother-
mal compressibility coefficients of the matrix and fissures
by Equation 1.5.8, thus:

1
1+rmm@mq

(eh); (o)

it suggests that w is also dependent on the PVT properties
of the fluid. It is quite possible for the oil contained in the
fracture to be below the bubble point while the oil contained
in the matrix is above the bubble point. Thus,  is pressure
dependent and, therefore, A is greater than 10, so the level
of heterogeneity is insufficient for dual porosity effects to be
of importance and the reservoir can be treated with a single
porosity.

Example 1.34 The pressure buildup data as presented
by Najurieta (1980) and Sabet (1991) for a double-porosity
system is tabulated below:

At (hr) Pws (psi) e
0.003 6617 31000000
0.017 6632 516 668
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Figure 1.63 Semilog plot of the buildup test data (After Sabet, M. A. Well Test Analysis 7991, Gulf Publishing
Company).
At (hr) Pws (psi) bt and:
0.033 6644 358334 fy = 20883 o6 ma
0.067 6650 129168 17
0.133 6654 64 544 Step 4. Determine the vertical distance Ap between the two
0.267 6661 32293 straight lines:
0.533 6666 16147 .
1.067 6669 8074 Ap =25 psi
2133 6678 4038 Step 5. Calculate the storativity ratio o from Equation 1.5.10:
4.267 6685 2019 L0~ 89/ _ 10-C5/) _ g, 165
8.533 6697 1010 w= = =Y.
17.067 6704 506 Step 6. Draw a horizontal line through the middle of the
34.133 6712 253 transition region to intersect with the two semilog
] . ] ] . straight lines. Read the corresponding time at the
The following additional reservoir and fluid properties are second intersection, to give:
available: ¢4 A
i = 6789.5 psi, pus at ar—0 = 6352 psi, ( P A ) = 20000
2
= 2554 STB/day, B, = 2.3 bbl/STB, .
% /day, By / Step 7. Calculate A from Equation 1.5.12:

1o = 1cp, £, = 8611 hours
7w = 0.3751t, ¢, = 8.17 x 1076 psi~!, ¢, = 0.21
km :O.lmd,hm =171t

Estimate w and A.

Solution

Step 1. Plot pys vs. (f, + At) /At on a semilog scale as shown
in Figure 1.63.

Figure 1.63 shows two parallel semilog straight lines
with a slope of m = 32 psi/cycle.

Calculate (k:h) from the slope m:

Step 2.

Step 3.

162.6(2556) (2.3) (1.0)
32

162.6Q,B, 110
(kih) = QB
m

=29848.3 md ft

" 1 (phe)mur? tp+At>
T ll1-w]|| 1.781kt, At ),

_ 1
T [1-0.165

[ (0.21) (17) (8.17 x 10-5) (1) (0. 375)?
x 1.781(1756) (8611)

=3.64x107°

] (20000)

It should be noted that pressure behavior in a naturally
fractured reservoir is similar to that obtained in a layered
reservoir with no crossflow. In fact, in any reservoir system
with two predominant rock types, the pressure buildup
behavior is similar to that of Figure 1.62.

Gringarten (1987) pointed out that the two straight lines
on the semilog plot may or may not be present depending
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Figure 1.64 Dual-porosity behavior shows as two parallel semilog straight lines on a semilog plot, as a minimum on a

derivative plot.

on the condition of the well and duration of the test. He
concluded that the semilog plot is not an efficient or suf-
ficient tool for identifying double-porosity behavior. In the
log-log plot, as shown in Figure 1.62, the double-porosity
behavior yields an S-shaped curve. The initial portion of the
curve represents the homogeneous behavior resulting from
depletion in the most permeable medium, e.g., fissures. A
transition period follows and corresponds to the interporos-
ity flow. Finally, the last portion represents the homogeneous
behavior of both media when recharge from the least per-
meable medium (matrix) is fully established and pressure
is equalized. The log-log analysis represents a significant
improvement over conventional semilog analysis for identi-
fying double-porosity behavior. However, S-shape behavior
is difficult to see in highly damaged wells and well behav-
ior can then be erroneously diagnosed as homogeneous.

Furthermore, a similar S-shape behavior may be found in
irregularly bounded well drainage systems.

Perhaps the most efficient means for identifying double-
porosity systems is the use of the pressure derivative plot.
It allows unambiguous identification of the system, provided
that the quality of the pressure data is adequate and, more
importantly, an accurate methodology is used in calculating
pressure derivatives. As discussed previously, the pressure
derivative analysis involves a log-log plot of the derivative
of the pressure with respect to time versus elapsed time.
Figure 1.64 shows the combined log-log plot of pressure
and derivative versus time for a dual-porosity system. The
derivative plot shows a “minimum” or a “dip” on the pressure
derivative curve caused by the interporosity flow during the
transition period. The “minimum” is between two horizon-
tal lines; the first represents the radial flow controlled by
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Figure 1.65 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).

the fissures and the second describes the combined behav-
ior of the double-porosity system. Figure 1.64 shows, at early
time, the typical behavior of wellbore storage effects with the
deviation from the 45° straight line to a maximum represent-
ing a wellbore damage. Gringarten (1987) suggested that
the shape of the minimum depends on the double-porosity
behavior. For a restricted interporosity flow, the minimum
takes a V-shape, whereas unrestricted interporosity yields
an open U-shaped minimum.

Based on Warren and Root’s double-porosity theory
and the work of Mavor and Cinco (1979), Bourdet and
Gringarten (1980) developed specialized pressure type
curves that can be used for analyzing well test data in dual-
porosity systems. They showed that double-porosity behav-
ior is controlled by the following independent variables:

Pp
tn/Cp
CDGZS
w
)Le—Zs

with the dimensionless pressure pp and time #, as defined
kih

below:
141.2QBp ] AP

pp = [
o 0.0002637kt _ 0.0002637kt
P T 1 @uedr + @ueomlnrz — @uedismur?

where:

k = permeability, md
t = time, hours

= viscosity, cp
rw = wellbore radius, ft

and subscripts:

f = fissure
m = matrix
f + m = total system
D = dimensionless

Bourdet et al. (1984) extended the practical applications
of these curves and enhanced their use by introducing the
pressure derivative type curves to the solution. They devel-
oped two sets of pressure derivative type curves as shown
in Figures 1.65 and 1.66. The first set, i.e., Figure 1.65, is
based on the assumption that the interporosity flow obeys
the pseudosteady-state flowing condition and the other set
(Figure 1.66) assumes transient interporosity flow. The use
of either set involves plotting the pressure difference Ap and
the derivative function, as defined by Equation 1.5.4 for draw-
down tests or Equation 1.5.5 for buildup tests, versus time
with same size log cycles as the type curve. The controlling
variables in each of the two type curve sets are given below.

First type curve set: pseudo steady-state interporosity
flow The actual pressure response, i.e., pressure difference
Ap, is described by the following three component
curves:

(1) At early times, the flow comes from the fissures (most
permeable medium) and the actual pressure difference
plot, i.e., Ap curve, matches one of the homogeneous
curves thatislabeled (Cpe®) with a corresponding value
of (Cpe®); that describes the fissure flow. This value is
designated as [(Cpe®)¢]y.

(2) As the pressure difference response reaches the tran-

sition regime, Ap deviates from the Cpe® curve and

follows one of the transition curves that describes this

flow regime by re~%, designated as [Ae ]y,.

Finally, the pressure difference response leaves the tran-

sition curve and matches a new Cpe® curve below

the first one with a corresponding value of (Cpe®);
that describes the total system behavior, i.e., matrix and
fissures. This value is recorded as [(Cpe®) 4 mn-

®

On the pressure derivative response, the storativity ratio
o defines the shape of the derivative curve during the
transition regime that is described by a “depression” or a
“minimum.” The duration and depth of the depression are
linked by the value of w; a small o produces a long and
therefore deep transition. The interporosity coefficient A is
the second parameter defining the position of the time axis
of the transition regime. A decrease of A value moves the
depression to the right side of the plot.
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Figure 1.66 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).

As shown in Figure 1.65, the pressure derivative plots
match on four component curves:

(1) The derivative curve follows the fissure flow curve
[(Coe®)¢ln.

(2) The derivative curve reaches an early transition period,
expressed by a depression and described by an early
transition curve [A(Cp)f 4+ m/0(1 — w)]y.

(3) The derivative pressure curve then matches a late
transition curve labeled [A (Cp)¢sm/ (1 — @)1y-

(4) The total system behavior is reached on the 0.5 line.

Second type curve set: transient interporosity flow As
developed by Bourdet and Gringarten (1980) and expanded
by Bourdet et al. (1984) to include the pressure derivative
approach, this type curve is built in the same way as for the
pseudosteady-state interporosity flow. As shown in Figure
1.66, the pressure behavior is defined by three component
curves, (Cpe®)t, B\, and (Cpe®)i; . The authors defined
B\ as the interporosity dimensionless group and given by:

s [ (cDeZS)Hm]

Ae—2s

where the parameter § is the shape coefficient with assigned
values as given below:

8§ = 1.0508 for spherical blocks
§ = 1.8914 for slab matrix blocks

As the first fissure flow is short-lived with transient inter-
porosity flow models, the (Cpe®); curves are not seen in
practice and therefore have not been included in the deriva-
tive curves. The dual-porosity derivative response starts on
the derivative of a 8\ transition curve, then follows a late
transition curve labeled A (Cp)4m/ (1 — w)? until it reaches
the total system regime on the 0.5 line.

Bourdet (1985) points out that the pressure derivative
responses during the transition flow regime are very differ-
ent between the two types of double-porosity model. With the
transient interporosity flow solutions, the transition starts
from early time and does not drop to a very low level.
With pseudosteady-state interporosity flow, the transition
starts later and the shape of the depression is much more
pronounced. There is no lower limit for the depth of the
depression when the flow from the matrix to the fissures
follows the pseudosteady-state model, whereas for the inter-
porosity transient flow the depth of the depression does not
exceed 0.25.

In general, the matching procedure and reservoir param-
eters estimation as applied to the type-curve of Figure 1.66
can be summarized by the following steps:

Step 1. Using the actual well test data, calculate the pressure
difference Ap and the pressure derivative plotting
functions as defined by Equation 1.5.4 for drawdown
or Equation 1.5.5 for buildup tests, i.e.,:

For drawdown tests:

The pressure difference Ap = p; — pwr

The derivative function tAp\ = —¢ (%)

For buildup tests:

The pressure difference Ap = pws — Dwt at ar=0
t,+ A\ [d(Ap)
At d(At)

The derivative function At Ap\ = At (

Step 2. On tracing paper with the same size log cycles as in
Figure 1.66, plot the data of step 1 as a function of
flowing time ¢ for drawdown tests or equivalent time
At for buildup tests.
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Step 3. Place the actual two sets of plots, i.e., Ap and deriva-
tive plots, on Figure 1.65 or Figure 1.66 and force a
simultaneous match of the two plots to Gringarten—
Bourdet type curves. Read the matched derivative
curve [AM(Cp)i 4 m/ (1 — @)1y

Step 4. Choose any point and read its coordinates on both
Figures to give:

(Ap,pp)mp  and (£ or Ate,tp/Cp)mp

Step 5. With the match still maintained, read the values
of the curves labeled (Cpe®) which match the ini-
tial segment of the curve [(Cpe®);]y and the final
segment [(Cpe®) s, 1y of the data curve.

Step 6. Calculate the well and reservoir parameters from the
following relationships:

[(Cpe®)trmlu
= DRED€ Jtemly 15.13
[(Coe®)¢lm [ ]
ke = 141.2QBy (1’3) md ft [1.5.14]
Ap Jwp
0.000295khT  (AB)yp
c— 15.15
[ p } Co/Corr [15.15]
0.8926C
(CD)f+m = W [1-5-16]
[(CDezs)f+m]M]
—0.51n | LEDE ) temly 15.17
s “[ Corem (15,171
)L(CD)[+mj| (1 - w)?
A= : 15.18
[ T—o)? |y Corom [1.5.18]

The selection of the best solution between the
pseudosteady-state and the transient interporosity flow
is generally straightforward; with the pseudosteady-state
model, the drop of the derivative during transition is a
function of the transition duration. Long transition regimes,
corresponding to small w values, produce derivative levels
much smaller than the practical 0.25 limit of the transient
solution.

The following pressure buildup data as given by Bour-
det et al. and reported conveniently by Sabet (1991) is
used below as an example to illustrate the use of pressure
derivative type curves.

Example 1.35 Table 1.8 shows the pressure buildup and
pressure derivative data for a naturally fractured reservoir.
The following flow and reservoir data is also given:

Q =960 STB/day, B, = 1.28 bbl/STB,
¢ =1x10"%psi-l, ¢ =0.007,
uw=1cp, rn =0.291t, h=361t

It is reported that the well was opened to flow at a rate of
2952 STB/day for 1.33 hours, shut-in for 0.31 hours, opened
again at the same rate for 5.05 hours, closed for 0.39 hours,
opened for 31.13 hours at the rate of 960 STB/day, and then
shut-in for the pressure buildup test.

Analyze the buildup data and determine the well and
reservoir parameters assuming transient interporosity flow.

Solution

Step 1. Calculate the flowing time £, as follows:
Total oil produced = Np

_ 29&[1. 33 +5.05] + @31. 13 ~ 2030 STB
7 24
24) (2
t, = % = 50.75 hours

Table 1.8 Pressure Buildup Test, Naturally Fractured
Reservoir. After Sabet, M. A. “Well Test Analysis” 1991,
Gulf Publishing Company

At Abws t,+ At Slope AP #
(hr) (psi) At (psi/hr) (osi)

0.00000E400  0.000 3180.10

3.48888E—03 11.095 14547.22 1727.63 8.56
9.04446E—03 20.693 5612.17  847.26 11.65
1.46000E—02 25400 3477.03  486.90 9.74
2.01555E—02 28.105 2518.92 337.14 8.31
2.57111E—02 29.978 1974.86  257.22 7.64
3.12666E—02 31.407 1624.14  196.56 7.10
3.68222E—02 32.499 137924  159.66 6.56
4.23777E—02 33.386 119856  127.80 6.10
4.79333E—-02 34.096 1059.76  107.28 5.64
5.90444E—02 35283  860.52 83.25 5.63
7.01555E—02 36.213  724.39 69.48 5.36
8.12666E—02 36.985 625.49 65.97 5.51
9.23777E—02 37.718  550.38 55.07 5.60
0.10349 38.330  491.39 48.83 5.39
0.12571 39.415 404.71 43.65 5.83
0.14793 40.385  344.07 37.16 5.99
0.17016 41.211 299.25 34.38 6.11
0.19238 41.975 264.80 29.93 6.21
0.21460 42.640  237.49 28.85 6.33
0.23682 43.281 215.30 30.96 7.12
0.25904 43.969 196.92 25.78 7.39
0.28127 44.542 18143 24.44 7.10
0.30349 45.085 168.22 25.79 7.67
0.32571 45.658  156.81 20.63 7.61
0.38127 46.804  134.11 18.58 7.53
0.43682 47.836 117.18 17.19 7.88
0.49238 48.791  104.07 16.36 8.34
0.54793 49.700 93.62 15.14 8.72
0.60349 50.541 85.09 12.50 8.44
0.66460 51.305 77.36 12.68 8.48
0.71460 51.939 72.02 11.70 8.83
0.77015 52.589 66.90 11.14 8.93
0.82571 53.208 62.46 10.58 9.11
0.88127 53.796 58.59 10.87 9.62
0.93682 54.400 55.17 8.53 9.26
0.99238 54.874 52.14 10.32 9.54
1.04790 55.447 49.43 7.70 9.64
1.10350 55.875 46.99 8.73 9.26
1.21460 56.845 42.78 7.57 10.14
1.32570 57.686 39.28 591 9.17
1.43680 58.343 36.32 6.40 9.10
1.54790 59.054 33.79 6.05 9.93
1.65900 59.726 31.59 5.57 9.95
1.77020 60.345 29.67 5.44 10.08
1.88130 60.949 27.98 4.74 9.93
1.99240 61.476 26.47 4.67 9.75
2.10350 61.995 25.13 4.34 9.87
2.21460 62.477 23.92 3.99 9.62
2.43680 63.363 21.83 3.68 9.79
2.69240 64.303 19.85 3.06° 9.55¢
2.91460 64.983 18.41 3.16 9.59
3.13680 65.686 17.18 2.44 9.34
3.35900 66.229 16.11 19.72 39.68

a(64.983 — 64.303) /(2. 9146 — 2.69240) = 3. 08.
b(3.68 + 3.06) /2] x 19.85 x 2.692402/50.75 = 9.55.
Adapted from Bourdet et al. (1984).

Step 2. Confirm the double-porosity behavior by construct-
ing the Horner plot as shown in Figure 1.67. The
graph shows the two parallel straight lines confirm-
ing the dual-porosity system.
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Figure 1.67 The Horner plot; data from Table 1.8 (After Sabet, M. A. Well Test Analysis 71991, Gulf Publishing
Company).
Step 3. Using the same grid system of Figure 1.66, plot shows that Ap is about 11 psi and Equation 1.5.10

Step 4.

Step 5.

the actual pressure derivative versus shut-in time as
shown in Figure 1.68(a) and Apys versus time (as
shown in Figure 1.68(b)). The 45° line shows that the
test was slightly affected by the wellbore storage.
Overlay the pressure difference and pressure deriva-
tive plots over the transient interporosity type curve,
as shown in Figure 1.69, to give the following
matching parameters:

[p—n} =0.053
AD v

[tD/CD:| — 9270
At yp
)‘(CD)erm _
[7(1 — o) ]M =0.03

[(Cpe®)ily = 33.4
[(Coe®)i1mly = 0.6

Calculate the well and reservoir parameters by
applying Equations 1.5.13 through 1.5.18 to give:

0.6
=g = 0.018

_ [(Coe®)iimln
[(Cpe®)¢ln

Kazemi (1969) pointed out that if the vertical sepa-
ration between the two parallel slopes Ap is less the
100 psi, the calculation of w by Equation 1.5.10 will
produce a significant error in its values. Figure 1.67

gives an erroneous value of:

w =10"/m — 10-02) — 0,316

Also:
ke = 141.2QBy <LD)
Ap ) wp
= 141.2(960) (1) (1. 28) (0. 053) = 9196 md ft
C— |:0. 000295kfh:| (At)mp

- W (Co/Co)mp

_ (0.000295) (9196) _ .

= qoen - 0.01 bbl/psi

0.8926C

(CD)f+m = ¢Cth7‘,2v

_ (0.8936) (0.01)
~(0.07) (1 x 10-5)(36)90. 29)2

[(CDezs)f+m]M:|
(Cp)itm

=0.5In [ﬁ] =—

= 4216

s=0.51n|:

4216

_ [MCD)t4m
v o]

(1-w)?
M (CD)f+m

(1-0.018)2

=0.09 [ 4216

:| =6.86 x 107°
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Figure 1.69 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).
Layered reservoirs total permeability—thickness and porosity—compressibility—

The pressure behavior of a no-crossflow multilayered reser-
voir with communication only at the wellbore will behave
significantly different from a single-layer reservoir. Lay-
ered reservoirs can be classified into the following three
categories:

(1) Crossflow layered reservoirs are those which communi-
cate both in the wellbore and in the reservoir.

(2) Commingled layered reservoirs are those which commu-
nicate only in the wellbore. A complete permeability
barrier exists between the various layers.

() Composite reservoirs are made up of commingled zones
and some of the zones consist of crossflow layers.
Each crossflow layer behaves on tests as if it were an
homogeneous and isotropic layer; however, the compos-
ite reservoir should behave exactly as a commingled
reservoir.

Some layered reservoirs behave as double-porosity reser-
voirs when in fact they are not. When reservoirs are charac-
terized by layers of very low permeabilities interbedded with
relatively thin high-permeability layers, they could behave
on well tests exactly as if they were naturally fractured sys-
tems and could be treated with the interpretation models
designed for double-porosity systems. Whether the well pro-
duces from a commingled, crossflow, or composite system,
the test objectives are to determine skin factor, permeability,
and average pressure.

The pressure response of crossflow layered systems dur-
ing well testing is similar to that of homogeneous systems
and can be analyzed with the appropriate conventional
semilog and log-log plotting techniques. Results of the
well test should be interpreted in terms of the arithmetic

thickness products as given by:

n layers

(ki) = Y (kh);

i=1

n layers
(pech)e = Z (pcih);
i=1
Kazemi and Seth (1969) proposed that if the total
permeability-thickness product (kk), is known from a well
test, the individual layer permeability k; may be approxi-
mated from the layer flow rate ¢; and the total flow rate ¢; by
applying the following relationship:

4 (kh)¢
kl_qt[ hi j|

The pressure buildup behavior of a commingled two-
layer system without crossflow is shown schematically in
Figure 1.70. The straight line AB that follows the early-time
data gives the proper value of the average flow capacity
(kh); of the reservoir system. The flattening portion BC
analogous to a single-layer system attaining statistic pres-
sure indicates that the pressure in the more permeable zone
has almost reached its average value. The portion CD rep-
resents a repressurization of the more permeable layer by
the less depleted, less permeable layer with a final rise DE
at the stabilized average pressure. Notice that the buildup
is somewhat similar to the buildup in naturally fractured
reservoirs.

Sabet (1991) points out that when a commingled system is
producing under the pseudosteady-state flow condition, the
flow rate from any layer ¢; can be approximated from total




WELL TESTING ANALYSIS  1/93

102
A/(t+ AD)

1073 101 1

Figure 1.70 Theoretical pressure buildup curve for
two-layer reservoir (Copyright ©1961 SPE, Lefkovits
et al., SPEJ, March 1961).

flow rate and the layer storage capacity ¢c s from:

Gi=q (pech)
T T e,

1.5.4 Hydraulically fractured reservoirs

A fracture is defined as a single crack initiated from the
wellbore by hydraulic fracturing. It should be noted that
fractures are different from “fissures,” which are the for-
mation of natural fractures. Hydraulically induced fractures
are usually vertical, but can be horizontal if the formation is
less than approximately 3000 ft deep. Vertical fractures are
characterized by the following properties:

e fracture half-length x;, ft;

e dimensionless radius 7.p, where 7.p = 7./%;

e fracture height &, which is often assumed equal to the
formation thickness, ft;

e fracture permeability k¢, md;

fracture width wy, ft;

e fracture conductivity F¢, where F¢ = kewy.

The analysis of fractured well tests deals with the iden-
tification of well and reservoir variables that would have an
impact on future well performance. However, fractured wells
are substantially more complicated. The well-penetrating
fracture has unknown geometric features, i.e., x;, ws, and
h¢, and unknown conductivity properties.

Gringarten et al. (1974) and Cinco and Samaniego (1981),
among others, propose three transient flow models to con-
sider when analyzing transient pressure data from vertically
fractured wells. These are:

(1) infinite conductivity vertical fractures;
(2) finite conductivity vertical fractures;
(3) uniform flux fractures.

Descriptions of the above three types of fractures are given
below.

Infinite conductivity vertical fractures

These fractures are created by conventional hydraulic frac-
turing and characterized by a very high conductivity, which
for all practical purposes can be considered as infinite. In
this case, the fracture acts similar to a large-diameter pipe
with infinite permeability and, therefore, there is essentially

no pressure drop from the tip of the fracture to the wellbore,
i.e., no pressure loss in the fracture. This model assumes
that the flow into the wellbore is only through the fracture
and exhibits three flow periods:

(1) fracture linear flow period;
(2) formation linear flow period;
(3) infinite-acting pseudoradial flow period.

Several specialized plots are used to identify the start and
end of each flow period. For example, an early-time log—log
plot of Ap vs. At will exhibit a straight line of half-unit slope.
These flow periods associated with infinite conductivity frac-
tures and the diagnostic specialized plots will be discussed
later in this section.

Finite conductivity fractures

These are very long fractures created by massive hydraulic
fracture (MHF). These types of fractures need large quan-
tities of propping agent to keep them open and, as a result,
the fracture permeability k¢ is reduced as compared to that of
the infinite conductivity fractures. These finite conductivity
vertical fractures are characterized by measurable pressure
drops in the fracture and, therefore, exhibit unique pressure
responses when testing hydraulically fractured wells. The
transient pressure behavior for this system can include the
following four sequence flow periods (to be discussed later):

(1) initially “linear flow within the fracture”;

(2) followed by “bilinear flow”;

(3) then “linear flow in the formation”; and

(4) eventually “infinite acting pseudoradial flow.”

Uniform flux fractures

A uniform flux fracture is one in which the reservoir fluid
flow rate from the formation into the fracture is uniform
along the entire fracture length. This model is similar to the
infinite conductivity vertical fracture in several aspects. The
difference between these two systems occurs at the bound-
ary of the fracture. The system is characterized by a variable
pressure along the fracture and exhibits essentially two flow
periods;

(1) linear flow;
(2) infinite-acting pseudoradial flow.

Except for highly propped and conductive fractures, it is
thought that the uniform-influx fracture theory better repre-
sents reality than the infinite conductivity fracture; however,
the difference between the two is rather small.

The fracture has a much greater permeability than the
formation it penetrates; hence it influences the pressure
response of a well test significantly. The general solution
for the pressure behavior in a reservoir is expressed in
terms of dimensionless variables. The following dimension-
less groups are used when analyzing pressure transient data
in a hydraulically fractured well:

Diffusivity group g = 2% [15.19]
ke
. 0.0002637k rvzv
Time group oy = —_— t=1Ip -
PLCXf X
[1.5.20]
.. ki we  Fc
Conductivity group Fcp = T ha [1.5.21]
Storage group Cpy = 0.8937C [1.5.22]

pech?
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Figure 1.71 Flow periods for a vertically fractured well (After Cinco and Samaniego, JPT, 1981).

khAD

P =———_ foroil 1.5.2
ressure group pp 141208, or oi [1.5.23]
khAm(p)
D = 142407 for gas [1.5.24]

Te
Fracture group 7.p = —
Xt

where:
x¢ = fracture half-length, ft
wp = fracture width, ft

ki = fracture permeability, md
k = pre-frac formation permeability, md
tpy; = dimensionless time based on the fracture
half-length x¢
t = flowing time in drawdown, At or At,. in buildup,
hours
T = Temperature, °R
F¢ = fracture conductivity, md ft
Fcp = dimensionless fracture conductivity
n = hydraulic diffusivity
¢ = total compressibility of the fracture, psi~!

Notice that the above equations are written in terms of
the pressure drawdown tests. These equations should be
modified for buildup tests by replacing the pressure and time
with the appropriate values as shown below:

Test Pressure Time
Drawdown — Ap = pi — Pur t
BUIldup Ap = pws — Dwf at at=0 At or At

In general, afracture could be classified as an infinite conduc-
tivity fracture when the dimensionless fracture conductivity
is greater than 300, i.e., Fcp > 300.

There are four flow regimes, as shown conceptually in
Figure 1.71, associated with the three types of vertical
fractures. These are:

(1) fracture linear flow;

(2) bilinear flow;

(3) formation linear flow;

(4) infinite-acting pseudoradial flow.

These flow periods can be identified by expressing the
pressure transient data in different type of graphs. Some of
these graphs are excellent tools for diagnosis and identifica-
tion of regimes since test data may correspond to different
flow periods.

There are specialized graphs of analysis for each flow
period that include:

e agraph of Ap vs. +/time for linear flow;

e agraph of Ap vs. vtime for bilinear flow;

e agraph of Apvs.log(time) for infinite-acting pseudoradial
flow.

These types of flow regimes and the diagnostic plots are
discussed below.

Fracture linear flow This is the first flow period which
occurs in a fractured system. Most of the fluid enters the
wellbore during this period of time as a result of expansion
within the fracture, i.e., there is negligible fluid coming from
the formation. Flow within the fracture and from the fracture
to the wellbore during this time period is linear and can be
described by the diffusivity equation as expressed in a linear
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form and is applied to both the fracture linear flow and for-
mation linear flow periods. The pressure transient test data
during the linear flow period can be analyzed with a graph of
Ap vs. v/time. Unfortunately, the fracture linear flow occurs
at very early time to be of practical use in well test analysis.
However, if the fracture linear flow exists (for fractures with
Fcp > 300), the formation linear flow relationships as given
by Equations 1.5.19 through 1.5.24 can be used in an exact
manner to analyze the pressure data during the formation
linear flow period.

If fracture linear flow occurs, the duration of the flow
period is short, as it often is in finite conductivity fractures
with Fcp < 300, and care must be taken not to misinterpret
the early pressure data. It is common in this situation for
skin effects or wellbore storage effects to alter pressures to
the extent that the linear flow straight line does not occur
or is very difficult to recognize. If the early-time slope is
used in determining the fracture length, the slope ¢ will
be erroneously high, the computed fracture length will be
unrealistically small, and no quantitative information will be
obtained regarding flow capacity in the fracture.

Cinco et al. (1981) observed that the fracture linear flow
ends when:

0.01(Fcp)?
tog X — 5

(nm)

Bilinear flow This flow period is called bilinear flow because
two types of linear flow occur simultaneously. As originally
proposed by Cinco (1981), one flow is a linear incompressible
flow within the fracture and the other is a linear compressible
flow in the formation. Most of the fluid which enters the
wellbore during this flow period comes from the formation.
Fracture tip effects do not affect well behavior during bilinear
flow and, accordingly, it will not be possible to determine
the fracture length from the well bilinear flow period data.
However, the actual value of the fracture conductivity F can
be determined during this flow period. The pressure drop
through the fracture is significant for the finite conductivity
case and the bilinear flow behavior is observed; however, the
infinite conductivity case does not exhibit bilinear flow behavior
because the pressure drop in the fracture is negligible. Thus,
identification of the bilinear flow period is very important for
two reasons:

(1) It will not be possible to determine a unique fracture
length from the well bilinear flow period data. If this
data is used to determine the length of the fracture, it
will produce a much smaller fracture length than the
actual.

(2) The actual fracture conductivity k¢w; can be determined
from the bilinear flow pressure data.

Cinco and Samaniego suggested that during this flow
period, the change in the wellbore pressure can be described
by the following expressions.

For fractured oil wells In terms of dimensionless
pressure:

2.451

pp = [7] (tpe)
~Fep i

Taking the logarithm of both sides of Equation 1.5.25 gives:

[1.5.25]

2.451 1
log (pp) = log [m] —+ i log (tpy,) [1.5.26]
In terms of pressure:
44.1QBu ] 14
_ -F 1.5.27
? [hch(Wctk)w 15271

or equivalently:
Ap = mpt't

Taking the logarithm of both sides of the above expression
gives:

1
log(Ap) = log (mur) + 7 log(?) [1.5.28]
with the bilinear slope ., as given by:
e — [ 44.1QBu ]
" LR (uak)
where F¢ is the fracture conductivity as defined by:
Fc = ksws [1.5.29]
For fractured gas wells In a dimensionless form:
2.451
— tox 1/4
b [ TCD] (tow)
or:
2.451 1
1 =log | —— 1 1.5.
og(mp) = log [«/ﬁ] +3 og (fpx;) [1.5.30]
In terms of m(p):
444.6QT 14

Am@p) = ——— 1.5.31

® [h«/Fc (¢uctk)1/“] [ ]
or equivalently:
Am(p) = st [1.5.32]

Taking the logarithm of both sides gives:
1
log[Am(p)] = log (my) + 1 log (#)

Equations 1.5.27 and 1.5.31 indicate that a plot of Ap or
Am(p) vs. (time)/* on a Cartesian scale would produce a
straight line passing through the origin with a slope of “m
(bilinear flow slope) as given by:

For oil:
44.1QBu
_ ) 1.5.33
= R (k) [1.5:33]

The slope can then be used to solve for fracture conductiv-
1ty F C-

_[ 44.1QBu T
7 L mih(pck) /A
For gas:
444.6QT
="t 1.5.34
" W ey 534
with:

[ 444.6QT 7
€7 Umpth(prcd)7*

It should be noted that if the straight-line plot does not pass
through the origin, it indicates an additional pressure drop
“Aps” caused by flow restriction within the fracture in the
vicinity of the wellbore (chocked fracture; where the fracture
permeability just away from the wellbore is reduced). Exam-
ples of restrictions that cause a loss of resulting production
include:

e inadequate perforations;

e turbulent flow which can be reduced by increasing the
proppant size or concentration;

e overdisplacement of proppant;

o Kkill fluid was dumped into the fracture.

Similarly, Equations 1.5.28 and 1.5.32 suggest that a plot of
Ap or Am(p) versus (time) on a log—log scale would produce
a straight line with a slope of m,; = % and which can be used
as a diagnostic tool for bilinear flow detection.

When the bilinear flow ends, the plot will exhibit curva-
ture which could concave upwards or downwards depending
upon the value of the dimensionless fracture conductivity
Fcp, as shown in Figure 1.72. When the values of Fcp is
< 1.6, the curve will concave downwards, and will concave
upwards if Fcp > 1.6. The upward trend indicates that the
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FCD<1.6
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Figure 1.72 Graph for analysis of pressure data of
bilinear flows (After Cinco and Samaniego, 1981).

fracture tip begins to affect wellbore behavior. If the test
is not run sufficiently long for bilinear flow to end when
Fcp > 1.6, it is not possible to determine the length of
the fracture. When the dimensionless fracture conductivity
Fcp < 1.6, it indicates that the fluid flow in the reservoir has
changed from a predominantly one-dimensional linear flow
to a two-dimensional flow regime. In this particular case, it
is not possible to uniquely determine fracture length even if
bilinear flow does end during the test.

Cinco and Samaniego pointed out that the dimensionless
fracture conductivity Fcp can be estimated from the bilinear
flow straight line, i.e., Ap vs. (time) v 4 by reading the value
of the pressure difference Ap at which the line ends Apeys
and applying the following approximation:

, 194. 9B,
F | Fp= ——— 1.5.35
o O D = T bt [1.5.35]
1965.1QT
F Fp= —— 1.5.36
oreas Feo = 4o n B [1.5.36]
where:

@ = flow rate, STB/day or Mscf/day
T = temperature, °R

The end of the bilinear flow, “ebf,” straight line depends
on the fracture conductivity and can be estimated from the
following relationships:

0.1
For Fcp > 3 IDebf = W

For 1.6 < Fcp <3 tpept =~ 0.0205[Fcp — 1.5]7+%

4.55 -
t[) bf == |: — 25]
¢ vFcp

The procedure for analyzing the bilinear flow data is sum-
marized by the following steps:

For Fcp < 1.6

Step 1. Make a plot of Ap versus time on a log-log scale.
Step 2. Determine if any data fall on a straight line with a i
slope.

Step 3. If data points do fall on the straight line with a i
slope, replot the data in terms of Ap vs. (time)l/ *on
a Cartesian scale and identify the data which forms
the bilinear straight line.

Step 4. Determine the slope of the bilinear straight line ¢
formed in step 3.

Step 5. Calculate the fracture conductivity Fc = krw; from
Equation 1.5.33 or Equation 1.5.34:

o [ 44.1QBu 7
Foroil Fc = (kewy) = [W]

444.6QT 7

For gas Fc = (kawy) = [W]

Step 6. Read the value of the pressure difference at which
the line ends, Apeps or Ame (D) e
Step 7. Approximate the dimensionless facture conductivity

from:
. 194.9QBu
Foroil Fep = —— 221
R T
1965.1QT
F Fop = — X0
o Eas I = B Am B e

Step 8. Estimate the fracture length from the mathematical
definition of Fcp as expressed by Equation 1.5.21 and
the value of F¢ of step 5:

— FC

" Fcpk

Xt

Example 1.36 A buildup test was conducted on a frac-
tured well producing from a tight gas reservoir. The follow-
ing reservoir and well parameters are available:

@ = 7350 Mscf/day, t, = 2640 hours

h =1181t, ¢ =0.10

k= 0.025 md, u = 0.0252

T = 690°R, ¢ =0.129 x 1073 psi!
Dwi at ar—0 = 1320 psia, 7, = 0.28 ft

The graphical presentation of the buildup data is given in
terms of the log-log plot of Am(p) vs. (A)Y/4, as shown in
Figure 1.73.

Calculate the fracture and reservoir parameters by per-
forming conventional well testing analysis.

Solution

Step 1. From the plot of Am(p) vs. (Af)/4, in Figure 1.73,
determine:
mpe = 1.6 x 10° psi®/cphr/
tsv 2~ 0.35 hours (start of bilinear flow)
tent &~ 2.5 hours (end of bilinear flow)
Am(B)ent ~ 2.05 x 108 psi®/cp
Step 2. Perform the bilinear flow analysis, as follows:
e Using Equation 1.5.34, calculate fracture conduc-
tivity Fc:
B [ 444.6QT ]2
 Lompgh(puedk) 1/t
3 [ 444.6(7350) (690) T
L (1.62 x 108) (118)[(0.1) (0.0252) (0.129 x 10-3) (0.025)11/4

=154 md ft
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Figure 1.73 Bilinear flow graph for data of Example 1.36 (After Sabet, M. A. Well Test Analysis 71991, Gulf Publishing

Company).

e (alculate the dimensionless conductivity Fcp by using
Equation 1.5.36:

_1965.1QT

T khAM(D) ebt

_ 1965. 1(7350) (690)
~ (0.025)(118) (2.02 x 108)

Fep

=16.7

e Estimate the fracture half-length from Equation 1.5.21:
— FC
= Fcpk

1
~ (16.7)(0.025)

Xf
= 368 ft

Formation linear flow At the end of the bilinear flow, there
is a transition period after which the fracture tips begin to
affect the pressure behavior at the wellbore and a linear flow
period might develop. This linear flow period is exhibited
by vertical fractures whose dimensionless conductivity is
greater that 300, i.e., Fcp > 300. As in the case of fracture
linear flow, the formation linear flow pressure data collected
during this period is a function of the fracture length x;
and fracture conductivity F¢. The pressure behavior during
this linear flow period can be described by the diffusivity
equation as expressed in linear form:

o _ one
ax2 ~ 0.002637k ot
The solution to the above linear diffusivity equation can be

applied to both fracture linear flow and the formation linear
flow, with the solution given in a dimensionless form by:

o = (mtng) "

or in terms of real pressure and time, as:

For oil fractured wells Ap= 4.064QB [ i #1172
hxg ket

or in simplified form as Ap=my/t

40.925QT 1
For gas fractured wells Am(p) = m E—
hx kouct

or equivalently as  Am(p) =myv/t

The linear flow period may be recognized by pressure data
that exhibits a straight line of a % slope on alog-log plot of Ap
versus time, as illustrated in Figure 1.74. Another diagnos-
tic presentation of pressure data points is the plot of Ap or
Am(p) vs. +/time on a Cartesian scale (as shown in Figure
1.75) which would produce a straight line with a slope of m
related to the fracture length by the following equations:

Oil fractured well % = [%} /L [1.5.37]
myih koct
Gas fractured well x; = W 1 [1.5.38]
mych ket

where:
@ = flow rate, STB/day or Mscf/day
T = temperature, °R
my; = slope, psi/v/hr or psi2/cpvhr
k = permeability, md
¢ = total compressibility, psi—!

The straight-line relationships as illustrated by Figures
1.74 and 1.75 provide distinctive and easily recognizable



1/98  WELL TESTING ANALYSIS

Log Ap

lef

Log Time t

Figure 1.74 Pressure data for a %-slope straight line in a log-log graph (After Cinco and Samaniego, 1981).
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Figure 1.75 Square-root data plot for buildup test.

evidence of a fracture. When properly applied, these plots
are the best diagnostic tools available for the purpose of
detecting a fracture. In practice, the 1 slope is rarely seen
exceptin fractures with high conductivity. Finite conductivity
fracture responses generally enter a transition period after
the bilinear flow (the % slope) and reach the infinite-acting
pseudoradial flow regime before ever achieving a % slope
(linear flow). For a long duration of wellbore storage effect,
the bilinear flow pressure behavior may be masked and data
analysis becomes difficult with current interpretation
methods.

Agarwal et al. (1979) pointed out that the pressure data
during the transition period displays a curved portion before

straightening to a line of proper slope that represents the
fracture linear flow. The duration of the curved portion that
represents the transition flow depends on the fracture flow
capacity. The lower the fracture flow capacity, the longer the
duration of the curved portion. The beginning of formation
linear flow, “blf,” depends on Fcp and can be approximated
from the following relationship:

100
tpbis ~ Foo)?

and the end of this linear flow period, “elf,” occurs at
approximately:

topis ~ 0.016

Identifying the coordinates of these two points (i.e., begin-
ning and end of the straight line) in terms of time can be
used to estimate Fcp from:

FCD ~ (0.0125 tel
blf

where f.¢ and #,; are given in hours.

Infinite-acting pseudoradial flow During this period, the
flow behavior is similar to the radial reservoir flow with a
negative skin effect caused by the fracture. The traditional
semilog and log-log plots of transient pressure data can be
used during this period; for example, the drawdown pres-
sure data can be analyzed by using Equations 1.3.1 through
1.3.3. That is:

162.6QoBost

bwi =i — h

X [log(t) +10g( k 5 > -3.23 +O.87s]
pucer,

w

or in a linear form as:

pi — bwt = Ap = a +mlog(?)
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Figure 1.76 Use of the log-log plot to approximate the beginning of pseudoradial flow.

with the slope m of:
= 162.6Q,Bo 1o
kh
Solving for the formation capacity gives:
b — 162.6Q, B, 1o
|

The skin factor s can be calculated by Equation 1.3.3:

s— 1_151[m —log( k 2) +3.23}
] puer?

If the semilog plot is made in terms of Ap vs. ¢, notice that
the slope m is the same when making the semilog plot in

terms of pys vs. ¢. Then:
k
-1 .2
0g <¢MC¢7’3,) +3 3]

Ap 1hr
||

Ap1nr can then be calculated from the mathematical defini-

tion of the slope , i.e., rise/run, by using two points on the

semilog straight line (conveniently, one point could be Ap at

log(10)) to give:

s:1.151[

_ AP at log(10) — Aﬁl hr
~ log(10) —log(1)
Solving this expression for Apy 1, gives:
Apl hr = AP at log(10) — M [1539]

Again, Ap 4 10g(10) must be read at the corresponding point
on the straight line at log (10).

Wattenbarger and Ramey (1968) have shown that an
approximate relationship exists between the pressure
change Ap at the end of the linear flow, i.e., Apgs, and the

beginning of the infinite acting pseudoradial flow, Apy, as
given by:

Aprst = 2APeis [1.5.40]

The above rule is commonly referred to as the “double-Ap
rule” and can be obtained from the log-log plot when the
1 slope ends and by reading the value of Ap, i.e., Apey, at
this point. For fractured wells, doubling the value of Apet
will mark the beginning of the infinite-acting pseudoradial
flow period. Equivalently, a time rule as referred to as
the “10At rule” can be applied to mark the beginning of
pseudoradial flow by:

For drawdown  t#,sf > 10¢¢ [1.5.41]

For buildup A#ys > 10Atys [1.5.42]

which indicates that correct infinite-acting pseudoradial
flow occurs one log cycle beyond the end of the linear flow.
The concept of the above two rules is illustrated graphically
in Figure 1.76.

Another approximation that can be used to mark the
start of the infinite-acting radial flow period for a finite
conductivity fracture is given by:

tobs ~ 5exp[—0.5(Fcp) %1 for Fcp > 0.1

Sabet (1991) used the following drawdown test data, as
originally given by Gringarten et al. (1975), to illustrate
the process of analyzing a hydraulically fractured well test
data.
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Figure 1.77 Log-log plot, drawdown test data of Example 1.37 (After Sabet, M. A. Well Test Analysis 1991, Gulf
Publishing Company).

Example 1.37 The drawdown test data for an infinite
conductivity fractured well is tabulated below:

t (hr) bt (s Ap (ps)) V7 (hr'?)
0.0833 3759.0 11.0 0.289
0.1670 3755.0 15.0 0.409
0.2500 3752.0 18.0 0.500
0.5000 37445 25.5 0.707
0.7500 3741.0 29.0 0.866
1.0000 3738.0 32.0 1.000
2.0000 3727.0 43.0 1414
3.0000 3719.0 51.0 1.732
4.0000 3713.0 57.0 2.000
5.0000 3708.0 62.0 2.236
6.0000 3704.0 66.0 2.449
7.0000 3700.0 70.0 2.646
8.0000 3695.0 75.0 2.828
9.0000 3692.0 78.0 3.000

10.0000 3690.0 80.0 3.162
12.0000 3684.0 86.0 3.464
24.0000 3662.0 108.0 4.899
48.0000 3635.0 135.0 6.928
96.0000 3608.0 162.0 9.798
240.0000 3570.0 200.0 14.142

Additional reservoir parameters are:

h =821t

¢ =21 %107 psi~!,
B, = 1.26 bbl/STB,

Q = 419 STB/day,

¢ =0.12

n=0.65cp
rw = 0.28 ft
pi = 3770 psi

Estimate:

e permeability, k;
o fracture halflength, x;
e skin factor, s.

Solution

Step 1.

Step 2.

Step 3.

Plot:

e Ap vs. t on a log-log scale, as shown in
Figure 1.77;

e Ap vs. v/t on a Cartesian scale, as shown in
Figure 1.78;

e Ap vs. t on a semilog scale, as shown in
Figure 1.79.

Draw a straight line through the early points rep-
resenting log(Ap) vs. log(#), as shown in Figure
1.77, and determine the slope of the line. Figure 1.77
shows a slope of 1 (not 45° angle) indicating lin-
ear flow with no Weilbore storage effects. This linear
flow lasted for approximately 0.6 hours. That is:

ter = 0.6 hours

Aperr = 30 psi
and therefore the beginning of the infinite-acting
pseudoradial flow can be approximated by the “dou-
ble Ap rule” or “one log cycle rule,” i.e., Equations
1.5.40 and 1.5.41, to give:

thst > 10¢¢ > 6 hours

Apvst = 2Apei > 60 psi

From the Cartesian scale plot of Ap vs. V¢, draw a
straight line through the early pressure data points
representing the first 0.3 hours of the test (as shown
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Figure 1.78 Linear plot, drawdown test data of Example 1.37 (After Sabet, M. A. Well Test Analysis 1991, Gulf
Publishing Company).
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Figure 1.79 Semilog plot, drawdown test data from Example 1.37.
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Figure 1.80 Effect of skin on the square root plot.

in Figure 1.79) and determine the slope of the line,
to give:
Myt = 36 psi/hrl/ 2

Determine the slope of the semilog straight line rep-
resenting the unsteady-state radial flow in Figure
1.79, to give:

m = 94. 1 psi/cycle
Calculate the permeability % from the slope:
P 162.6Q,B, 11, 162.6(419) (1. 26) (0. 65)
mh (94.1)(82)

=7.23md

Estimate the length of the fracture half-length from
Equation 1.5.37, to give:

. _[4.064QB] s
Y= T koc

4.064(419) (1. 26) 0.65

(36)(82) (7.23)(0.12) (21 x 10-9)

- N

=137.3 1t

From the semilog straight line of Figure 1.78, deter-
mine Ap at t = 10 hours, to give:

Apat at=10 = 71.7 psi
Calculate Ap; 1, by applying Equation 1.5.39:
Ap1tr = APat ar=10 —m =T71.7—94.1 = —22.4 psi
Solve for the “total” skin factor s, to give

5= 1.151[A‘{’“‘r —10g< k 2) +3.23]
|m| ¢Hctrw
—22.4
—1.151 [9471
7.23
~log (0. 12(0.65) (21 x 10-9) (0. 28)2) +3 23}

=-5.5

with an apparent wellbore ratio of:
7\ =rye” =0.28e> = 68.5 1t
Notice that the “total” skin factor is a composite of effects
that include:
§ =84+ + St +sp + Ssw + Sr

where:
sq = skin due to formation and fracture damage
s; = skin due to the fracture, large negative value s; <« 0
s¢ = skin due to turbulence flow
sp = skin due to perforations
sw = skin due to slanted well

s = skin due to restricted flow

For fractured oil well systems, several of the skin compo-
nents are negligible or cannot be applied, mainly s, sp, Sew,
and s,; therefore:

§ =84+ ¢

Sq=S8—5

Smith and Cobb (1979) suggested that the best approach
to evaluate damage in a fractured well is to use the square
root plot. In an ideal well without damage, the square root
straight line will extrapolate to py; at At = 0, i.e, pws at at=0,
however, when a well is damaged the intercept pressure pjy
will be greater than pys 4t as—o, as illustrated in Figure 1.80.
Note that the well shut-in pressure is described by Equation
1.5.35 as:

Dus = Dut at at=o + Muv/t
Smith and Cobb pointed out that the total skin factor exclu-
sive of s;, i.e., s — s;, can be determined from the square
root plot by extrapolating the straight line to A = 0 and an
intercept pressure pj, to give the pressure loss due to skin

damage, (Aps)d, as:
141. ZQBM] s
— |8

(Aps)d = Pint — Dwi at at=0 = [ T

Equation 1.5.35 indicates that if iyt = pwt at ar—0, then the
skin due to fracture s; is equal to the total skin.
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Figure 1.81

It should be pointed out that the external boundary can
distort the semilog straight line if the fracture half-length is
greater than one-third of the drainage radius. The pressure
behavior during this infinite-acting period is very dependent
on the fracture length. For relatively short fractures, the flow
is radial but becomes linear as the fracture length increases
as it reaches the drainage radius. As noted by Russell and
Truitt (1964), the slope obtained from the traditional well test
analysis of a fractured well is erroneously too small and the
calculated value of the slope progressively decreases with
increasing fracture length. This dependency of the pressure
response behavior on the fracture length is illustrated by
the theoretical Horner buildup curves given by Russell and
Truitt and shown in Figure 1.81. If the fracture penetration
ratio x¢/x. is defined as the ratio of the fracture half-length
x; to the halflength x. of a closed square-drainage area,
then Figure 1.81 shows the effects of fracture penetration
on the slope of the buildup curve. For fractures of small
penetration, the slope of the buildup curve is only slightly
less than that for the unfractured “radial flow” case. How-
ever, the slope of the buildup curve becomes progressively
smaller with increasing fracture penetrations. This will result
in a calculated flow capacity kk which is too large, an erro-
neous average pressure, and a skin factor which is too small.
Obviously a modified method for analyzing and interpret-
ing the data must be employed to account for the effect
of length of the fracture on the pressure response during
the infinite-acting flow period. Most of the published cor-
rection techniques require the use of iterative procedures.
The type curve matching approach and other specialized
plotting techniques have been accepted by the oil indus-
try as accurate and convenient approaches for analyzing

102 10 1
t+ At

At

Vertically fractured reservoir, calculated pressure buildup curves (After Russell and Truitt, 1964).

pressure data from fractured wells, as briefly discussed
below.

An alternative and convenient approach to analyzing frac-
tured well transient test data is type curve matching. The
type curve matching approach is based on plotting the pres-
sure difference Ap versus time on the same scale as the
selected type curve and matching one of the type curves.
Gringarten et al. (1974) presented the type curves shown
in Figures 1.82 and 1.83 for infinite conductivity vertical
fracture and uniform flux vertical fracture, respectively, in
a square well drainage area. Both figures present log—log
plots of the dimensionless pressure drop pq (equivalently
referred to as dimensionless wellbore pressure p,;) versus
dimensionless time tpy; - The fracture solutions show an ini-
tial period controlled by linear flow where the pressure is a
function of the square root of time. In log-log coordinates,
as indicated before, this flow period is characterized by a
straight line with % slope. The infinite-acting pseudoradial
flow occurs at a tp,; between 1 and 3. Finally, all solutions
reach pseudosteady state.

During the matching process a match point is chosen;
the dimensionless parameters on the axis of the type curve
are used to estimate the formation permeability and fracture
length from:

p_ 141.20Bu [LD] (1.5.43]
h AP Jvp

g | 00002637k ( At ) [1.5.44]
¢,1,LC1 tDXf MP
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Figure 1.82 Dimensionless pressure for vertically fractured well in the center of a closed square, no wellbore storage,
infinite conductivity fracture (After Gringarten et al., 1974).
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For large ratios of x./x;, Gringarten and his co-authors
suggested that the apparent wellbore radius 7y can be
approximated from:

§

\Nxf_ —
e = e

Thus, the skin factor can be approximated from:

( 21y )
s=In{—
Xt

Earlougher (1977) points out that if all the test data falls
on the %-slope line on the log Ap vs. log(time) plot, i.e., the
test is not long enough to reach the infinite-acting pseudo-
radial flow period, then the formation permeability k cannot
be estimated by either type curve matching or semilog plot.
This situation often occurs in tight gas wells. However, the
last point on the % slope line, i.e., (Ap)rast and (f) 1., may
be used to estimate an upper limit of the permeability and a
minimum fracture length from:

[1.5.45]

30.358QBu
< — [1.5.46]
h(Ap)last
5> [0.01648k () 1ast [15.47]
e

The above two approximations are only valid for x./x; >
1 and for infinite conductivity fractures. For uniform-flux
fracture, the constants 30.358 and 0.01648 become 107.312
and 0.001648.

To illustrate the use of the Gringarten type curves in ana-
lyzing well test data, the authors presented the following
example:

Example 1.38 Tabulated below is the pressure buildup
data for an infinite conductivity fractured well:

At (hl') pws (pSl) ﬁws - pwf at At=0 (p51) (tp + At)At
0.000  3420.0 0.0 0.0
0.083  3431.0 11.0 93600.0
0.167  3435.0 15.0 46700.0
0.250  3438.0 18.0 31200.0
0.500  3444.5 24.5 15600.0
0.750  3449.0 29.0 10400.0
1.000  3542.0 32.0 7800.0
2.000  3463.0 43.0 3900.0
3.000 3471.0 51.0 2600.0
4.000 3477.0 57.0 1950.0
5.000 3482.0 62.0 1560.0
6.000  3486.0 66.0 1300.0
7.000  3490.0 70.0 1120.0
8.000  3495.0 75.0 976.0
9.000  3498.0 78.0 868.0

10.000  3500.0 80.0 781.0
12.000  3506.0 86.0 651.0
24.000  3528.0 108.0 326.0
36.000 3544.0 124.0 218.0
48.000  3555.0 135.0 164.0
60.000  3563.0 143.0 131.0
72.000  3570.0 150.0 109.0
96.000  3582.0 162.0 82.3

120.000  3590.0 170.0 66.0

144.000  3600.0 180.0 55.2

192.000  3610.0 190.0 41.6

240.000  3620.0 200.0 33.5
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Other available data:
pi = 3700, rw = 0.28 ft,
¢ = 12%, h = 82ft,
¢ =21x10"%psi-!, w=0.65cp,

B = 1.26 bbl/STB,
t, = 7800 hours
drainage area = 1600 acres (not fully developed)

Q = 419 STB/day,

Calculate:

e permeability;
e fracture half-length, x;;
e skin factor.

Solution

Step 1. Plot Ap vs. At on tracing paper with the same scale
as the Gringarten type curve of Figure 1.82. Super-
impose the tracing paper on the type curve, as shown
in Figure 1.84, with the following match points:

(Ap)mp = 100 psi
(At)mp = 10 hours

(p)mp = 1.22
(tp)mp = 0.68
Step 2. Calculate & and x; by using Equations 1.5.43 and
1.5.44:
141.2QBu [pD ]
h=—— | —
h AP Ivp
(141.2) (419) (1.26) (0.65) [1.22
— —— | =7.21md
2 [ 100 ] m

0.0002637k < At )
Xf = —_— | —
e toat / ypp
_ 0.0002637(7.21) < 10 > 131t
1 (0.12)(0.65) (21 x 10-6) \ 0.68 ) —

Step 3. Calculate the skin factor by applying Equation

1.5.45:
s=1In (%)
Xt

[ @029
~ “[ 131

]:5.46

Step 4. Approximate the time that marks the start of the
semilog straight line based on the Gringarten et al.
criterion. That is:

0.0002637%
tog = | ———— |t =3
Pucx;
or:

(3)(0.12) (0.68) (21 x 107%) (131)?
‘= (0.0002637) (7. 21) = 50 hours

All the data beyond 50 hours can be used in
the conventional Horner plot approach to estimate
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Figure 1.84 Type curve matching. Data from Example 1.38 (Copyright ©1974 SPE, Gringarten et al., SPEJ, August

1974).

permeability and skin factor. Figure 1.85 shows a
Horner graph with the following results:

m = 95 psi/cycle

p* = 3764 psi
D1 1ne = 3395 psi
k="7.16 md
s=-55
x = 1371t

Cinco and Samaniego (1981) developed the type curves
shown in Figure 1.86 for finite conductivity vertical fracture.
The proposed type curve is based on the bilinear flow the-
ory and presented in terms of (ppFcp) vs. (thngb) on a
log-log scale for various values of Fcp ranging from 0. 1 to
10007. The main feature of this graph is that for all values
of Fcp the behavior of the bilinear flow (% slope) and the
formation linear flow (% slope) is given by a single curve.
Note that there is a transition period between the bilinear
and linear flows. The dashed line in this figure indicates
the approximate start of the infinite-acting pseudoradial
flow.

The pressure data is plotted in terms of log (Ap) vs. log (¢)
and the resulting graph is matched to a type curve that is
characterized by a dimensionless finite conductivity, (Fcp) y,
with match points of:

(Ap)mp, (bpFep)mp;

(Owp, (to FEp) mp;

end of bilinear flow (fep¢)mp;

beginning of formation linear flow (f,) mp;
beginning of semilog straight line (#,s1) mp-

From the above match Fcp and x; can be calculated:

141. 2QB/L:| (bvFcp)mp

[1.5.48]

Foroil Fcp = [ W Dur

1424QT 7 (ppFcp)mr

Forgas Fcp = [1.5.49]
fas e [ Ik } (am@)wr
The fracture half-length is given by:
. Fcp)?
= [ LB O 1550
duc (o Fép)mp

Defining the dimensionless effective wellbore radius 7.\,
as the ratio of the apparent wellbore radius 7y to the fracture
half-length x;, i.e., r;,D = ra/%;, Cinco and Samaniego corre-
lated ’v\vn with the dimensionless fracture conductivity Fcp
and presented the resulting correlation in graphical form, as
shown in Figure 1.87.

Figure 1.87 indicates that when the dimensionless fracture
conductivity is greater than 100, the dimensionless effective
wellbore radius 7., is independent of the fracture conduc-
tivity with a fixed value of 0.5, i.e., 7\, = 0.5 for Fcp > 100.
The apparent wellbore radius is expressed in terms of the
fracture skin factor s; by:

Ty = ree™

Introducing r\)D into the above expression and solving for s¢

gives:
sef(2)n]

For Fcp > 100, this gives:
si=—In <

s¢ = skin due to fracture
7w = wellbore radius, ft

f

X
Tw

\
7wD

)

Xt

27w
where:

It should be kept in mind that specific analysis graphs
must be used for different flow regimes to obtain a better
estimate of both fracture and reservoir parameters. Cinco
and Samaniego used the following pressure buildup data to
illustrate the use of their type curve to determine the fracture
and reservoir parameters.
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Figure 1.88 Type curve matching for data in bilinear and transitional flow graph (After Cinco and Samaniego, 1981).

Example 1.39 The buildup test data as given in Example
1.36 is given below for convenience:

@ = 7350 Mscf/day, t, = 2640 hours

h =118 ft, ¢ =0.10

k =0.025 md, w=0.0252

T = 690°R, ¢ =0.129 x 1073 psi~!
Dwf at ar—o = 1320 psia, 7, = 0.28 ft

The graphical presentation of the buildup data is given in
the following two forms:

(1) The log-log plot of Am(p) vs. (Af)Y/4, as shown earlier
in Figure 1.73.

(2) The log-log plot of Am(p) vs. (At), on the type curve
of Figure 1.86 with the resulting match as shown in
Figure 1.88.

Calculate the fracture and reservoir parameters by per-
forming conventional and type curve analysis. Compare the
results.

Solution

Step 1. From the plot of Am(p) vs. (Af)Y4, in Figure 1.73,
determine:
mye = 1.6 x 108 psiZ/cphr'/*

tshe & 0.35 hrs (start of bilinear flow)
tent 2 2.5 hrs (end of bilinear flow)
Am (D) ens ~ 2.05 x 108 psi®/cp
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Step 2. Perform the bilinear flow analysis, as follows: Tost Type curve Bilinear flow
e Using Equation 1.5.34, calculate fracture conduc- results analysis analysis
tivity Fc:
ity Fe Fe 148.0 154.0
2 X 373.0 368.0
Fo= [%] Fep 159 16.7
myth(@ueck) o 172.0 169.0
7 [ 444.6(7350) (690) T
= 3 -3 1/4
(1.6210%) (118)[(0.1)(0.0252) (0129 107) (0.025)] The concept of the pressure derivative can be effectively
=154 md ft employed to identify different flow regime periods associ-
. . .. ated with hydraulically fractured wells. As shown in Figure
¢ quculgte ﬂ? dlrlnglésél?nless conductivity Fep by 1.89, a finite conductivity fracture shows a % straight-line
using tquation 1.0.50: slope for both the pressure difference Ap and its derivative;
Fep = 1965.1QT however, the two parallel lines are separated by a factor of 4.
kh Am (D) eni Similarly, for an infinite conductivity fracture, two sltraight
parallel lines represent Ap and its derivative with a 3 slope
- 1965.1(7350) (690) —16.7 and separation between the lines of a factor of 2 (as shown
(0.025) (118) (2. 02 x 10%) in Figure 1.90).
o Estimate the fracture half-length from Equation In tight reservoirs where the productivity of wells is
1.5.21: enhanced by massive hydraulic fracturing (MHF), the result-
Fc ing fractures are characterized as long vertical fractures
= Fok with finite conductivities. These wells tend to produce at a
constant and low bottom-hole flowing pressure, rather than
_ 154 — 368 ft constant flow rate. The diagnostic plots and the conventional
T (16.7)(0.025) analysis of bilinear flow data can be used when analyzing
o Estimate the dimensionless ratio 7y/x from
Figure 1.86:
2
Y~ 0.46 100
Xt
o Calculate the apparent wellbore radius 7y:
rv\v = (0.46) (368) = 169 ft 10l
o (Calculate the apparent skin factor Pp
Tw 0.28
S:ln(;) =In (7169 ) =—-6.4 Plo(ty/Co)
W 1L
. § 4
Step 3. Perform the type curve analysis as follows: tacto’ ©
e Determine the match points from Figure 1.88, to
give: 0.1 . . .
Am(P)MP — 109 psiZ/Cp 0.1 1 10 100 1000 1x104

(ppFcp)vp = 6.5

(Af)mp = 1 hour

[tny, (Fcp)?Imp = 3.69 x 1072
tpi = 0.35 hour

tent = 2.5 hour
e Calculate Fcp from Equation

Fep — [1424(7350) (690)7 6.5 —15.9

(118) (0. 025) ] (10%)

o (Calculate the fracture halflength from Equation

1.5.49:
Y 0.0002637(0. 025) 1 (15.9?2 17

= (0.1)(0.0252) (0.129 x 10-3) 3.69 x 102

=373 1t
e (Calculate F from Equation 1.5.21:

Fc = Fepxek = (15.9) (373) (0. 025) = 148 md ft
e From Figure 1.86:

T‘,\V/xf =0.46

7y = (373)(0.46) = 172 1t

Figure 1.89 Finite conductivity fracture shows as a %
slope line on a log-log plot, same on a derivative plot.

Separation between pressure and derivative is a factor
of 4.

100
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100 1x104
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Figure 1.90 Infinite conductivity fracture shows as a %
slope line on a log-log plot, same on a derivative plot.
Separation between pressure and derivative is a

factor of 2.
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well test data under constant flowing pressure. Equations
1.5.27 through 1.5.31 can be rearranged and expressed in
the following forms.

For fractured oil wells

1 _[ 44.1Bp ] "
Q "~ LhvFc(pued)/4np

or equivalently:

1
U 7
0 Mpt
and:
1
log <6> = log (myr) + 1/41og(¢)
where:
44.1Bu
Myt = —F—
h/Fc(pued) V4 Ap
44.1Bp 2
FC = kaf = [m] [1551]
For fractured gas wells
1
R 7
0 Mpt
or:
lo <l> = log (m)
g 0)= g
where:
444.6T
Mt = 14
hFc(puedk) V4 Am(p)
Solving for F¢:
444.6T z
Fe= [hmbf (¢>uctk)1/4Am(p)} [1.5.52]

The following procedure can be used to analyze bilinear
flow data under constant flow pressure:

Step 1. Plot 1/Q vs. t on a log-log scale and determine if
any data falls on a straight line of a % slope.

Step 2. Ifany dataformsa  slope in step 1, plot 1/Q vs. /4
on a Cartesian role and determine the slope m.

Step 3. Calculate the fracture conductivity F from Equation

1.5.51 or 1.5.52:
. 44.1Bu T
Foroil F¢c =
¢ [hmbf (prcck) V4 (D — pwr)
444.6T 2
Forgas Fc =
gas fe [hmbf(wtk)lﬂ[m(po - m(pwf)l]

Step 4. Determine the value of @ when the bilinear straight
line ends and designate it as Qcpy.
Step 5. Calculate Fcp from Equation 1.5.35 or 1.5.36:

194. 9Qu Bu
kh(bi — pwr)
1965.1Qc; T
kh{m ;) — m(pwi)]
Step 6. Estimate the fracture half-length from:
Fc
~ Fook
Agarwal et al. (1979) presented constant-pressure type
curves for finite conductivity fractures, as shown in Figure
1.91. The reciprocal of the dimensionless rate 1/Qp is

expressed as a function of dimensionless time #p,, , onlog-log
paper, with the dimensionless fracture conductivity Fcp as

Foroil Fcp =

Forgas Fcp =

Xt

a correlating parameter. The reciprocal dimensionless rate
1/@Qp is given by:

. _ kh(p; — pwi)
For oil wells o5 = m [1.5.53]
1 khim(pi) — m(pwi)]
For gas wells o0 = 14240T [1.5.54]
with:
0.0002637kt
gy = —————— [1.5.55]
DT g (e
where:

pwi = wellbore pressure, psi
@ = flow rate, STB/day or Mscf/day
T = temperature, °R
t = time, hours

subscripts:
i= initial
D = dimensionless

The following example, as adopted from Agarwal et al.
(1979), illustrates the use of these type curves.

Example 1.40 Apre-frac buildup test was performed ona
well producing from a tight gas reservoir, to give a formation
permeability of 0.0081 md. Following an MHF treatment, the
well produced at a constant pressure with recorded rate-time
data as given below:

t (days) @ (Mscf/day) 1/Q (day/Mscf)
20 625 0.00160
35 476 0.00210
50 408 0.00245
100 308 0.00325
150 250 0.00400
250 208 0.00481
300 192 0.00521

The following additional data is available:

pi =239 psi,  Am(p) = 396 x 10° psi2/cp
=32 f, ¢ = 0.107
T = 720°R, ci=2.34x10"* psi!
i =0.0176 cp, k= 0.0081 md
Calculate:

e fracture half-length, x;;
e fracture conductivity, Fc.

Solution

Step 1. Plot 1/Q vs. t on tracing paper, as shown in Figure
1.92, using the log-log scale of the type curves.

Step 2. We must make use of the available values of &, &, and
Am(p) by arbitrarily choosing a convenient value
of the flow rate and calculating the corresponding
1/Qp. Selecting @ = 1000 Mscf/day, calculate the
corresponding value of 1/Qp by applying Equation

1.5.54:
1 _ khAm(p) _ (0.0081)(32)(396 x 109 _
Qv 1424QT ~  1424(1000)(720)

Step 3. Thus, the position of 1/@ = 10~2 on the y axis of the
tracing paper is fixed in relation to 1/Qp = 0.1 on
the y axis of the type curve graph paper; as shown in
Figure 1.93.
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Figure 1.92 Reciprocal smooth rate vs. time for MHF,
Example 1.42.

Step 4. Move the tracing paper horizontally along the x axis
until a match is obtained, to give:

t = 100 days = 2400 hours
tpy = 2.2 x 1072
Fcp = 50

Step 5. Calculate the fracture halflength from Equation
1.5.55:

9 |:0.0002637k]( t )
g2 = | ZREDIMR
¢ (ueyi oy / p

f

B 0.0002637(0.0081) 2400
1 (0.107)(0.0176) (2.34 x 10—%) 2.2 x 102
=528174
xXf X 727 ft
Thus the total fracture length is:
2x; = 1454 ft
Step 6. Calculate the fracture conductivity F from Equation
1.5.2:

Fc = Fepkay = (50) (0.0081) (727) = 294 md ft

It should be pointed out that if the presfracturing buildup
test were not available, matching would require shifting the
tracing paper along both the x and y axes to obtain the proper
match. This emphasizes the need for determining kh from a
prefracturing test.

Faults or impermeable barriers

One of the important applications of a pressure buildup test
is analyzing the test data to detect or confirm the existence
of faults and other flow barriers. When a sealing fault is
located near a test well, it significantly affects the recorded
well pressure behavior during the buildup test. This pressure
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Figure 1.93 Type curve matching for MHF gas well, Example 1.42.
7 When both the test well and image well are shut-in for a
Z buildup test, the principle of superposition can be applied to
p Equation 1.2.57 to predict the buildup pressure at At as:
Actual Well - Image Well
° T »/] <« i ° e = pi— 162.6Q,B, 11, o t, + At
2 ws — F1 kh g IN;
; 70.6Q0Bo 1o \ .. [ —948p 11 (2L)?
: - kh B %, 1+ a0
No Flow Boundary P
70.6(—Qo)Botto \ .. [ —948p et (2L)?
q 9 q — E 1.5.56
T (a—‘r’> -0 T < Th kAt [1.5.56]

A3 MDA NANNN

Actual Well Image Well
Figure 1.94 Method of images in solving boundary
problems.

behavior can be described mathematically by applying the
principle of superposition as given by the method of images.
Figure 1.94 shows a test well that is located at a distance
L from a sealing fault. Applying method images, as given
Equation 1.2.157, the total pressure drop as a function of

time ¢ is:
kt
log 5 ) —3.23+0.87s
pucry

(AD)total =
B (70. GQOBM> 5 [ 9489me (eL)*
kh kt

162.6Q, Bt
ki

Recalling that the exponential integral Ei(—x) can be approx-
imated by Equation 1.2.68 when x < 0.01 as:

Ei(—x) = In(1.781x)
the value of the Ei(—x) can be set equal to zero when x is
greater than 10.9, i.e., Ei(—x) = 0 for x > 10.9. Notice that

the value of (2L)? is large and for early buildup times, when
At is small, the last two terms in can be set equal to zero, or:

162.6Q,Bo Lo t + At)
B kh [log ( At

which is essentially the regular Horner equation with a
semilog straight-line slope of:
e 162.6Q,Bo 1o
- kh

For a shutsin time sufficiently large that the logarithmic
approximation is accurate for the Ei functions, Equation 1.5.56

Dws = Di [1.5.57]

becomes:
L 162.6Q0Bosto ty+ At)
pws —Pl - kh |:10g ( At
_ 162.6Q,B, 10 b+ At>:|
kh [k’g ( At
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Rearranging this equation by recombining terms gives:

o[ 162.6Q0Bo, t, + At
DPws =Di 2<7kh )[Iog< A7 )]

Simplifying:

. t, + At
o2 o (2]

[1.5.58]

Three observations can be made by examining Equations
1.5.57 and 1.5.58:

(1) For early shut-in time buildup data, Equation 1.5.57
indicates that the data from the early shut-in times will
form a straight line on the Horner plot with a slope that
is identical to a reservoir without sealing fault.

(2) At longer shut-in times, the data will form a second
straight line on the Horner plot with a slope that is twice
that of the first line, i.e., second slope = 2m. The pres-
ence of the second straight line with a double slope of
the first straight line provides a means of recognizing
the presence of a fault from pressure buildup data.

(3) The shut-in time required for the slope to double can be
approximated from the following expression:

948p e (2L)?
kAL
Solving for At gives:

<0.01

_ 380000guc,L”

At
k
where:
At = minimum shut-in time, hours
k = permeability, md
L = distance between well and the sealing fault, ft

Notice that the value of p* for use in calculating the average
drainage region pressure p is obtained by extrapolating the
second straight line to a unit-time ratio, i.e., to (t, + Af) /At =
1.0. The permeability and skin factor are calculated in the
normal manner described before using the slope of the first
straight line.

Gray (1965) suggested that for the case in which the slope
of the buildup test has the time to double, as shown schemat-
ically in Figure 1.95, the distance L from the well to the fault
can be calculated by finding the time Af, at which the two
semilog straight lines intersect. That is:

L 0.000148k AL,
h Ppuct

Lee (1982) illustrated Gray’s method through the follow-
ing examples.

[1.5.59]

Example 1.41 A pressure buildup test was conducted to
confirm the existence of a sealing fault near a newly drilled
well. Data from the test is given below:

At (hr) Dws (psi) (t + AD/ At
6 3996 475
8 4085 35.9

10 4172 28.9

12 4240 24.3

14 4298 20.9

16 4353 18.5

20 4435 15.0

24 4520 12.6

0.000148k Aty

slope=2m L=
e

_ 162. 60030#0

Pus slope m = P
fp + Aty |
Atx \ |
I
I | |
1 10 102 108 104

Figure 1.95 Theoretical Horner plot for a faulted system.

At(hr) P (psi) (ty + AD)/At
30 4614 10.3
36 4700 8.76
42 4770 7.65
48 4827 6.82
54 4882 6.17
60 4931 5.65
66 4975 5.23

Other data include the following:

¢ =0.15, o = 0.6 cp,
¢ =17x 10 psi! 7, =0.51t,
Q, = 1221 STB/day, h =81t

B, =1.31bbl/STB,

Atotal of 14 206 STB of oil had been produced before shut-in.
Determine whether the sealing fault exists and the distance
from the well to the fault.

Solution

Step 1. Calculate total production time ,:
P 24N,  (24) (14206)
T, 1221
Step 2. Plot pys vs. (f, + Af)/At as shown in Figure 1.96.
The plot clearly shows two straight lines with the
first slope of 650 psi/cycle and the second with
1300 psi/cycle. Notice that the second slope is twice
that of the first slope indicating the existence of the
sealing fault.
Step 3. Using the value of the first slope, calculate the
permeability k:
b= 162.6Q0Bopo  162.6(1221) (1. 31) (0. 6)
- mh N (650) (8)

=30 md

Step 4. Determine the value of Horner’s time ratio at the
intersection of the two semilog straight lines shown
in Figure 1.96, to give:

= 279.2 hours

1,
b+ Aty 17
Aty
or:
279.2 + At
efd.2+4 Aty - 17

At
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Figure 1.96 Estimating distance to a no-flow boundary.

from which:
At, = 17.45 hours

Step 5. Calculate the distance L from the well to the fault by
applying Equation 1.5.59:

I— 0.000148kAt,
h Pucy

_\/ 0.000148(30) (17.45)

= 2251t

(0.15)(0.6) (17 x 10-6)

Qualitative interpretation of buildup curves

The Horner plot has been the most widely accepted means
for analyzing pressure buildup data since its introduction in
1951. Another widely used aid in pressure transient analysis
is the plot of change in pressure Ap versus time on a log-log
scale. Economides (1988) pointed out that this log-log plot
serves the following two purposes:

(1) the data can be matched to type curves;

(2) the type curves can illustrate the expected trends in
pressure transient data for a large variety of well and
reservoir systems.

The visual impression afforded by the log-log presentation
has been greatly enhanced by the introduction of the pres-
sure derivative which represents the changes of the slope of
buildup data with respect to time. When the data produces
a straight line on a semilog plot, the pressure derivative plot
will, therefore, be constant. That means the pressure deriva-
tive plot will be flat for that portion of the data that can be
correctly analyzed as a straight line on the Horner plot.

Many engineers rely on the log-log plot of Ap and its
derivative versus time to diagnose and select the proper
interpretation model for a given set of pressure transient
data. Patterns visible in the log-log diagnostic and Horner
plots for five frequently encountered reservoir systems are
illustrated graphically by Economides as shown in Figure
1.97. The curves on the right represent buildup responses
for five different patterns, a through e, with the curves on
the left representing the corresponding responses when the
datais plotted in the log—log format of Ap and (AtAp\) versus
time.

The five different buildup examples shown in Figure
1.97 were presented by Economides (1988) and are briefly
discussed below:

Example a illustrates the most common response—that
of a homogeneous reservoir with wellbore storage and
skin. Wellbore storage derivative transients are recog-
nized as a “hump” in early time. The flat derivative portion
in late time is easily analyzed as the Horner semilog
straight line.

Example b shows the behavior of an infinite conductivity,
which is characteristic of a well that penetrates a natural
fracture. The % slopes in both the pressure change and
its derivative result in two parallel lines during the flow
regime, representing linear flow to the fracture.
Example ¢ shows the homogeneous reservoir with a sin-
gle vertical planar barrier to flow or a fault. The level of
the second-derivative plateau is twice the value of the level
of the first-derivative plateau, and the Horner plot shows
the familiar slope-doubling effect.

Example d illustrates the effect of a closed drainage
volume. Unlike the drawdown pressure transient, this
has a unit-slope line in late time that is indicative of
pseudosteady-state flow; the buildup pressure derivative
drops to zero. The permeability and skin cannot be deter-
mined from the Horner plot because no portion of the data
exhibits a flat derivative for this example. When transient
data resembles example d, the only way to determine the
reservoir parameters is with a type curve match.
Example e exhibits avalley in the pressure derivative that
is indicative of reservoir heterogeneity. In this case, the
feature results from dual-porosity behavior, for the case
of pseudosteady flow from matrix to fractures.

Figure 1.97 clearly shows the value of the pressure/
pressure derivative presentation. An important advantage of
the log-log presentation is that the transient patterns have
a standard appearance as long as the data is plotted with
square log cycles. The visual patterns in semilog plots are
amplified by adjusting the range of the vertical axis. Without
adjustment, many or all of the data may appear to lie on one
line and subtle changes can be overlooked.

Some of the pressure derivative patterns shown are sim-
ilar to those characteristics of other models. For example,
the pressure derivative doubling associated with a fault
(example ¢) can also indicate transient interporosity flow
in a dual-porosity system. The sudden drop in the pres-
sure derivative in buildup data can indicate either a closed
outer boundary or constant-pressure outer boundary result-
ing from a gas cap, an aquifer, or pattern injection wells.
The valley in the pressure derivative (example e) could indi-
cate a layered system instead of dual porosity. For these
cases and others, the analyst should consult geological, seis-
mic, or core analysis data to decide which model to use in
an interpretation. With additional data, a more conclusive
interpretation for a given transient data set may be found.

An important place to use the pressure/pressure deriva-
tive diagnosis is on the well site. If the objective of the testis to
determine permeability and skin, the test can be terminated
once the derivative plateau is identified. If heterogeneities
or boundary effects are detected in the transient, the test
can be run longer to record the entire pressure/pressure
derivative response pattern needed for the analysis.

1.6 Interference and Pulse Tests

‘When the flow rate is changed and the pressure response is
recorded in the same well, the test is called a “single-well”
test. Examples of single-well tests are drawdown, buildup,
injectivity, falloff and step-rate tests. When the flow rate is
changed in one well and the pressure response is recorded
in another well, the test is called a “multiple-well” test.
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Figure 1.97 Qualitative interpretation of buildup curves (After Economides, 1988).
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Figure 1.98 Rate history and pressure response of a
two-well interference test conducted by placing the
active well on production at constant rate.

Examples of multiple-well tests are interference and pulse
tests.

Single-well tests provide valuable reservoir and well char-
acteristics that include flow capacity ki, wellbore conditions,
and fracture length as examples of these important prop-
erties. However, these tests do not provide the directional
nature of reservoir properties (such as permeability in the x,
y, and z direction) and have inabilities to indicate the degree
of communication between the test wells and adjacent wells.
Multiple-well tests are run to determine:

o the presence or lack of communication between the test
well and surrounding wells;

the mobility—thickness product k4/1;

the porosity—compressibility—thickness product ¢ck;
the fracture orientation if intersecting one of the test wells;
the permeability in the direction of the major and minor
axes.

The multiple-well test requires at least one active (produc-
ing or injecting) well and at least one pressure observation
well, as shown schematically in Figure 1.98. In an interfer-
ence test, all the test wells are shut-in until their wellbore
pressures stabilize. The active well is then allowed to pro-
duce or inject at constant rate and the pressure response in
the observation well(s) is observed. Figure 1.98 indicates
this concept with one active well and one observation well.
As the figure indicates, when the active well starts to pro-
duce, the pressure in the shut-in observation well begins to
respond after some “time lag” that depends on the reservoir
rock and fluid properties.

Pulse testing is a form of interference testing. The pro-
ducer or injector is referred to as “the pulser or the active

well” and the observation well is called “the responder.” The
tests are conducted by sending a series of short-rate pulses
from the active well (producer or injector) to a shut-in obser-
vation well(s). Pulses generally are alternating periods of
production (or injection) and shut-in, with the same rate
during each production (injection) period, as illustrated in
Figure 1.99 for a two-well system.

Kamal (1983) provided an excellent review of interfer-
ence and pulse testing and summarized various methods that
are used to analyze test data. These methods for analyzing
interference and pulse tests are presented below.

1.6.1 Interference testing in homogeneous isotropic
reservoirs

A reservoir is classified as “homogeneous” when the poros-
ity and thickness do not change significantly with location.
An “isotropic” reservoir indicates that the permeability is
the same throughout the system. In these types of reser-
voirs, the type curve matching approach is perhaps the most
convenient to use when analyzing interference test data in
a homogeneous reservoir system. As given previously by
Equation 1.2.66, the pressure drop at any distance 7 from an
active well (i.e., distance between an active well and a shut-in
observation well) is expressed as:

—70.6QBu Ei —948¢pcr?
kh kt

Earlougher (1977) expressed the above expression in a
dimensionless form as:

b —p(r,1) ‘
141.2QBu _ lp.(-1 puers 7Y\
kh T2 4 0.0002637kt ) \ 7y
From the definitions of the dimensionless parameters
bp, tp, and rp, the above equations can be expressed in a

pi—w,t):Ap:[
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Figure 1.100 Dimensionless pressure for a single well in an infinite system, no wellbore storage, no skin.
Exponential-integral solution (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE,

copyright SPE, 1977).

dimensionless form as:

1 —r2
= __FEi| -2
b =-3 ‘[4@}

with the dimensionless parameters as defined by:

[1.6.1]

PO e TGN
D= T141.20Bu
v
m=—
Tw
0.0002637kt
by = —— 0
pucr?

where:

p(r,t) = pressure at distance » and time ¢, psi
r = distance between the active well and a shut-in
observation well
t = time, hours
i = reservoir pressure
k = permeability, md

Earlougher expressed in Equation 1.6.1 a type curve form
as shown previously in Figure 1.47 and reproduced for
convenience as Figure 1.100.

To analyze an interference test by type curve matching,
plot the observation well(s) pressure change Ap versus time
on tracing paper laid over Figure 1.100 using the matching
procedure described previously. When the data is matched to
the curve, any convenient match point is selected and match
point values from the tracing paper and the underlying type
curve grid are read. The following expressions can then be

applied to estimate the average reservoir properties:

k:[w] [@] [1.6.2]
h AP Imp
0.0002637 [ & ¢

_ k 163

¢ 72 [M} |:tD/7[2) }Mp [ ]

where:

7 = distance between the active and observation wells, ft
k = permeability, md

Sabet (1991) presented an excellent discussion on the use
of the type curve approach in analyzing interference test data
by making use of test data given by Strobel et al. (1976). The
data, as given by Sabet, is used in the following example to
illustrate the type curve matching procedure:

Example 1.42 An interference test was conducted in a
dry gas reservoir using two observation wells, designated
as Well 1 and Well 3, and an active well, designated as Well
2. The interference test data is listed below:

e Well 2 is the producer, @, = 12.4 MMscf/day;
o Well 1is located 8 miles east of Well 2, i.e., 7o = 8 miles;
o Well 3 is located 2 miles west of Well 2, i.e., 723 = 2 miles.

Flow rate Time Observed pressure (psia)
Q t Well 1 Well 3
(MMscf/day) () py Apy b3 Aps
0.0 24 2912.045 0.000 2908.51  0.00
124 0 2912.045 0.000 2908.51  0.00
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Figure 1.101 Interference data of Well 3. (After Sabet,
M. A. Well Test Analysis 1991, Gulf Publishing Company).

Flow rate Time Observed pressure(psia)
Q t Well 1 Well 3
(MMscf/day)  (hr)  pq Ap1 p3 Aps
12.4 24 2912.035 0.010 2907.66  0.85
12.4 48 2912.032 0.013 2905.80 2.71
124 72 2912.015 0.030 2903.79 4.72
12.4 96 2911.997 0.048 2901.85 6.66
12.4 120 2911.969 0.076 2899.98  8.53
124 144 2911918 0.127 2898.25 10.26
12.4 169 2911.864 0.181 2896.58 11.93
12.4 216 2911.755 0.290 2893.71 14.80
124 240 2911.685 0.360 2892.36 16.15
12.4 264 2911.612 0.433 2891.06 17.45
124 288 2911.533 0.512 2889.79 18.72
124 312 2911456 0.589 2888.54 19.97
124 336 2911.362 0.683 2887.33 21.18
12.4 360 2911.282 0.763 2886.16 22.35
124 384 2911.176 0.869 2885.01 23.50
12.4 408 2911.108 0.937 2883.85 24.66
124 432 2911.030 1.015 2882.69 25.82
124 444 2910.999 1.046 2882.11 26.40
0.0 450 Well 2 shut-in
0.0 480 2910.833 1.212 2881.45 27.06
0.0 504 2910.714 1.331 2882.39 26.12
0.0 528 2910.616 1.429 2883.52 24.99
0.0 552 2910.520 1.525 2884.64 23.87
0.0 576 2910.418 1.627 2885.67 22.84
0.0 600 2910.316 1.729 2886.61 21.90
0.0 624 2910.229 1.816 2887.46 21.05
0.0 648 2910.146 1.899 2888.24 20.27
0.0 672 2910.076  1.969 2888.96 19.55
0.0 696 2910.012 2.033 2889.60 18.91

The following additional reservoir data is available:
T =671.6°R, h=751ft, c¢j=2.74x 10" psi-?
Byi = 920.9 bbl/MMscf, 7, =0.251t, Z =0.868,
Sy =0.21, yy=0.62, g =0.0186cp

Figure 1.102 Interference data of Well 1. (After Sabet,
M. A. Well Test Analysis 1991, Gulf Publishing Company).

Using the type curve approach, characterize the reservoir
in terms of permeability and porosity.

Solution

Step 1. Plot Ap vs. t on a log-log tracing paper with the
same dimensions as those of Figure 1.100, as shown
in Figures 1.101 and 1.102 for Wells 1 and 3, respec-
tively.

Figure 1.103 shows the match of interference data
for Well 3, with the following matching points:

Step 2.

(p)mp =0.1 and (Ap)mp = 2 psi

(tD/i’]%)Mp =1 and (t)Mp = 159 hours

Step 3. Solve for k& and ¢ between Well 2 and Well 3 by

applying Equations 1.6.2 and 1.6.3

|:141.2QB/Lj| [ o }
p— | xR D
h Ap Jyp

_ [141.2(12. 4) (320. 9)(0.0186) } (ﬂ) - 19.7 md

6= 0.0002637 [E] ¢
Toar? to/r} MP
19.7

N
_ 0.0002637 159
T (274 x 10 (2 x 52802 \ 0.0186 ) \ 1

=0.00144

Step 4. Figure 1.104 shows the match of the test data for

Well 1 with the following matching points:

(p)we =1 and (Ap)mp = 5.6 psi
(tD/TIZ))MP =0.1 and (t)Mp = 125 hours
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Figure 1.103 Match of interference data of Well 3. (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing

Company).

10

Ap

101

102

t

10-2 10-1 1

10

Pp

10

10-1

10

/

4

101

EXPONENTIAL
INTERNAL SOLUTION

10 ; 101 102

Figure 1.104 Match of interference data of Well 1.

tD/rS

10-2



1/120  WELL TESTING ANALYSIS

Step 5. Calculate & and ¢:
P |:141.2(12. 4)(920.9) (0.0186) :| < 1 )

75 5.6
=71.8md
6= 0.0002637 < 71.8 )(&)
(2.74 x 10-4) (8 x 5280)2 \ 0.0180 / \ 0.1
=0.0026

In a homogeneous and isotropic reservoir, i.e., perme-
ability is the same throughout the reservoir, the minimum
area of the reservoir investigated during an interference test
between two wells located a distance 7 apart is obtained by
drawing two circles of radius 7 centered at each well.

1.6.2 Interference testing in homogeneous anisotropic
reservoirs

A homogeneous anisotropic reservoir is one in which the
porosity ¢ and thickness % are the same throughout the
system, but the permeability varies with direction. Using
multiple observation wells when conducting an interference
test in a homogeneous anisotropic reservoir, it is possible
to determine the maximum and minimum permeabilities,
i.e., kmax and ki, and their directions relative to well loca-
tions. Based on the work of Papadopulos (1965), Ramey
(1975) adopted the Papadopulos solution for estimating
anisotropic reservoir properties from an interference test
that requires at least three observation wells for analysis.
Figure 1.105 defines the necessary nomenclature used in the
analysis of interference data in a homogeneous anisotropic
reservoir.

Figure 1.105 shows an active well, with its coordinates at
the origin, and several observation wells are each located
at coordinates defined by (x, y). Assuming that all the wells
in the testing area have been shut in for a sufficient time to
equalize the pressure to p;, placing the active well on produc-
tion (or injection) will cause a change in pressure of Ap, i.e.,
Ap = p; — p(x,y,1), at all observation wells. This change in

y OBSERVATION WELL
AT (x, y)

. MAJOR
N\ PERMEABILITY
N\ /  AXIS
s/

\ 7
\ /

Kmax

Kmin

< N\ X
ACTIVE WELL / \ WELL PATTERN

COORDINATES

MINOR
7 N\ PERMEABILITY

N\
\ AXIS

Figure 1.105 Nomenclature for anisotropic permeability
system (After Ramey, 1975).

the pressure will occur after a lag period with a length that
depends, among other parameters, on:

the distance between the active well and observation well;
permeability;

wellbore storage in the active well;

the skin factor following a lag period.

Ramey (1975) showed that the change in pressure at an
observation well with coordinates of (x,y) at any time ¢ is
given by the Ei function as:

1. |73
bp= _EEI |:4tDi|

The dimensionless variables are defined by:
_ khipi — p(x,y,1)]

PP = 41 2QBy [1.64]
—, )

t% - gk) (0. 000; 637t> (16.5]

75 Y2k + %%k — 2xyky, Puce

with:

k= v/ Emaxkmin = | keky — k2, [1.6.6]

Ramey also developed the following relationships:

1
s = 5 [(kx +hy) + [/ (kky)? + 482 [1.6.7]
i _1 (ke + ky)? — ./ (Reky))? + 4R2 [1.6.8]
mm—i[ x+y - xivy + xy] 0.

Omax = arctan (M> [1.6.9]
kyy

Omin = arctan (M) [1.6.10]
kyy

where:

k, = permeability in x direction, md
k, = permeability in y direction, md

w = permeability in xy direction, md

kmin = minimum permeability, md
kmax = maximum permeability, md
k = average system permeability, md
Omax = direction (angle) of k¢ as measured from
the +x axis
Omin = direction (angle) of k,;, as measured from
the +y axis

x,y = coordinates, ft
t = time, hours

Ramey pointed out that if ¢uc; is not known, solution of
the above equations will require that a minimum of three
observation wells is used in the test, otherwise the required
information can be obtained with only two observation wells.
Type curve matching is the first step of the analysis tech-
nique. Observed pressure changes at each observation well,
ie, Ap = p; — p(x,9,1), are plotted on log-log paper and
matched with the exponential-integral type curve shown in
Figure 1.100. The associated specific steps of the methodol-
ogy of using the type curve in determining the properties ofa
homogeneous anisotropic reservoir are summarized below:

Step 1. From at least three observation wells, plot the
observed pressure change Ap versus time ¢ for each
well on the same size scale as the type curve given
in Figure 1.100.

Step 2. Match each of the observation well data set to the
type curve of Figure 1.100. Select a convenient match
point for each data set so that the pressure match
point (Ap, pp)mp is the same for all observation well
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responses, while the time match points (¢, tp/ 1’6)]\/[]9 y
vary. Py (475, 514)
Step 3. From the pressure match point (Ap, pp)mp, calculate (0, 475) 1-E
the average system permeability from: 1-D
- 141.2QB
N — {A} <@> (16.11]
h AD Jup
Notice from Equation 1.6.6 that:
(R)? = kuinkmax = keky — kfy [1.6.12]
Step 4. Assuming three observation wells, use the time match N
[(t, (tp/ rf,)]Mp for each observation well to write:
Well 1:
{ (tn/15) } (oo
o lw Pre 47.3°
(k)? % \ (475, 0)
X
yka +x%ky - leylkxy K(/ ' > X
. . 5-D 5-E
Rearranging gives:
0.0002637 Fi i
2 25, _ _ igure 1.106 Well locations for Example 1.43 (After
Yiks & xiky = 2Zx1yiks ( et ) Earlougher, R. Advances in Well Test Analysis)
(Permission to publish by the SPE, copyright SPE, 1977).
)2 ky, = permeability in xy direction
W ¢uc, = porosity group
[DD] These four equations can be solved simultaneously for the
t R .
MP above four unknowns. The following example as given by

[1.6.13]
Well 2:

(tD/flz)) _ < 0.0002637 >
t MP B duct

k)?
"\ 32 + 22k, — 2xay0k
YoRx - X5Ry X2Y2 Ry
0. 0002637)
Puc

Voky + %2Ry — 22y0kyy = (

(k)

[ (tv/72) }
¢ MP

[1.6.14]
Well 3:
/)] (0. 0002637>
t MP B ouc
(k)?
X
Voke + %2Ry — 2x3Y3kyy
) 0.0002637
yékx +x§ky — 2x3y3kyy = (W)
[ (to/72) ]
t
MP
[1.6.15]

Equations 1.6.12 through 1.6.15 contain the following four
unknowns:

k, = permeability in x direction
k, = permeability in y direction

Ramey (1975) and later by Earlougher (1977) is used to clar-
ify the use of the proposed methodology for determining the
properties of an anisotropic reservoir.

Example 1.43 The following data is for an interference
test in a nine-spot pattern with one active well and eight
observation wells. Before testing, all wells were shut in.
The test was conducted by injecting at —115 STB/day and
observing the fluid levels in the remaining eight shut-in
wells. Figure 1.106 shows the well locations. For simplicity,
only the recorded pressure data for three observation wells,
as tabulated below, is used to illustrate the methodology.
These selected wells are labeled Well 5-E, Well 1-D, and
Well 1-E.

Well 1-D Well 5-E Well 1-E
; Ap ; Ap ; Ap
(hr) (psi) (hr) (psi) (hr) (psi)
23.5 -6.7 21.0 -4.0 27.5 -3.0
28.5 7.2 47.0 —11.0 47.0 -5.0
51.0 —15.0 72.0 -16.3 72.0 —-11.0
77.0 —-20.0 94.0 -21.2 95.0 -13.0
95.0 —25.0 115.0 —-22.0 115.0 -16.0
—25.0
The well coordinates (x, y) are as follows:
Well x (ft) y (ft)
1 1-D 0 475
2 5E 475 0
3 1-E 475 514
iy = —115STB/day, By =1.0bbl/STB, uy =1.0c¢p,
¢ = 20%, T =75F, h = 25ft,
Co="7.5%x10"%psi!, ¢y =3.3 x107% psi~t,
s =3.7%x108psi"!, #, =0.563 ft, pi = 240 psi

Calculate £pax, kmin, and their directions relative to the x
axis.
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Figure 1.107 Interference data of Example 1.6 matched to Figure 1.100. Pressure match is the same of all curves.
(After Earlougher, R. Advances in Well Test Analysis). (Permission to publish by the SPE, copyright SPE, 1977).

Solution
Step 1.

Plot Ap versus time ¢ for each of the three obser-
vation wells on a log-log plot of the same scale as
that of Figure 1.100. The resulting plots with the
associated match on the type curve are shown in
Figure 1.107.

Step 2. Select the same pressure match point on the pres-
sure scale for all the observation wells; however,
the match point on the time scale is different for all
wells:

Match point Well 1-D Well 5-E Well 1-E
(Pp)mp 0.26 0.26 0.26
(tn/7r8)mp 1.00 1.00 1.00
(Ap)mp —10.00 —10.00 —10.00
)mp 72.00 92.00 150.00

Step 3. Fromthe pressure match point, use Equation 1.6.11

to solve for k:

Ap

e s = [ 412004 (10
MP
= Vkmink,

25

141.2(-115)(1.0) (1.0 0.26
Tmmax=[ (=115 (1.0)( )](

=16.89 md

-10

or:
Fminkmax = (16.89)% = 285.3

Using the time match point (¢, tp/ 7’%)]\/{}) for each
observation well, apply Equations 1.6.13 through
1.6.15 to give:

For Well 1-D with (x1,y;) = (0,475):

0.0002637
ka + xiky — kyy = ( )
N Thy — 26131 onc

(k)

[ (tn/72) }
t MP

(475)%k, + (0)%k, — 2(0) (475)

_ 0.0002637(285.3) (72
- ¢,LLCt 1.0

Simplifying gives:
2,401 x 109
=
For Well 5-E with (x,y.) = (475,0):
(0)2ky 4 (475)%ky — 2(475) (0) by
_0.0002637(285.3) ( 92 )
ouCy 1.0

Ry GV
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or:
3.068 x 10°
hy=—— B)
7 Puc
For Well 1-E with (x3,y3) = (475, 514):
(514)%k, + (475)%k, — 2(475) (514)k,
_ 0.0002637(285.3) (150
- duce 1.0
or:
2.311 x 105
0.5411k +0.4621k, — by = === (C)
Puct
Step 5. Combine Equations A through C to give:
4.059 x 106
by = — D)
i e
Step 6. Using Equations A, B, and D in Equation 1.6.12
gives:
[kxky] - kfy = (E)Z
[(2. 401 x 107°) (3.068 x 10’5)]
(pucy) (puce)
—6Y2
_ M — (16.89)2 —9285.3
(ppecr)
or:

o _ (2401 x 1075)(3.068 x 10°%) — (4.059 x 10-9)*
Pue = 285.3

=1.589 x 1075 cp/psi
Step 7. Solve for ¢:
1.589 x 106
~ (0.20)(1.0)

Step 8. Using the calculated value of ¢uc; from step 6, i.e.,
ouc, = 1.589 x 1078, in Equations A, B, and D, solve
for &y, ky, and kyy:

oy =7.95x 107 psi~!

2.401 x 103
b= T egr 1o = 15.11md
3.068 x 105
"= 1589 100 — 0-31md
4.059 x 105
by = 1589 x 105 — 2> md

Step 9. Estimate the maximum permeability value by apply-
ing Equation 1.6.7, to give:

1 .
o = 5 [ ) ) + 482

_ % [(15.11 + 19.31)

+/(15.11 - 19.31)% + 4(2. 55)2] —20.5md

Step 10. Estimate the minimum permeability value by apply-
ing Equation 1.6.8:

1 ;
kmin = 5 [(kx + ky)z — (kxky)z + 4k§y]

= % [(15.11+19.31)

—/(15.11 = 19.31)% + 4(2. 55)2} =13.9md

Step 11. Estimate the direction of k., from Equation 1.6.9:

Rmax — kx)
kyy

20.5 —15. 11)

Omax = arctan (

= arct:
arctan ( 555

= 64.7° as measured from the +x axis

1.6.3 Pulse testing in homogeneous isotropic

reservoirs
Pulse tests have the same objectives as conventional inter-
ference tests, which include:

e estimation of permeability £;
e estimation of porosity—compressibility product ¢c¢y;
e whether pressure communication exists between wells.

The tests are conducted by sending a sequence of flow
disturbances “pulses” into the reservoir from an active well
and monitoring the pressure responses to these signals at
shut-in observation wells. The pulse sequence is created by
producing from (or injecting into) the active well, then shut-
ting it in, and repeating that sequence in a regular pattern, as
depicted by Figure 1.108. The figure is for an active produc-
ing well that is pulsed by shutting in, continuing production,
and repeating the cycle.

The production (or injection) rate should be the same
during each period. The lengths of all production periods
and all shut-in periods should be equal; however, produc-
tion periods do not have to equal shutin periods. These
pulses create a very distinctive pressure response at the
observation well which can be easily distinguished from
any pre-existing trend in reservoir pressure, or random
pressure perturbations “noise,” which could otherwise be
misinterpreted.

It should be noted that pulse testing offers several advan-
tages over conventional interference tests:

e Because the pulse length used in a pulse test is short,
ranging from a few hours to a few days, boundaries
seldom affect the test data.

Because of the distinctive pressure response, there are
fewer interpretation problems caused by random “noise”
and by trends in reservoir pressure at the observation
well.

Because of shorter test times, pulse tests cause less
disruption of normal field operations than interference
test.

For each pulse, the pressure response at the observation
well is recorded (as illustrated in Figure 1.109) with a very
sensitive pressure gauge. In pulse tests, pulse 1 and pulse 2
have characteristics that differ from those of all subsequent
pulses. Following these pulses, all odd pulses have similar
characteristics and all even pulses also have similar charac-
teristics. Any one of the pulses can be analyzed for k£ and ¢c;.
Usually, several pulses are analyzed and compared.

Figure 1.109, which depicts the rate history of the active
well and the pressure response at an observation well, illus-
trates the following five parameters which are required for
the analysis of a pulse test:

(1) The “pulse period” At, represents the length of the shut-
in time.

(2) The “cycle period” Atc represents the total time length
ofacycle, i.e., the shut-in period plus the flow or injection
period.

(3) The “flowing or injection period” Af represents the
length of the flow or injection time.
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Figure 1.108 Schematic illustration of rate (pulse) history and pressure response for a pulse test (After Earlougher, R.
Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
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(4) The “time lag” t;, represents the elapsed time between
the end of a pulse and the pressure peak caused by the
pulse. This time lag #, is associated with each pulse and
essentially describes the time required for a pulse cre-
ated when the rate is changed to move from the active
well to the observation well. It should be pointed out
that a flowing (or injecting) period is a “pulse” and a
shut-in period is another pulse; the combined two pulses
constitute a “cycle.”

(5) The “pressure response amplitude” Ap is the vertical
distance between two adjacent peaks (or valleys) and a
line parallel to this through the valley (or peak), as illus-
trated in Figure 1.109. Analysis of simulated pulse tests
show that pulse 1, i.e., the “first odd pulse,” and pulse 2,
i.e., the “first even pulse,” have characteristics that differ
from all subsequent pulses. Beyond these initial pulses,
all odd pulses have similar characteristics, and all even
pulses exhibit similar behavior.

Kamal and Brigham (1975) proposed a pulse test analysis

technique that uses the following four dimensionless groups:

(1) Pulse ratio F\, as defined by:
Py pulse period Ay, Ah

_ lod _ - [1.6.16]
cycle period  At,+ Aty Afc

where the time is expressed in hours.

Figure 1.110 Pulse testing: relation between time lag and response amplitude for first odd pulse. (After Kamal and
Brigham, 1976).

(2) Dimensionless time lag (1) p, as given by:

(t)p = it

L [1.6.17]
Alc

where:
k = average permeability, md

(3) Dimensionless distance (7p) between the active and
observation wells:

= [1.6.18]
Tw

where:

r = distance between the active well and the observation
well, ft

(4) Dimensionless pressure response amplitude App:

B kb AP
App = [141.2Bu Q} [1.6.19]

where @ is the rate at the active well while it is active,
with the sign convention that Ap/@ is always positive,
i.e., the absolute value of | Ap/Q|.

Kamal and Brigham developed a family of curves, as
shown in Figures 1.110 through 1.117, that correlates the
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Figure 1.111 Pulse testing: relation between time lag and response amplitude for first even pulse. (After Kamal and

Brigham, 1976).

pulse ratio F\ and the dimensionless time lag (#)p to the
dimensionless pressure App. These curves are specifically
designated to analyze the pulse test data for the following
conditions:

o First odd pulse: Figures 1.110 and 1.114.

o First even pulse: Figures 1.111 and 1.115.

o Allthe remaining odd pulses except the first: Figures 1.112
and 1.116.

o All the remaining even pulses except the first: Figures
1.113 and 1.117.

The time lag # and pressure response amplitude Ap
from one or more pulse responses are used to estimate the
average reservoir permeability from:

141.2QBu

= — 1.6.20
|:hAP[(l‘L)D]2 [ ]

Fig

} [App (tL/ Ate)?]

The term [App (t./ AtC)z]Fig is determined from Figures

1.110, 1.111, 1.112, or 1.113 for the appropriate values of
t./ Atc and F\. The other parameters of Equation 1.6.20 are
defined below:

Ap = amplitude of the pressure response from the obs-
ervation well for the pulse being analyzed, psi

Atc = cycle length, hours
@ = production (injection) rate during active period,
STB/day
k = average permeability, md

Once the permeability is estimated from Equation 1.6.20, the
porosity—compressibility product can be estimated from:

{0. 0002637 (#) ] 1
oc =

1.6.21
,U'rZ [(tL) D/r]zj] Fig [ ]

where:

t;, = time lag, hours
r = distance between the active well and observation
well, ft

The term [(fL)p/ r%]Fig is determined from Figures 1.114,
1.115, 1.116, or 1.117. Again, the appropriate figure to be
used in analyzing the pressure response data depends
on whether the first-odd or fist-even pulse or one of the
remaining pulses is being analyzed.

Example 1.44¢ In a pulse test following rate stabilization,

the active well was shut in for 2 hours, then produced
for 2 hours, and the sequence was repeated several times.

4 After John Lee, Well Testing (1982).
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Figure 1.112 Pulse testing: relation between time lag and response amplitude for all odd pulses after the first. (After

Kamal and Brigham, 1976).

An observation well at 933 ft from the active well recorded an
amplitude pressure response of 0.639 psi during the fourth
pulse and a time lag of 0.4 hours. The following additional
data is also available:

Q =425STB/day, B =1.26bbl/STB,

r = 933 ft, h =261t
un=0.8cp, ¢ =0.08
Estimate % and ¢c;.
Solution
Step 1. Calculate the pulse ratio F" from Equation 1.6.16, to
give:
A ) 2__0s

T AMc AL+ AEF 2+2
Step 2. Calculate the dimensionless time lag (¢ ) p by apply-
ing Equation 1.6.17:

L
Wp = — =
(tp Al
Step 3. Using the values of (#)p = 0.1 and F\ = 0.5, use
Figure 1.113 to get:
[Aapp (1.7 At)?]

0.4
— =0.1
1 0

= 0.00221

Fig

Step 4.

Step 5.

Step 6.

Step 7.

Estimate the average permeability from Equation
1.6.20, to give:

T [ 141.2QBu

hAap[(t)pl?

_ [ (141.2) (425) (1. 26) (0. 8)
(26) (0.269)[0.1]2

Using (t.)p = 0.1 and F\ = 0.5, use Figure 1.117
to get:

j| [App (t/ ML) ],

] (0.00221) = 817 md

[(t)n/75 ], = 0.091
Estimate the product ¢¢; by applying Equation 1.6.21
[ 0.0002637% ()
e =

1
/er :| [(tL)D/rIZ)] Fig

_[0.0002637(817) (0. 4)
- (0.8)(933)2
=1.36x107°

Estimate ¢, as:

. _ L36x 10-6
T 770,08

1
] (0.091)

=17 x 1070 psi!
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Figure 1.113 Pulse testing: relation between time lag and response amplitude for all even pulses after the first. (After

Kamal and Brigham, 1976).

Example 1.45¢ A pulse test was conducted using an injec-
tion well as the pulsing well in a five-spot pattern with the
four offsetting production wells as the responding wells. The
reservoir was at its static pressure conditions when the first
injection pulse was initiated at 9:40 a.m., with an injection
rate of 700 bbl/day. The injection rate was maintained for 3
hours followed by a shut-in period for 3 hours. The injection
shut-in periods were repeated several times and the results
of pressure observation are given in Table 1.9. The following
additional data is available:

¢ =9.6 x 107 psi~1,
7 =330 ft

n=0.87cp,
¢ = 16%,
Calculate the permeability and average thickness.

Solution

Step 1. Plot the pressure response from one of the observa-
tions well as a function of time, as shown in Figure
1.118.
Analyzing first odd-pulse pressure data

Step 1. From Figure 1.118 determine the amplitude pres-
sure response and time lag during the first pulse,

@Data reported by H. C. Slider, Worldwide Practical Petroleum Reser-
voir Engineering Methods, Penn Well Books, 1983.

Step 2.

Step 3.

Step 4.

Step 5.

to give:
Ap = 6.8 psi
t. = 0.9 hour
C_alculate the pulse ratio F\ from Equation 1.6.16, to
give:
At 3
= Atz =373° 0.5

Calculate the dimensionless time lag (#)p by apply-
ing Equation 1.6.17:

\

B _09 s
Atc 6

Using the values of (t.)p = 0.15 and F\ = 0.5, use
Figure 1.110 to get:

[App (t/ Atc)?]
Estimate average ik from Equation 1.6.20, to give:

—  [141.2QBun )
k= [m} [App 8/ At)?]

[ (141.2)(700) (1. 0) (0. 86)
- [ (6.8)[0.15]2

= 1387.9md ft

(t)p =

g = 00025

Fig

i| (0.0025)
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Figure 1.114 Pulse testing: relation between time lag and cycle length for first odd pulse. (After Kamal and Brigham,

1976).

Step 6.

Step 7.

Using (#)p = 0.15 and F\ = 0.5, use Figure 1.114
to get:

[(t)p/7rE],, = 0.095

Estimate the average permeability by rearranging
Equation 1.6.21 as:

7= peur?
~ 10.0002637 ()

(0.16) (9.6 x 10-9) (0. 86) (330)?
= 57.6 md

0.0002637(0.9)
Estimate the thickness % from the value of the prod-
uct kk as calculated in step 5 and the above average
permeability. That is:

hk 1387.9
[k} _ [W] — 241t

Fig

Fig

j| [(t)p/7rE]

] (0.095)

k=

Analyzing the fifth pulse pressure data

Step 1.

From Figure 1.110 determine the amplitude pres-
sure response and time lag during the fifth pulse, to
give:

Ap = 9.2 psi

t. = 0.7 hour

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Calculate the pulse ratio F\ from Equation 1.6.16 to
give:
_ AL Aty 3

e R S
Atc A+ AL 3+3

0.5

Calculate the dimensionless time lag (f;)p by apply-
ing Equation 1.6.17:
t,
f)p = ——
(o = 5
Using the values of (t)p = 0.117 and F\ = 0.5, use
Figure 1.111 to get:

[App (t/ Ate) ], = 0.0018

0.7
— =0.117
6

Estimate average ik from equation 1.6.20, to give:

_ [141.2QBu
hk=| ———
|:Ap[(tL)D]2

(141.2)(700) (1. 0) (0. 86)
=1213 md ft

(9.2)[0.11772
Using (t;)p = 0.117 and F\ = 0.5, use Figure 1.115
to get:

] [App (t/ At)* ],

] (0.0018)

=0.093

Fig

[tn/7rE]
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Figure 1.115 Pulse testing: relation between time lag and cycle length for first even pulse. (After Kamal and Brigham,

1976).

Step 7. Estimate the average permeability by rearranging
Equation 1.6.21 as:

7= peipr?
~ 1 0.0002637 (t,)

_ [ (0.16) (9.6 x 10-5) (0. 86) (330)?

] [(t)p/7E]Irg

0.0002637(0.7) ] (0.095)

=72.5md

Estimate the thickness % from the value of the prod-
uct sk as calculated in step 5 and the above average
permeability. That is:

- hk 1213
k= |:k] = [m] =16.71t

The above calculations should be repeated for all other
pulses and the results should be compared with core and con-
ventional well testing analysis to determine the best values
that describe these properties.

1.6.4 Pulse testing in homogeneous anisotropic
reservoirs

The analysis for the pulse test case is the same as that

for the homogeneous isotropic case, except the average

permeability & as defined by Equation 1.6.6 is introduced

into 1.6.20 and 1.6.21, to give:

Bk =8 = [ e | [ 0/ 6t
[1.6.22]
and:
0.0002637 (t.) (k)?
de = |: ur? ] |:y2kx+x2ky2xykxyi|
! [1.6.23]

o/

The solution methodology outlined in analyzing interfer-
ence test data in homogeneous anisotropic reservoirs can be
employed when estimating various permeability parameters
from pulse testing.

1.6.5 Pulse test design procedure
Prior knowledge of the expected pressure response is impor-
tant so that the range and sensitivity of the pressure gauge
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Figure 1.116 Pulse testing: relation between time lag and cycle length for all odd pulses after the first. (After Kamal
and Brigham, 1976).

and length of time needed for the test can be predeter-

mined.

To design a pulse test, Kamal and Brigham (1975)

recommend the following procedure:

Step 1.

Step 2.

Step 3.

Step 4.

The first step in designing a pulse test is to select
the appropriate pulse ratio F\ as defined by Equation
1.6.16,i.e., pulse ratio = pulse period/cycle period. A
pulse ratio near 0.7 is recommended if analyzing the
odd pulses; and near 0.3 if analyzing the even pulses.
It should be noted the F\ should not exceed 0.8 or
drop below 0.2.

Calculate the dimensionless time lag from one of the
following approximations:

For odd pulses (t.)p = 0.09 + 0.3F\ [1.6.24]

For even pulses (#.)p = 0.027 — 0. 027F"

[1.6.25]

Using the values of F\ and (#)p from step 1 and step
2 respectively, determine the dimensionless param-
eter [ (t.)p/73] from Figure 1.114 or Figure 1.115.

Using the values of F\ and (#.)p, determine the

dimensionless response amplitude [ App (fL./ Atc) 2]Fig

from the appropriate curve in Figure 1.110 or
Figure 1.111.

Step 5.

Step 6.

Using the following parameters:

e estimates of k, 1, ¢, u, and ¢,

e values of L(tL)D/r%JFig and [App i/ Atc)?]
from step 3 and 4, and

e Equations 1.6.1 and 1.6.2

calculate the cycle period (Atc) and the response
amplitude Ap from:

Fig

pucr’ } )
=1 0o00zes7z ) ¢ , 1.6.26
- [0.0002637k [®o /75 ] [ ]
I
- 1.6.27
“= o [16.27]
141.2QBu 2
= 2 | LA /AL |y 1.6.28
|:hk [(tL)D]2j| [ pD( L/ C) ]Flg [ ]

Using the pulse ratio F\ and cycle period Atc, cal-
culate the pulsing (shut-in) period and flow period
from:

Pulse (shut-in) period At, = F\Afc
Flow period Aty = Afc — At,
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Figure 1.117 Pulse testing: relation between time lag and cycle length for all even pulses after the first. (After Kamal
and Brigham, 1976).

Table 1.9 Pressure behaviour of producing Well. After Slider, H. C., Worldwide
Practical Petroleum Reservoir Engineering Methods, copyright ©1983, Penn Well

Publishing
Time Pressure Time Pressure Time Pressure
(psig) (psig) (psig)
9:40 a.m 390.1 2:23 p.m. 411.6 11:22 p.m. 425.1
10:10 a.m. 390.6 2:30 p.m. 411.6 12:13 am. 429.3
10:30 a.m. 392.0 2:45 p.m. 4114 12:40 a.m. 431.3
10:40 a.m. 393.0 3:02 p.m. 411.3 1:21 am. 433.9
10:48 a.m. 393.8 3:30 p.m. 411.0 1:53 a.m. 433.6
11:05 a.m. 395.8 4:05 p.m 410.8 2:35 a.m. 432.0
11:15 am. 396.8 4:30 p.m. 412.0 3:15a.m. 430.2
11:30 a.m. 398.6 5:00 p.m. 413.2 3:55 a.m. 428.5
11:45 am. 400.7 5:35 p.m. 416.4 4:32 am. 428.8
12:15 p.m. 403.8 6:00 p.m. 418.9 5:08 a.m. 430.6
12:30 p.m. 405.8 6:35 p.m. 422.3 5:53 a.m. 434.5
12:47 p.m. 407.8 7:05 p.m. 424.6 6:30 a.m. 4374
1:00 p.m. 409.1 7:33 p.m. 425.3 6:58 a.m. 440.3
1:20 p.m. 410.7 7:59 p.m. 425.1 7:30 a.m. 440.9
1:32 p,m. 411.3 8:31 p.m. 423.9 7:58 a.m. 440.7
1:45 p.m. 411.7 9:01 p.m, 423.1 8:28 a.m. 439.6
2:00 p.m. 411.9 9:38 p.m. 421.8 8:57 a.m. 438.6

2:15 p.m. 411.9 10:26 p.m. 421:4 9:45 a.m. 437.0
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Figure 1.118 Pulse pressure response for Example 1.45.

Example 1.46 Design a pulse test using the following
approximate properties:

¢ =0.18, k=200md
7 =600ft, ¢ =10 x 1075 psi-?
F\=0.6

n=3cp,
h =251t
B =1bbl/STB, @ = 100 bbl/day,

Solution

Step 1. Calculate (¢)p from Equation 1.6.24 or 1.6.25. Since
F\is 0.6, the odd pulses should be used and therefore
from Equation 1.6.24:

(tL)p = 0.09 4+ 0.3(0.6) = 0.27

Selecting the first odd pulse, determine the dimen-
sionless cycle period from Figure 1.114 to get:

[(t)p /75 ], = 0-106

Determine the dimensionless response amplitude
from Figure 1.110 to get:

[App (t/ At)* ], = 0.00275

Step 2.
Step 3.

Step 4. Solve for t;, Atc, and Ap by applying Equations

1.6.26 through 1.6.28, to give:
Time lag:

¢/‘LC172 :| 2
=|—|[(tL)p /75 ]
- [o. 00026377 | L0 /7bJei

_ [(0.18)(3) (10 x 10-5) (660)>
_[ (0.0002637) (200)

= 4.7 hours

] (0.106)

Cycle time:
L 4.7
—— = —— =17.5hours
(tL)p .27
Pulse length (shut-in):

Atp = AtcF\ = (17.5)(0.27) ~ 5 hours
Flow period:

Aty = Atc — Atp = 17.5 — 4.7 ~ 13 hours

Atc =

Step 5. Estimate the pressure response from Equation
1.6.28:

[ 141.2QBu
hk [(tL)p]?

(141.2) (100) (1) (3)
[W

} [App (tL/Atc)Z]Fig

:| (0.00275) = 0.32 psi

Thisis the expected response amplitude for odd-pulse anal-
ysis. We shut in the well for 5 hours and produced for 13
hours and repeated each cycle with a period of 18 hours.

The above calculations can be repeated if we desire to
analyze the first even-pulse response.

1.7 Injection Well Testing

Injectivity testing is a pressure transient test during injec-
tion into a well. Injection well testing and the associated
analysis are essentially simple, as long as the mobility ratio
between the injected fluid and the reservoir fluid is unity.
Earlougher (1977) pointed out that the unit-mobility ratio is
areasonable approximation for many reservoirs under water
floods. The objectives of injection tests are similar to those



1/134  WELL TESTING ANALYSIS

of production tests, namely the determination of:

e permeability;

e gkin;

® average pressure;

e reservoir heterogeneity;
e front tracking.

Injection well testing involves the application of one or more
of the following approaches:

e injectivity test;
o pressure falloff test;
e step-rate injectivity test.

The above three analyses of injection well testing are briefly
presented below.

1.7.1 Injectivity test analysis
In an injectivity test, the well is shut in until the pressure
is stabilized at initial reservoir pressure p;. At this time,
the injection begins at a constant rate gi,j, as schematically
illustrated in Figure 1.119, while recording the bottom-hole
pressure pys. For a unit-mobility ratio system, the injectivity
test would be identical to a pressure drawdown test except
that the constant rate is negative with a value of g;,;. How-
ever, in all the preceding relationships, the injection rate will
be treated as a positive value, i.e., giy; > 0.

For a constant injection rate, the bottom-hole pressure is
given by the linear form of Equation 1.3.1 as:

Put = P1nr + mlog(?) [1.7.1]

The above relationship indicates that a plot of bottom-
hole injection pressure versus the logarithm of injection
time would produce a straight-line section as shown in
Figure 1.119, with an intercept of p;,. and a slope m as
defined by:

m— 162. qunjBM
- kh
where:
@inj = absolute value of injection rate, STB/day
m = slope, psi/cycle

k = permeability, md
h = thickness, ft

SHUT IN

Rate, g

INJECTING

Time, t

Bottom-Hole
Pressure, py

Time, t

Figure 1.119 Idealized rate schedule and pressure
response for injectivity testing.

Sabet (1991) pointed out that, depending on whether the
density of the injected fluid is higher or lower than the reser-
voir fluid, the injected fluid will tend to override or underride
the reservoir fluid and, therefore the net pay 2 which should
be used in interpreting injectivity tests would not be the
same as the net pay which is used in interpreting drawdown
tests.

Earlougher (1977) pointed out that, as in drawdown test-
ing, the wellbore storage has great effects on the recorded
injectivity test data due to the expected large value of the
wellbore storage coefficient. Earlougher recommended that
all injectivity test analyses must include the log-log plot of
(pwi —p;) versus injection time with the objective of determin-
ing the duration of the wellbore storage effects. As defined
previously, the beginning of the semilog straight line, i.e., the
end of the wellbore storage effects, can be estimated from
the following expression:

‘e (200000 + 12 000s)C [1.7.2]

kh/

where:

t = time that marks the end of wellbore storage effects,
hours

k = permeability, md

s = skin factor

C = wellbore storage coefficient, bbl/psi

u = viscosity, cp

Once the semilog straight line is identified, the permeabil-
ity and skin can be determined as outlined previously by:

= 162 6qwBr [1.7.3]
mh
s= 11513 | Pt =P g ) +3.2075| [1.7.4]
m ducr?

The above relationships are valid as long as the mobility
ratio is approximately equal to 1. If the reservoir is under
water flood and a water injection well is used for the injec-
tivity test, the following steps summarize the procedure of
analyzing the test data assuming a unit-mobility ratio:

Step 1. Plot (pw;—p;) versus injection time on alog—log scale.

Step 2. Determine the time at which the unit-slope line, i.e.,
45° line, ends.

Step 3. Move 1% log cycles ahead of the observed time in
step 2 and read the corresponding time which marks
the start of the semilog straight line.

Step 4. Estimate the wellbore storage coefficient C by
selecting any point on the unit-slope line and read-
ing its coordinates, i.e., Ap and ¢, and applying the
following expression:

_ quBt

= 21np [1.7.5]

Step 5. Plot pws vs. t on a semilog scale and determine
the slope m of the straight line that represents the
transient flow condition.

Step 6. Calculate the permeability 2 and skin factor from
Equations 1.7.3 and 1.7.4 respectively.

Step 7. Calculate the radius of investigation 7;,, at the end of
injection time. That is:

kt

iy = 0.0359
duce

[1.7.6]

Step 8. Estimate the radius to the leading edge of the
water bank 7, before the initiation of the injectivity
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Figure 1.120 Log-log data plot for the injectivity test of Example 1.47. Water injection into a reservoir at static
conditions (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright

SPE, 1977).
test from:
.61 inj .61 inj
ry = | —> Wi :\/56 Wi 177
he (Sw — Swi) whe (ASy)
where:
rwb = radius to the water bank, ft
Wiy = cumulative water injected at the start of the
B test, bbl
Sw = average water saturation at the start of the
test

swi = initial water saturation

Step 9. Compare #yp, with 7,y : if 70y < 71, the unit-mobility
ratio assumption is justified.

Example 1.47“ Figures 1.120 and 1.121 show pressure
response data for a 7 hour injectivity test in a water-flooded
reservoir in terms of log (pws — p;) vs. log () and log (pws) vs.
log () respectively. Before the test, the reservoir had been
under water flood for 2 years with a constant injection rate of
100 STB/day. The injectivity test was initiated after shutting
in all wells for several weeks to stabilize the pressure at p;.
The following data is available:

¢ =6.67 x 1076 psi~!

B=1.0bbl/STB, u=1.0c¢p

Sy = 62.41b/ft>, ¢ =0.15, gy, = 100 STB/day
h=161t, r, =0.25ft, p; =194 psig

ASy = 0.4, depth =1002ft, total test time = 7 hours

The well is completed with 2 inch tubing set on a packer.
Estimate the reservoir permeability and skin factor.

@ After Robert Earlougher, Advances in Well Test Analysis, 1977.

Solution

Step 1. The log-log data plot of Figure 1.120 indicates that
the data begins to deviate from the unit-slope line at
about 0.55 hours. Using the rule of thumb of moving
1to 1% cycles in time after the data starts deviating
from the unit-slope line, suggests that the start of
the semilog straight line begins after 5 to 10 hours
of testing. However, Figures 1.120 and 1.121 clearly
show that the wellbore storage effects have ended
after 2 to 3 hours.

Step 2. From the unit-slope portion of Figure 1.120, select
the coordinates of a point (i.e.,Ap and t) end calcu-
late the wellbore storage coefficient C by applying
Equation 1.7.5:

Ap = 408 psig
t = 1 hour
_ qiBt
T 24Ap

_ (100)(1.0) (1)
T (24)(408)

= 0.0102 bbl/psi

Step 3. From the semilog plotin Figure 1.121, determine the
slope of the straight line m to give:

m = 770 psig/cycle

Step 4. Calculate the permeability and skin factor by using
Equations 1.7.3 and 1.7.4:

162. 6qinjB;L
b= —— Tl
mh

_ (162.6)(100) (1.0) (1.0)
B (80) (16)

—12.7md
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Figure 1.121 Semilog plot for the injectivity test of Example 1.47. Water injection into a reservoir at static conditions
(After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

s=1.1513[p1hr_p‘
m

) +3. 2275i|

—log
¢7,U,Ct7‘;zv

=1 1513|: 30

—log<

+3. 2275] =24

12.7
(0.15)(1.0) (6.67 x 10-6) (0.25)2 )

Step 5. Calculate the radius of investigation after 7 hours by
applying Equation 1.7.6:
kt
e

iy = 0.0359
12.7)(7)

=0. 0359\/ (0.15)(1.0) (6.67 x 10-6)

Step 6. Estimate the distance of the leading edge of the water
bank before the start of the test from Equation 1.7.7:

Win; = (2) (365) (100) (1. 0) = 73 000 bbl

~ 338 ft

5. 615 Wiy
mhe (ASy)

Twh =

(5.615) (73 000)
= | ————< 7 ~369ft
7(16)(0.15)(0.4)
Since 7y < 7wph, the use of the unit-mobility ratio
analysis is justified.

1.7.2 Pressure falloff test

A pressure falloff test is usually preceded by an injectiv-
ity test of a long duration. As illustrated schematically in
Figure 1.122, falloff testing is analogous to pressure buildup
testing in a production well. After the injectivity test that
lasted for a total injection time of #, at a constant injection

o
o SHUT IN
50
o
INJECTING
jfe——At—>
1
p
Time, t

£ Ny (At=0)
g
3
(7]
1%}
o
o
2
o
T
1S
S
@ le——at—>

t,

P

Time, t

Figure 1.122 |dealized rate schedule and pressure
response for falloff testing.

rate of giy;, the well is then shut in. The pressure data taken
immediately before and during the shut in period is analyzed
by the Horner plot method.

The recorded pressure falloff data can be represented by
Equation 1.3.11, as:

N t, + At
= (2]
with:
o _ | 162 64sBu
- kh

where p* is the false pressure that is only equal to the initial
(original) reservoir pressure in a newly discovered field. As
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Figure 1.123 Horner plot of a typical falloff test.

shown in Figure 1.123, a plot of pys vs. log [(t, + At) /At]
would form a straight-line portion with an intercept of p* at
(t, + At) /At = 1 and a negative slope of .

It should be pointed out that the log-log data plot should
be constructed to identify the end of the wellbore storage
effects and beginning of the proper semilog straight line.
The permeability and skin factor can be estimated as outlined
previously by the expressions:

_ 162. qunjB,u.
~ |mlh

s=1.513 [pw“‘ at=0 = P1hr —log( k 2) +3.2275]
[m| ducrs

Earlougher (1977) indicated that if the injection rate varies
before the falloff test, the equivalent injection time may be
approximated by:

24 Wiy

Ginj
where Wiy, is the cumulative volume injected since the last
pressure equalization, i.e., last shut-in, and g, is the injection
rate just before shut-in.

Itis not uncommon for a falloff test to experience a change
in wellbore storage after the test begins at the end of the
injectivity test. This will occur in any well which goes on
vacuum during the test. An injection well will go on vacuum
when the bottom-hole pressure decreases to a value which is
insufficient to support a column of water to the surface. Prior
to going on vacuum, an injection well will experience storage
due to water expansion; after going on vacuum, the storage
will be due to a falling fluid level. This change in storage will
generally exhibit itself as a decrease in the rate of pressure
decline.

The falloff data can also be expressed in graphical form by
plotting pys vs. log (At) as proposed by MDH (Miller-Dyes—
Hutchinson). The mathematical expression for estimating
the false pressure p* from the MDH analysis is given by
Equation 1.3.12 as:

px =pine — Imllog(t, +1) [1.7.8]

Earlougher pointed out that the MDH plot is more prac-
tical to use unless £, is less than about twice the shut-in
time.

The following example, as adopted from the work of
McLeod and Coulter (1969) and Earlougher (1977), is used
to illustrate the methodology of analyzing the falloff pressure
data.

ty =

Example 1.48 During a stimulation treatment, brine
was injected into a well and the falloff data, as reported by
McLeod and Coulter (1969), is shown graphically in Figures
1.124 through 1.126. Other available data includes:

total injection time ¢, = 6. 82 hours,

total falloff time = 0.67 hours

@inj = 807 STB/day, By = 1.0bbl/STB,
cw = 3.0 x 1076 psi?

¢=0.25, h=281ft, puy=10cp
¢ =1.0x10"psi!, 7, =0.41t
depth = 4819 ft,

hydrostatic fluid gradient = 0.4685 psi/ft

The recorded shut-in pressures are expressed in terms of
wellhead pressures pis with P o ar—o = 1310 psig. Calculate:

Sy = 67.46 Ib/ft3

o the wellbore storage coefficient;
o the permeability;

e the skin factor;

o the average pressure.

Solution

Step 1. From the log-log plot of Figure 1.124, the semilog
straight line begins around 0.1 to 0.2 hours after
shut-in. Using Ap = 238 psi at At = 0.01 hours
as the selected coordinates of a point on the unit-
slope straight line, calculate the wellbore storage
coefficient from Equation 1.7.5, to give:

qinj Bt
C=
24Ap
_ (807)(1.0)(0.01)
- (24) (238)
Step 2. Figures 1.125 and 1.126 show the Horner plot,
ie., “wellhead pressures vs. log[(f, + At) /At],”

and the MDH plot, i.e. “wellhead pressures
vs. log (At), respectively, with both plots giving:

= 0.0014 bbl/psi

m = 270 psig/cycle
P1nr = 85 psig

Using these two values, calculate k and s:

b= 162. qujB,u
|m| h
_(162.6)(807) (1.0)(1.0)
= @70)28) =17.4md
s = 1.513[17““f at at=0 — P1be flog( k >+3.2275]
|m| bucrl

131085
= 1'513|:W —log(

+ 3.2275 = 0.15

Step 3. Determine p* from the extrapolation of the Horner
plot of Figure 1.125 to (, + At)/At = 1, to give:

b = —151 psig

17.4
(0.25) (1.0) (1.0 x 105 (0.4)2 )}

Equation 1.7.8 can be used to approximate p*:
" =bin — Imllog(t, +1)
P = 85— (270) log(6.82 + 1) = —156 psig

%Robert Earlougher, Advances in Well Test Analysis, 1977.
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Figure 1.124 Log-log data plot for a falloff test after brine injection,

Example 1.48 (After Earlougher, R. Advances in

Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
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Figure 1.125 Horner plot of pressure falloff after brine injection, Example 1.48.

This is the false pressure at the wellhead, i.e., the Zone 1.
surface. Using the hydrostatic gradient of 0.4685
psi/ft and the depth of 4819 ft, the reservoir false

pressure is:
p* = (4819)(0.4685) — 151 = 2107 psig

and since injection time #, is short compared with
the shut-in time, we can assume that:

p = p* = 2107 psig Zone 2.
Pressure falloff analysis in non-unit-mobility

ratio systems

Figure 1.127 shows a plan view of the saturation distribution

in the vicinity of an injection well. This figure shows two

distinct zones.

represents the water bank with its leading edge at
a distance of 7; from the injection well. The mobil-
ity A of the injected fluid in this zone, i.e., zone 1,
is defined as the ratio of effective permeability of
the injected fluid at its average saturation to its
viscosity, or:

A= (/)1

represents the oil bank with the leading edge at a
distance of 7, from the injection well. The mobility A
of the oil bank in this zone, i.e., zone 2, is defined as
the ratio of oil effective permeability as evaluated at
initial or connate water saturation to its viscosity, or:

re = (R/1)2
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Figure 1.127 Schematic diagram of fluid distribution around an injection well (composite reservoir).
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Figure 1.128 Pressure falloff behavior in a two-bank
system.

The assumption of a two-bank system is applicable if the
reservoir is filled with liquid or if the maximum shut-in time
of the falloff test is such that the radius of investigation of
the test does not exceed the outer radius of the oil bank.
The ideal behavior of the falloff test in a two-bank system
as expressed in terms of the Horner plot is illustrated in
Figure 1.128.

Figure 1.128 shows two distinct straight lines with slopes
of my and m,, that intersect at Aty. The slope m; of the first
line is used to estimate the effective permeability to water
ky in the flooded zone and the skin factor s. It is commonly
believed that the slope of the second line m, will yield the
mobility of the oil bank A,. However, Merrill et al. (1974)
pointed out that the slope m; can be used only to determine
the oil zone mobility if 7p > 107 and (¢pc)1 = (¢cy)2, and
developed a technique that can be used to determine the dis-
tance 7;; and mobility of each bank. The technique requires
knowing the values of (¢¢;) in the first and second zone,
i.e., (¢c)1 and (¢ci)2. The authors proposed the following
expression:

k _ 162.6QB

2 - ngh

The authors also proposed two graphical correlations, as
shown in Figures 1.129 and 1.130, that can be used with the
Horner plot to analyze the pressure falloff data.

The proposed technique is summarized by the following:

Step 1. Plot Ap vs. At on a log-log scale and determine the
end of the wellbore storage effect.

Step 2. Construct the Horner plot or the MDH plot and
determine mq, m», and Aty.

Step 3. Estimate the effective permeability in the first zone,
i.e., injected fluid invaded zone, “zone 1,” and the
skin factor from:

162. 6¢;,; B
| — 162.64wBp [1.7.9]
|m1|h
s=1.513 |:ow at At=0 _ﬁl hr
[m1]

ez) + 527
—log| ————— | +3.2275
£ (d)m(ct)m%

where the subscript “1” denotes zone 1, the injected
fluid zone.
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Figure 1.129 Relationship between mobility ratio, slope
ratio, and storage ratio. (After Merrill, et al. 1974).

Step 4. Calculate the following dimensionless ratios:

my (pcor
—  an
m (e

with the subscripts “1” and “2” denoting zone 1 and
zone 2 respectively.

Step 5. Use Figure 1.129 with the two dimensionless ratios
of step 4 and read the mobility ratio A;/As.

Step 6. Estimate the effective permeability in the second
zone from the following expression:

e () 2

n1) A/re

Step 7. Obtain the dimensionless time Afpg from Figure
1.130.

Step 8. Calculate the distance to the leading edge of the
injected fluid bank 7 from:

/[0. 0002637(k/u)1] ( At )
m =
(pcot Atp

To illustrate the technique, Merrill et al. (1974)
presented the following example.

[1.7.10]

[1.7.11]

Example 1.49 Figure 1.131 shows the MDH semilog
plot of simulated falloff data for a two-zone water flood
with no apparent wellbore storage effects. Data used in the
simulation is given below:

o =0.25f, h=20f rm =30ft

rp =7, = 36001t, (k/u); =n =100 md/cp

(B/1)2 = n2 =50 md/cp, (¢c)1 =8.95x 1077 psi~!
(pc)2 = 1.54 x 1076 psi1, @inj = 400 STB/day

By, = 1.0 bbl/STB

Calculate A1, A2, and 7;; and compare with the simulation
data.
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Figure 1.131 Falloff test data for Example 1.49. (After Merrill et al. 1974).
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Figure 1.132 Injection pressure response and derivative (base case).

Solution

Step 1. From Figure 1.131, determine m,, m», and Aty to
give:

my = 32.5 psi/cycle
my = 60. 1 psi/cycle
Aty = 0.095 hour

Estimate (k/u)1, i.e., mobility of water bank, from
Equation 1.7.9:

(E) _ 162.6giB _ 162.6(400) (1.0)
1

Step 2.

w |my| b (32.5)(20)

=100 md/cp
The value matches the value used in the simulation.

Step 3. Calculate the following dimensionless ratios:
my  —60.1
m—l =355 = 1.85
(pe)1  8.95x 107

=0.581

(pc)2  1.54 x 10-6
Using the two dimensionless ratios as calculated in
step 4, determine the ratio A;/A» from Figure 1.129:
M99
A2
Calculate the mobility in the second zone, i.e., oil
bank mobility A, = (k/u)9, from Equation 1.7.10:
(g) _ @/ _ 100
1)y~ alie) ~ 2.0
with the exact match of the input data.
Determine Atpg from Figure 1.130:
Atpg = 3.05

Calculate 7;; from Equation 1.7.11:

~ (0.0002637) (100) (0. 095)
= (8.95 x 10-7) (3. 05)

Step 4.

Step 5.

=50 md/cp

Step 6.

Step 7.

=301t

Yeh and Agarwal (1989) presented a different approach of
analyzing the recorded data from the injectivity and falloff
tests. Their methodology uses the pressure derivate Ap
and Agarwal equivalent time At, (see Equation 1.4.16) in
performing the analysis. The authors defined the following
nomenclature:

During the injectivity test period:

Apwi = pwt — bi
d(Apw)

o
Alut = ~Jin )

where:

pwt = bottom-hole pressure at time ¢ during
injection, psi
t = injection time, hours
Int = natural logarithm of ¢

During the falloff test period:
prs = ,bw[ at At=0 — pws

d(Apws)
\
APvs = {(in Ate)
with:

t, A

Af. =

t, + At

where:

At = shut-in time, hours
t, = injection time, hours

Through the use of a numerical simulator, Yeh and Agar-
wal simulated a large number of injectivity and falloff tests
and made the following observations for both tests:

Pressure behavior during injectivity tests

(1) Alog-log plot of the injection pressure difference Apyg
and its derivative Ap;,f versus injection time will exhibit
a constant-slope period, as shown in Figure 1.132, and
designated as (Ap\\,d)const. The water mobility A; in
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the floodout zone, i.e., water bank, can be estimated 1600 T T T T T
from:
k 70. 62¢;,;B 0
M= <*) = 1400 - -~
n/y h(prf)CDHSt //
Notice that the constant 70.62 is used instead of 162.6 & i
because the pressure derivative is calculated with & 1200 - A -
5 . 7
respect to the natural logarithm of time. & -
(2) The skin factor as calculated from the semilog analysis ‘g -
method is usually in excess of its true value because @ 1000 - -
.. . N = FRACTURE PRESSURE =
of the .contrast between injected and reservoir fluid o 1000 PS! AT SURFACE
properties.
800 |- -
Pressure behavior during falloff tests
(1) The log-log plot of the pressure falloff response in | | | | |
terms of Ap and its derivative as a function of the falloff 600 0 200 400 —600 —800 —1000 —1200

equivalent time Af, is shown in Figure 1.133. The result-
ing derivative curve shows two constant-slope periods,
(Apys)1 and (Apys)2, which reflect the radial flow in the
floodout zone, i.e., water bank, and, the radial flow in the
unflooded zone, i.e., oil bank.

These two derivative constants can be used to estimate
the mobility of the water bank A; and the oil bank X,
from:

_ 70.62g:,iB

© h(Ape)

_ 70.62qi,;B

 h(ApN):

The skin factor can be estimated from the first semilog

straight line and closely represents the actual mechani-
cal skin on the wellbore.

2

@

1.7.3 Step-rate test

Step-rate injectivity tests are specifically designed to deter-
mine the pressure at which fracturing could be induced in
the reservoir rock. In this test, water is injected at a con-
stant rate for about 30 minutes before the rate is increased
and maintained for successive periods, each of which also

Injection Rate, STB/D

Figure 1.134 Step-rate injectivity data plot.

lasts for 30 minutes. The pressure observed at the end
of each injection rate is plotted versus the rate. This plot
usually shows two straight lines which intersect at the frac-
ture pressure of the formation, as shown schematically
in Figure 1.134. The suggested procedure is summarized
below:

Step 1. Shut in the well and allow the bottom-hole pressure
to stabilize (if shutting in the well is not possible, or
not practical, stabilize the well at a low flow rate).
Measure the stabilized pressure.

Open the well at a low injection rate and maintain
this rate for a preset time. Record the pressure at
the end of the flow period.

Increase the rate, and at the end of an interval of
time equal to that used in step 2, again record the
pressure.

Repeat step 3 for a number of increasing rates until
the parting pressure is noted on the step-rate plot
depicted by Figure 1.134.

Step 2.

Step 3.

Step 4.
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_ As pointed out by Horn (1995), data presented in graph-  “toolbox” of graphing functions that is considered an
ical form is much easier to understand than a single essential part of computer-aided well test interpretation
table of numbers. Horn proposed the following system:

Flow period Characteristic Plot used
Infinite-acting radial flow Semilog straight line pvs.log At (semilog plot, sometimes
drawdown) called MDH plot)

Infinite-acting radial flow (buildup) Horner straight line pvs. log(t, + At)/ At (Horner plot)

Wellbore storage Straight line p vs. ¢, or unit-slope log Ap vs. log At (log-log plot, type
log Ap vs. log At curve)

Finite conductivity fracture Straight-line slope i, log Ap log Ap vs. log At, or Ap vs. Atl/4
vs. log At plot

Infinite conductivity fracture Straight-line slope %, log Ap log Ap vs. log At, or Ap vs. At/2
vs. log At plot

Dual-porosity behavior S-shaped transition between pvs. log At (semilog plot)
parallel semilog straight lines

Closed boundary Pseudosteady state, pressure p vs. At (Cartesian plot)
linear with time

Impermeable fault Doubling of slope on semilog p vs. log At (semilog plot)
straight line

Constant-pressure boundary Constant pressure, flat line Any

on all p, ¢ plots

Chaudhry (2003) presented another useful “toolbox” that Kamal et al. (1995) conveniently summarized; in tabulated

summarizes the pressure derivative trends for common flow form,_ various plots and ﬂOW regimes most commonly used in
regimes that have been presented in this chapter, as shown transient tests and the information obtained from each test

in Table 1-10.

as shown in Tables 1-11 and 1-12.

Table 1.10 Pressure Derivative Trends for Common Flow Regimes.

Wellbore storage dual-porosity
matrix to fissure flow

Dual porosity with
pseudosteady-state interporosity
flow

Dual porosity with transient inter-
porosity flow

Pseudosteady state

Constant-pressure boundary
(steady state)

Single sealing fault (pseudoradial
flow)

Elongated reservoir linear flow

Wellbore storage infinite-acting
radial flow

Wellbore storage, partial
penetration, infinite-acting radial
flow

Linear flow in an infinite
conductivity vertical fracture

Bilinear flow to an infinite
conductivity vertical fracture

Semilog straight lines with slope 1.151

Parallel straight-line responses are characteristics of naturally fractured reservoirs

Pressure change slope — increasing, leveling off, increasing

Pressure derivative slope = 0, valley = 0

Additional distinguishing characteristic is middle-time valley trend during more than
1log cycle

Pressure change slope — steepening

Pressure derivative slope = 0, upward trend = 0

Additional distinguishing characteristic — middle-time slope doubles

Pressure change slope — for drawdown and zero for buildup

Pressure derivative slope — for drawdown and steeply descending for buildup

Additional distinguishing characteristic — late time drawdown pressure change and
derivative are overlain; slope of 1 occurs much earlier in the derivative

Pressure change slope — 0

Pressure derivative slope — steeply descending

Additional distinguishing characteristic — cannot be distinguished from psuedosteady
state in pressure buildup test

Pressure change slope — steeping

Pressure derivative slope — 0, upward trend — 0

Additional distinguishing characteristic — late-time slope doubles

Pressure change slope — 0.5

Pressure derivative slope — 0.5

Additional distinguishing characteristic — late-time pressure change and derivative
are offset by factor of 2; slope of 0.5 occurs much earlier in the derivative

Pressure change slope = 1, pressure derivative slope = 1

Additional distinguishing characteristics are: early time pressure change, and derivative
are overlain

Pressure change increases and pressure derivative slope = 0

Additional distinguishing characteristic is: middile-time flat derivative

K (x:)? — calculate from specialized plot

Pressure slope = 0.5 and pressure derivative slope = 0.5

Additional distinguishing characteristics are: early-time pressure change and the
derivative are offset by a factor of 2

Ksw — calculate from specialized plot

Pressure slope = 0.25 and pressure derivative slope = 0.25

Additional distinguishing characteristic are: early-time pressure change and derivative
are offset by factor of 4

(continued)
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Table 1.10 Pressure Derivative Trends for Common Flow Regimes (continued)

Wellbore storage infinite acting

radial flow
Wellbore storage

Wellbore storage linear flow

Sealing fault

No flow boundary

Kb? — calculate from specialized plot

Table 1.11 Reservoir properties obtainable from various transient tests (After Kamal et al. 1995).

Drill item tests

Repeat/multiple-formation

tests
Drawdown tests

Buildup tests

Reservoir behavior
Permeability

Skin

Fracture length
Reservoir pressure
Reservoir limit
Boundaries
Pressure profile

Reservoir behavior
Permeability

Skin

Fracture length
Reservoir limit
Boundaries
Reservoir behavior
Permeability

Skin

Fracture length
Reservoir pressure
Boundaries

Step-rate tests

Falloff tests

Interference and pulse

tests

Layered reservoir tests

Formation parting pressure
Permeability

Skin

Mobility in various banks

Skin

Reservoir pressure

Fracture length

Location of front

Boundaries

Communication between wells

Reservoir type behavior
Porosity

Interwell permeability
Vertical permeability
Properties of individual layers
Horizontal permeability
Vertical permeability

Skin

Average layer pressure

Outer Boundaries

Table 1.12 Plots and flow regimes of transient tests (After Kamal et al. 1995)

Plot
Flow regime Cartesian VAt VAL Log-log Semilog
Wellbore storage Straight line Unit slope on Ap and p\  Positive s
Slope — C Ap and p\ coincide Negative s
Intercept — Afc
Apc
Linear flow Straight line Slope = % on p\ and on
Slope = m¢ — I Apifs=0
Intercept = fracture Slope < % on Apifs #0
damage p\ at half the level of Ap
Bilinear flow Straight line Slope = %
Slope = my — Cyg b\ at L level of Ap
First IARF ¢ (high-k Decreasing 2\ horizontal at pk) = 0.5 Straight line
layer, fractures) slope Slope = m — kh
Ap1hr — S
Transition More decreasing Ap = re~ % or B\ Straight line
slope p]\) = 0.25 (transition) Slope = m/2 (transition)
=< 0.25 (pseudo- =0 (pseudo-
steady state) steady state)
Second IARF Similar slope to »\ horizontal at [J]\) =0.5 Straight line
(total system) first IARF Slope = m — kh, p*
Ap1jpy — S
Single no-flow boundary 2\ horizontal at pl\) = 1.0 Straight line
Slope = 2m
Intersection with
IARF— distance to
boundary
Outer no-flow Straight line Unit slope for Ap and p\ Increasing slope

boundaries

Slope = m* — ¢pAh

(drawdown test only) p; — Ca

Ap and p\ coincide

2TARF = Infinite-Acting Radial Flow.
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Problems Using the Ei function approach and the pp method, cal-

1. An incompressible fluid flows in a linear porous media culate the bottom-hole flowing pressure after 1, 2, 3, 5,

with the following properties.

at a constant flow rate of 500 STB/day under a transient
flow condition. Given:

B, =1.1bbl/STB, u,=2cp, ¢ =15x 1075 psi-?

and 10 hours. Plot the results on a semilog scale and
Cartesian scale.

L =25001ft, h=30ft, width=5001ft, %= 50md, 9. A well is flowing under a drawdown pressure of 350 psi
& =17%, =2 cp, inlet pressure = 2100 psi, and produces at a constant flow rate of 300 STB/day. The
Q = 4bbl/day, p = 45 b/ net thickness is 25 ft. Given:
Calculate and plot th file throughout th e = 6601, v = 0251t
lil?e21u :yitzrrln. plot the pressure profile throughout the ito = 1.2¢p, B, =1.25bbl/STB
. Assume the reservoir linear system as described in prob- calculate:
lem 1 is tilted with a dip angle of 7°. Calculate the fluid -
potential through the linear system. (a) the average permeablhty;'
. A gas of 0.7 specific gravity is flowing in a linear reser- (b) the capacity of the formation.
voir system at 150°F. The upstream and downstream 14 Ap oil well is producing from the center of a 40 acre
pressures are 2000 _and 1800 psi, respectively. The square drilling pattern. Given:
system has the following properties:
L=2000ft, W =300ft, h=15ft ¢ =20k h=15, k=60md
k_40md’ P _15<y T o =1.5¢p, B, =1.4bbl/STB, 7, =0.251t
= , ¢ =15%
bpi = 2000 psi, pws = 1500 psi
Calculate the gas flow rate. .
. An oil well is producing a crude oil system at 1000 calculate the oil flow rate.
STB/day and 2000 psi of bottom-hole flowing pressure. ~ 11. A shut-in well is located at a distance of 700 ft from one
The pay zone and the producing well have the following well and 1100 ft from a second v'vell..The first well flows
characteristics. for 5 days at 180 STB/day, at which time the second well
. begins to flow at 280 STB/day. Calculate the pressure
h=35ft, r,=0.25ft, drainage area =40 acres drop in the shut-in well when the second well has been
APl =45°, y,=0.72, R, =700 scf/STB flowing for 7 days. The following additional data is given:
k=80md
Assuming steady-state flowing conditions, calculate and pi =3000psi, B, =1.3 Pbl/ STB, o =1.2cp,
plot the pressure profile around the wellbore. h=601t, ¢ =15x10"%psi-!, ¢ =15% k=45md
. Assuming steady-state flow and an incompressible .
fluid, calculate the oil flow rate under the following 12. Awellis opened to flow at 150 STB/day for 24 hours. The
conditions: flow rate is then increased to 360 STB/day and lasts for
) ) another 24 hours. The well flow rate is then reduced to
Pe = 2500 psi, pwr = 2000 psi, 7. =745t 310 STB/day for 16 hours. Calculate the pressure drop
7w =0.3ft, wo=2cp, B,=1.4bbl/STB in a shut-in well 700 ft away from the well, given:
h=301t, k=60md ¢ =15% h=20f k=100md
. A gas well is flowing under a bottom-hole flowing o =2cp, B,=1.2bbl/STB, r,=0.251t
pressure of 900 psi. The current reservoir pressure is o . _ 6 i1
1300 psi. The following additional data is available: b =3000psi, ¢ =12 107 psi
e _ _ 13. Awellis flowing under unsteady-state flowing conditions
T'=140°F, y; =0.65, r, = 0.3t for 5 days at 300 STB/day. The well is located at 350 ft
k=60md, h=401 7 =10001ft and 420 ft distance from two sealing faults. Given:
Calculate the gas flow rate by using 6=17% ¢ =16x105psi!, k=80md
(@) the real-gas pseudopressure approach; i = 3000 psi, B, =1.3bbl/STB, u,=1.1cp
(b) the pressure-squared method. re = 0.250, h=251ft
. After a period of shut-in of an oil well, the reservoir pres- .
sure has stabilized at 3200 psi. The well is allowed to flow calculate the pressure in the well after 5 days. .
14. A drawdown test was conducted on a new well with

results as given below:

k=50md, h=20f ¢=20% £ b osi)
7w = 0.31t, p; = 3200 psi 1.50 2978
calculate and plot the pressure profile after 1, 5, 10, 15, ggg gggg
and 20 hours. 15.00 2904
. An oil well is producing at a constant flow rate of 800 37'50 2876
STB/day under a transient flow condition. The following 56.25 2863
data is available: 75:00 2848
By, = 1.2bbI/STB, 1y =3cp, c = 15x 105 psi-! I

— — = 9 :

k=100md, h=25ft, ¢ =15% 225.00 2763

rw = 0.5, p; = 4000 psi,
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15.

Given:
pi =3400 psi, h =251t, @ = 300STB/day
¢ =18 x 106 psit,
B, = 1.1bbl/STB,

Mo = 1.8 ¢cp,
rw=0.251, ¢ = 12%,

and assuming no wellbore storage, calculate:

(a) the average permeability;
(b) the skin factor.

A drawdown test was conducted on a discovery well.
The well was allowed to flow at a constant flow rate of
175STB/day. The fluid and reservoir data is given below:

Swi = 25%, ¢ =15%, h=30ft, ¢ =18 x 1075 psi—!
rw = 0.25ft, p; =4680psi, u, = 1.5c¢p,
B, = 1.25bbl/STB

The drawdown test data is given below:

t(hr)  pur (psi)
0.6 4388
1.2 4367
1.8 4355
24 4344
3.6 4334
6.0 4318
8.4 4309
12.0 4300
24.0 4278
36.0 4261
48.0 4258
60.0 4253
72.0 4249
84.0 4244
96.0 4240
108.0 4235
120.0 4230
144.0 4222
180.0 4206

Calculate:

(a) the drainage area;

(b) the skin factor;

(C) the oil flow rate at a bottom-hole flowing pressure
of 4300 psi, assuming a semisteady-state flowing
conditions.

16. A pressure buildup test was conducted on a well that

had been producing at 146 STB/day for 53 hours.

The reservoir and fluid data is given below.

B, =1.29bbl/STB, u, =0.85cp,
¢ =12 x 106 psi~1,
A = 20 acres

& =10% pur = 1426.9 psig,

The buildup data is as follows:

Time  pys (psig)
0.167 1451.5
0.333 1476.0
0.500 1498.6
0.667 1520.1
0.833 1541.5
1.000 1561.3
1.167 1581.9
1.333 1599.7
1.500 1617.9
1.667 1635.3
2.000 1665.7
2.333 1691.8
2.667 1715.3
3.000 1736.3
3.333 1754.7
3.667 1770.1
4.000 1783.5
4.500 1800.7
5.000 1812.8
5.500 1822.4
6.000 1830.7
6.500 1837.2
7.000 1841.1
7.500 1844.5
8.000 1846.7
8.500 1849.6
9.000 1850.4
10.000 1852.7
11.000 1853.5
12.000 1854.0
12.667 1854.0
14.620 1855.0

Calculate:

(a) the average reservoir pressure;

(b) the skin factor;

(c) the formation capacity;

(d) an estimate of the drainage area and compare with
the given value.






