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Preface 

 

The presented set of several selected topics touching on physical chemistry, physics, and 

mathematics is not designed as a systematic single-discipline interpretation. The given length of 

78 pages would certainly not be sufficient for that. In its reduced form, this text merely attempts 

to provide the reader with some non-violent insight into the processes in the environment through 

the perspective of the physical picture and mathematical modeling. 

The starting point is the fundamental theses of equilibrium thermodynamics. The inclusion of this 

classical discipline is motivated by its philosophical depth, which deserves great respect. After 

all, the structure of the second theorem of thermodynamics, for example, can sometimes offer 

nooks and crannies that the reader may not have explored during their initial study. The first 

paper that turns directly to constructing a mathematical model is the Debye-Hückel theory of the 

ionic atmosphere. This topic is, of course, somewhat removed from the vast mosaic constituting 

the problems of physical chemistry of solutions, but it nevertheless offers a comprehensive 

picture of the model solution of a given type of spherically symmetric problem. Considerable 

attention is given in the text to the dynamical processes described by ordinary differential 

equations. The interpretation ranges from basic kinetic problems that are easily solved 

analytically to some classic examples of nonlinear dynamical systems. The principles of 

dynamical model construction presented are generally applicable to time-dependent processes of 

any type, although they have been primarily developed for chemical processes. Finally, an 

example of a model solution of a specific problem of ion exchange kinetics with a 1D spatial 

dimension is presented. This paper can perhaps broaden the viewpoint of modeling processes of 

the given type to some extent, although it is not of "textbook origin". An essential part of the text 

is the associated appendices, which contain a brief description of selected basic methods for the 

numerical solution of ordinary and partial differential equations. 

This text relates to the course of the same name, which is taught to first-year students in the MSc 

in Environmental Modelling. The form of exposition is chosen to make it understandable even for 

the reader, who may not always have a comprehensive system of higher mathematics built into 

the consequences. Many times, of course, the degree of this "empathy" may seem inadequate. For 

example, the text also lists some treatments (substitution procedures in differential equations, 

etc.) that standard textbooks leave to the reader. The explanations and indications of context can 

often lead the reader to experience the problem intuitively rather than correctly and in a 

mathematical formalism. The more informed reader should show indulgence for the occasional 

naivety of the text. 

 

Author 
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1. Basic theses of equilibrium thermodynamics 

 

Equilibrium thermodynamics is a consistent discipline, in many aspects consistently 

philosophically designed.  

 

1.1 Basic terms 

Thermodynamics does not study microstructure, it distinguishes a generally specified system 

determined (as a whole) by state parameters. Between the system and its surroundings may 

proceed exchange of mass and energy. 

 

 

System  

- isolated - does not exchange mass nor energy with surroundings 

- closed - does not exchange mass, exchanges energy 

- open - exchanges mass and energy (e.g., a living organism) 

- open with steady flow. 

 

Forms of energy exchanged between the system and its surroundings 

- heat Q - exchange proceeds as a result of temperature difference  

- work W - exchange proceeds by virtue of forces, i.e. work may be volume work 

represented by changes of volume of fluid forming the system, and mechanical work. 

The initial state of the system is always subtracted from the final one (generally true - in 

mathematics see definite integral). 

Then the following sign convention applies: 

 + energy delivered to the system 

 -  energy withdrawn from the system  

 W > 0 the system withdraws work 

 W < 0 the system performs work 

 Q > 0 the system withdraws heat - endothermic process 

 Q < 0 system produces heat - exothermic process 

 Q = 0 adiabatic process 

 

Phases, components, state transformations of the system 
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The phase is a homogeneous area of the system - exhibits only continuous changes in properties 

in space. Therefore, the system is homogeneous or heterogeneous - composed of more phases. 

Every phase may be composed of more chemical substances – components. Only chemical 

substances can be considered as components, concentration of which can be changed 

independently, i.e. not substances formed of independent components by chemical reaction, or 

substances concentration dependent on components by means of chemical equilibrium. 

Phase transformation is discontinuous change of system properties occurring at specific p,T 

conditions. 

State of matter: 

  gas  liquids  

  liquid            condensed state  

  solid substance      

  plasma 

State and equilibrium of the system 

The state of the system is determined by status quantities, it is independent at the manner by 

which the system gets into the given state. 

For example p, T, V, n 

Properties of the system expressed by state quantities: 

- Extensive – they have additive character (they are a sum of parts) m, V, total E 

- Intensive – independent at material quantity – p, T, ρ, c, U 

Heat Q and work W are not state quantities, they relate to thermodynamic process proceeding 

from the initial state to the equilibrium state. 

Thermodynamic equilibrium: 

- Mechanical (equilibration of pressures) 

- Thermal (temperature equilibration) 

-  Concentration 

-  Phase (if state of matter changes) 

-  Chemical 

 

Thermodynamic process 

The system may theoretically pass to the equilibrium state either by a reversible process, which is 

defined as a process of infinitely small steps for infinitely long period of time, over states 

infinitely close to equilibrium, during which time the direction of the process may be turned over 

at any time - e.g. expansion of gas with infinitely slow decrease of external pressure, or by an 
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irreversible process, when the transition proceeds in final time, and in the system, or its 

surroundings, in which irreversible changes occur - e.g. expansion of compressed gas to the 

external environment with atmospheric pressure. Real processed in nature proceed by irreversible 

processes. 

Types of processes: 

 - isothermal constant temperature    [T] 

 - isobaric constant pressure    [p] 

 - isochoric constant volume    [V] 

 - adiabatic heat is not exchanged with surroundings Q = 0 

 - isenthalpic constant enthalpy    [H] 

 - isentropic constant entropy    [S] 

 

 

1.2 Ideal gas 

Ideal gas is as quite homogeneous fluid determined by state parameters: 

f(p,T,V,n) = 0,       f(p,T,Vm) = 0,      p = p(T, Vm) Vm is molar volume. 

In mixtures:   f(p,T,V,ni) = 0,       f(p,T,Vm,xi) = 0 

In contrast to real gas, molecular structure and intermolecular interactions are entirely ignored. 

 

State equation of ideal gas 

It applies for state behaviour of ideal gas: 

 p V = n R T     or      p Vm = R T              (1.1) 

R = 8.314 J. K
-1

.mol
-1

 is gas constant 

 

Therefore, it applies: 

  p1 V1 = p0 V0   [T] isotherm     (1.2) 

 V1 / T1 = V0 / T0  [p]       (1.3) 

 p1 / T1 = p0 / T0  [V]       (1.4) 

 

State behaviour of ideal gas 

State behaviour of ideal gas can be characterized by parameters of extensibility, compressibility 

and expansivity. 

Coefficient of isobaric extensibility: 
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Coefficient of isothermal compressibility:  
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Coefficient of isochoric expansivity: 
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It evidently applies:    
T
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
 =      (1.8) 

For mixtures of ideal gases, Dalton's law further applies – total pressure is a sum of partial 

pressures of components. 
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Amagat´s law – total volume of a mixture is a sum of partial volumes of components. 
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Volume work of ideal gas 
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  VpxspW d.d..d −=−=         (1.14)  

Volume work delivered to the system:  
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Delivery of volume work represents reduction of operating fluid volume of the system (ideal 

gas). In terms of the generally valid principle, when the initial state is always subtracted from the 

final one, this compression is a negative change.  

 W = - p ΔV          (1.16) 

 

1.3 First law of thermodynamics 

The first law thermodynamics is a universal principle, the keystone of which is recognition that 

the only forms of energy exchange between the system and surroundings is heat and work. Heat 

is microphysical – a disorderly form of energy exchange, work is macrophysical, i.e. an orderly 

form of energy exchange. 

Internal energy increase ΔU of the closed system corresponds to delivered heat and delivered 

work from surroundings. 

ΔU = U2 – U1 = W + Q        (1.17) 

Of course, the same applies in a differential form for infinitely small (infinitesimal) change in 

internal energy: 

dU = dQ + dW         (1.18) 

or for the case of delivered volume work: 

 dU = dQ – pdV         (1.19) 

According to the first law of thermodynamics, work and heat are equivalent, the state change of 

the system expressed as ΔU is independent at in what proportion both forms of energy exchange 

participate in it. 

By definition, the following applies for a cyclic process: 

 = 0dU            (1.20) 

 

Enthalpy 

However, in light of measurability of volume work, utilization of the difference of the system 

states given by internal energy ΔU for balance assessment of the course of chemical reactions 

under standard isobaric conditions (with possibility of any volume changes), is questionable.  

Obvious solution is evaluation of chemical reactions on the basis of heat of reaction - enthalpy H, 

which is well measurable (by calorimetry). Resulting heat of reaction (released or absorbed) 

under constant pressure corresponds not only to change in internal energy, but also to performed 

or delivered (absorbed) volume work.   

 dQ = dU + d(pV) = d(U + pV) = dH      (1.21) 

 of course, under constant pressure,  pdV = d(pV) applies. 
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Therefore, between dQ and dH is the equal sing, and enthalpy is referred to as heat of reaction, 

nevertheless, it is still necessary to distinguish that enthalpy is defined as the state quantity, in 

contrast to heat. 

For enthalpy then applies: 

dH = dU + pdV         (1.22) 

or: 

 ΔH = ΔU + p ΔV         (1.23) 

Enthalpy increment is equal to heat received by the system under constant pressure, if it performs 

no other work than volume work. Enthalpy is advantageous for evaluation of processes 

(especially chemical reactions) – it is measurable.  

In general, also other forms of work may be exchanged with surroundings than volume work. 

 

Heat capacities 

Heat capacity is defined on the basis of differential amount of heat dQ needed for differential 

temperature increase dT. 
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Heat capacity is defined under constant volume - CV, and constant pressure - Cp. 
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Under constant volume, heat is not consumed for volume work - therefore, for temperature 

increase less heat is sufficient, i.e. Vp CC   usually applies (inequality does not apply, e.g., in 

water in temperature interval of 1 – 4°C, when thermal contraction occurs with temperature 

increase). 

Difference between heat capacity under constant pressure Cp and constant volume CIn is expressed 

in numbers: 
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For total differentials of state functions U, V in space of independent variables it applies: 
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After substitution for dV from (1.29) to (1.28) and differentiation with respect to T, the following 

is obtained: 
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Therefore, the resulting relation for difference of heat capacities has the form: 
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Application of the first law of thermodynamics to ideal gas 

In addition to state equation (1.1), the following applies for ideal gas: 
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Because delivered (or withdrawn) heat in isothermal expansion (or compression) is in ideal gas 

always equivalent to volume work, which this gas performed (or which was delivered to it), total 

differential of internal energy of ideal gas is then reduced to: 

 TCT
T

U
U V

V

ddd =











=         (1.33) 

or, internal energy of ideal gas depends only on temperature. Heat capacity of ideal gas at 

constant volume can be then expressed as:  
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With respect to differentiated form of the state equation (1.1), the relation for difference of heat 

capacities is in ideal gas reduced to a constant: 
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Of course, for a change of U and H at thermal transition from T1 to T2, the following  is obtained: 
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At any isothermal state change of ideal gas, its internal energy remains constant – see (1.32).  
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Then : 
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Reversible transition of ideal gas from state 1 to state 2, i.e. isothermal change of volume or 

pressure can be expressed as: 
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On the contrary, it applies for the case of reverse adiabatic expansion of ideal gas according to 

the first law of thermodynamics (dQ = 0, dU= -pdV):       

 TCVp Vdd =−          (1.41) 

While considering state equation (1.1):   
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It applies for state behaviour of ideal gas: 
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Thus for resulting adiabate (in space p, V) of ideal gas it is obtained from (1.45) and (1.46): 

 ,2211


VpVp =  .constpV =         (1.47) 

 

1.4 Second law of thermodynamics 

Other aspects of energy balance of processes taking place in environment (including chemical 

reactions) have already been related to the second law of thermodynamics, which expresses the 

fundamental property of spontaneous processes to proceed in direction to greater disorderliness. 
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E.g. bounces of a ball are absorbed at impacts on hard floor spontaneously as a result of transformation of work to 

heat (ball and floor heat up). A reverse process - spontaneous initiation of vertical bounces of heated ball (from 

heated floor) as far away as to its return to the initial point is impossible, even if the entire process is thoroughly 

adiabatically insulated. This impossibility, which is evident itself, is generally connected with orderliness of 

processes. Though arisen heat is equivalent to initial potential energy of the ball according to the first law of 

thermodynamics, nevertheless, the possibility that quite orderly configuration would occur leading to spontaneous 

bounce of the ball from the floor within the frame of chaotic thermal movement of particles (molecules) of the 

system, is extremely unlikely. 

The second law of thermodynamics in one of many possible formulations states: It is impossible 

to transform heat by a spontaneous process to equivalent work. 

 

Carnot cycle and its efficiency 

Implications of this principle can be developed within the scope of description of efficiency of 

so-called Carnot heat engine. It concerns a purely abstract construction of cyclically operating 

heat engine represented by two heat reservoirs with temperatures T2 > T1 and a proper system 

interchanging heat with those reservoir and delivering or receiving work from surroundings. Heat 

flow among the system and both reservoirs does not affect by any means temperatures of 

reservoirs, T2 and T1 are constant. Within the scope of one cycle, four reversible processes run 

through, and measure of system disorderliness is at the end of the cycle equal to the initial. 

Operating fluid is ideal gas (1 mol). The Carnot cycle is described as follows:  

1. Isothermal reversible expansion at temperature T2 – gas expands from volume V1 to V2, during 

which time it withdraws heat +Q2 from heat reservoir of temperature T2 and does (delivers to 

surroundings) work  –W1.  

2.  Adiabatic reversible 

expansion – gas expands without 

exchange of heat with 

surroundings to volume V3, 

during which time does (delivers 

to surroundings) work W2 and 

cools down to temperature T1. 

3.  Isothermal reversible 

compression at temperature T1 – 

gas is compressed by exertion of 

work +W3 (i.e. receiving work 

from surroundings) to volume V4, 

during which time delivers heat 

to cooler reservoir -Q1. 

4.  Adiabatic reversible 

compression – gas is compressed 

without heat interchange with 

surroundings by exercising work 

+W4 back to volume V1, during 

which time warms up to initial 

Fig . 1.1. Carnot cycle             temperature T2. 
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The engine works in cycles, internal energy of operating gas after one cycle returns to starting 

value ΔU = 0 - see (1.20). 

Efficiency of this engine, which transforms heat to work, is naturally given as a ratio of 

performed work to heat withdrawn from the heat source (heat received by operating fluid). 

 
2Q

W−
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It can be added that equation (1.48) is a general relation expressing efficiency of (non-cyclic) 

heat engine in dependence on size of portion of withdrawn heat, which is transformed to work -W 

transferred to surroundings together with residual – unused heat. It is substantial in evaluating 

efficiency of the Carnot cyclically operating engine that overall performed work is (according to 

the first law of thermodynamics) equivalent to heat balance of the operating cycle. It applies: 
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Expressed total work has a negative sign in (1.50), therefore, it concerns work performed by the 

system, which is considered in the relation for efficiency (1.48). This performed work is, with 

respect to the sign of Q1, the difference between heat delivered to the system at the first process, 

i.e. Q2, and heat transferred in the third process Q1 (amount of heat exchanged in isothermal 

expansion or compression of ideal gas is of course dependent on the set temperature). I.e. work 

performed in the operating cycle of the Carnot heat engine is simply expressed by means of heat 

balance without necessity to evaluate work -W1, -W2, W3, W4 done in individual steps. 

Heat Q2 absorbed by gas in the first step corresponds to performed volume work: 
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Accordingly – heat delivered by gas Q1 corresponds to work: 
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For reversible adiabatic processes, general relationship between volume and temperature applies 

for ideal gas - TV
γ-1

=constant (γ=Cm,p/Cm,V  is Poisson constant). So for steps 2 and 4 it can be 

written: 
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By combination of equations (1.52) and (1.54) then comes out for Q1: 
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Subsequently then it can be written: 
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Efficiency can be then expressed with consideration of relations (1.49), (1.51), and (1.56) as: 
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Hence it comes out that efficiency of the Carnot heat engine is determined only by temperatures 

of reservoirs. E.g., situation T2 = 2 T1 corresponds to 50% efficiency (100% would correspond 

either to =2T  or 01 =T , which is in both cases impossible). Further, it should be added that 

relation (1.57) expresses a maximum theoretical efficiency of the heat engine operating in 

temperature interval T1 to T2. Or maximum efficiency can be achieved only for theoretic situation, 

when all processes run in the reversible manner.  

The following relation can be deduced from relation (1.57): 

0
2

2

1

1 =+
T

Q

T

Q
           (1.58) 

Relation (1.58) has cardinal importance in light of studied chain of events. As already 

emphasized above, all four steps of the described Carnot cycle proceed in a reversible way. Or it 

is possible to say that if the sum of fractions at the left-hand side of equation (1.58) is equal to 

zero, all processes proceeding within the frame of a given cycle are reversible, and disorderliness 

does not rise in the system after passing the cycle.  

The Carnot cycle can also be expressed as a differential with infinitesimal sections of both 

isotherms: 

0
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Generalization of relation (1.59) for any reversible cyclic process with any number of individual 

infinitesimal Carnot cycles leads to an integral form: 

0
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If any of partial processes in the Carnot cycle proceeds in a irreversible way, the entire process is 

irreversible, and its overall efficiency must be lower than that of primarily considered ideal 

situation, when all four partial processes are reversible.  
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This inequality can be itemized likewise relation (1.57), when the right-hand side represents 

temperatures T1, T2 of heat reservoirs, i.e. temperatures, which the system would have (1 mol of 

ideal gas) at every instant of isothermal expansion or compression during their reversible course. 

At the irreversible course (of one or more partial processes), the system and heat reservoir are not 

at every instant in thermal equilibrium, and efficiency corresponding to the system itself 

expressed by exchanged heat is lower than that corresponding to the reversible process expressed 

by temperatures of external reservoirs. 
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After adjustment: 
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1

1 +
T

Q

T

Q
           (1.63) 

i.e. the factor corresponding to heat delivered to the system Q2 at temperature T2  is lower than the 

fraction corresponding to heat withdrawn from the system –Q1/T1. It can be said that in case of 

irreversible course of one or more partial processes of the Carnot cycle the system must reject 

more disarranged form of energy, than it would reject if all processes proceeded in a reversible 

manner. It means that not all received heat is made use of for work, it remains the residual. 

Consequently, in this sense disorderliness rises in the system, or the Carnot heat engine logically 

must stop. This fact can be simply shown, e.g., on adiabatic expansion, when gas would do less 

work at the irreversible course than it would correspond to the reversible process, and its 

temperature would be in connection with residual heat higher than T1. In the following step – 

isothermal compression - gas would have to deliver more heat Q1 to heat reservoir, than if 

adiabatic expansion proceeded in the reversible manner. The same principle of decrease in 

organized forms of energy would be surely implemented even in remaining three (irreversible) 

processed (levelling up temperature of operating gas to temperatures T1 and T2 would, of course, 

proceed only within the frame of isothermal processes). 

As well as for reversible cyclic processes, it by generalization is possible to come to an integral 

form of the principle expressed in (1.63). For an irreversible common cycle (when disorderliness 

rises in the system), therefore, the Clausius´s inequality applies: 

 0
d

 T

Q
           (1.64) 

It can be concluded that abstract construction of the Carnot heat engine has cardinal importance 

for interpretation of the principle of the second law of thermodynamics in that its efficiency can 

be expressed as relation including only operating temperatures of isothermal processes under 

consideration. In this way deduced efficiency is a maximum – corresponding to reversible 

processes, because both temperatures are maintained outside the system by high capacity heat 

reservoirs and are constant. The second possibility for expressing efficiency of the Carnot engine 

is the relation including received and given over heats at isothermal processes, which relates to 

operating gas – the efficiency of the system itself is evaluated and may then include temporary 

imbalance with temperatures T1 and T2. When comparing efficiencies defined by these two 

manners, it is postulated that efficiency deduced from heats is in the case of irreversibility of 

some of the processes of the Carnot engine lower, which hits the essence of the second law of 
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thermodynamics. For the exact (mathematical) formulation of the second law of thermodynamics 

then just two basic thermodynamic quantities are available evaluating efficiency of the Carnot 

heat engine – heat and temperature. 

 

Conception of entropy 

In the context of facts expressed by relations (1.59) and (1.60), and in considerations in the 

previous section (as well as because the rate dQ/T is a total differential), it is possible to introduce 

a new state function named entropy – S, characterizing measure of disorderliness of a 

thermodynamic system. For a reversible process with heat exchange with the environment: it 

applies as follows: 

T

Q
S

d
d =            (1.65) 

Therefore, the definition of entropy means infinitesimal exchange of heat between the system and 

surroundings in relation to temperature of the system, which is constant.  

Reversible transition of the system from state A to state B is given by: 

=

B

A
T

Q
S

d
           (1.66) 

i.e. for the above analysed Carnot cycle, entropy change at reversible isothermal expansion or 

compression is equivalent to fraction Q2/T2, or -Q1/T1, reversible adiabatic volume changes are 

isentropic processes (dQ =0, or 0=S ). 

Entropy change of the system then can be simply expressed in numbers (on the basis of relation 

(1.66)) only for a reversible process, for an irreversible process the following inequality applies: 

T

Q
dS

d
            (1.67) 

For irreversible transition from A to state B: 



B

A
T

Q
S

d
           (1.68) 

If it concerns an irreversible adiabatic process, it simply applies:  

0dS , 0S           (1.69) 

These relations defining the entropy for irreversible processes (1.67), (1.68), (1.69) can be 

justified by the Clausius inequality (1.64). This inequality is valid for a cycle in which at least 

one of the partial processes is irreversible (the whole cycle is then irreversible). The simplest 

model example is a cycle in which the system goes from state A to state B irreversibly (and 

without heat exchange with the environment), then it must, of course, return to the initial state A 

by a "different path" - reversibly and with the possibility of heat exchange with the environment. 

The inequality expression (1.64) for this case is as follows: 



16 

 +
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dd
             (1.70) 

The first integral is equal to zero because at transition A → B the system is isolated and dQir = 0. 

The second integral is equal to the difference of entropies SA - SB according to (1.61). If this 

difference is to be less than zero, the entropy of the system in state B must be higher than in-state 

A - the entropy increases during the irreversible adiabatic process A → B. This conclusion 

would, of course, result even if the order of the processes were chosen in reverse. Thus, the 

validity of (1.69) is proved. 

The relation (1.68) can be justified similarly if the conditions of the agencies in the model 

example (1.70) are considered in reverse. That is, the system goes from A to B isothermally (with 

heat exchange with the environment) and back - from B to A adiabatically. Thus, the second 

integral is equal to zero, and the transition B → A is reversible, i.e., SA = SB must hold. The first 

integral for a given inequality implies (Qir/T)A > (Qir/T)B, which means that for the transition 

from A to B, (1.68) must hold in order to maintain entropy equality in both states (SA = SB). 

Both proofs are based on integral expressions, but the principles derived are logically valid in the 

infinitesimal sense, i.e., relation (1.67) is also justified. 

Naturally, a pattern results from these inequalities that the system entropy at the course of 

irreversible adiabatic process always increases (= 2nd LT). Inequality (1.67), or (1.68) logically 

ensues from the previous. In the case of this irreversible process - with the exchange of heat with 

the environment, when this heat is related, for example, with the change of the internal energy of 

the system, the change of entropy may be positive or negative - entropy can also decrease (e.g. 

crystallisation under isothermal conditions); however, the factor dQ/T must be according to 2nd 

LT (inequality 1.67) always more negative than the infinitesimal change of entropy dS (and 

similarly in the integral sense - inequality (1.68)). 

However, it should be added that any spontaneous process can be considered isothermal only in 

terms of a defined local system (which exchanges heat with the environment). When the view 

goes beyond the scale of the local system, and its surroundings are taken into account, the process 

so conceived is logically adiabatic and dS > 0 (entropy increases continuously). For example, 

conditions on planet Earth may be considered isothermal in terms of global temperature (if actual 

global climate changes are disregarded), but the universe is considered an adiabatic system. 

 

Consequences of 2nd LT for irreversible thermodynamic processes with heat exchange with 

the environment 

The following graphs outline the consequences of 2nd LT for the real cyclic process with heat 

exchange system with the environment under isothermal conditions or in a mode that can be 

considered essentially isothermal. 
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Fig. 1.2. Spontaneous isothermal cyclic process 

 

Graph 1.2. demonstrates the inevitability of entropy growth after the spontaneous cyclic action of any system. In this 

context, as a consequence of 2nd LT can be interpret even aging - the continuous degradation of objects and 

equipment of varying complexity, including eg a car. Similarly, the conclusions 2nd LT justified the aging of living 

organisms, including humans.  

 

 

Fig. 1.3. Isothermal cyclic process with positive work W balance 

 

The increase in the entropy of the system after the cycle is not generally inevitable, it can be countered by a positive 

work balance (and at the same time a negative heat balance), which of course means that the cyclic process is not 

spontaneous under these conditions - see Fig. 1.3. The situation of the positive balance of work corresponds 

elementally with human influence on the Earth. A trivial example is the reduction of entropy growth in interiors by 

regular cleaning. 

It can be added that Clausius inequality is interpreted for irreversible (real) cyclic processes in 

systems with heat exchange with the surroundings as a balancing principle compensating the 

continuous increase in entropy of these processes. In this context, it is therefore clear that 

Fig. 1.2. - The amount of 

heat delivered and received 

by the system during the 

cycle is equivalent. The 

entropy decreases during the 

cycle and then increases, its 

overall balance is 

necessarily positive - the 

entropy of the system 

increased after the cycle. 

Fig. 1.3. - During the cycle, 

more heat is withdrawn from 

the system than is delivered 

(Clausius's inequality 

applies) and less work is 

withdrawn than is delivered.. 

The cyclic process is not 

spontaneous. The entropy of 

the system may not increase 

after the cycle (which is 

generally conditioned by the 

application of Clausius 

inequality). 
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Clausius inequality resulting from the balance conclusions of the Carnot cycle with one or more 

irreversible sub-processes directly determines the principle of a continuous increase in entropy 

(1.67). Simply - if more heat had to be withdrawn from the system during the cycle than it was 

delivered, the entropy had to increase. 

 

Consequences of 2nd LT for irreversible adiabatic processes 

Conclusions of 2nd LT for adiabatic processes do not allow the entropy of the system to decrease 

in any moment of the real spontaneous thermodynamic process (dS > 0 during the whole 

process). In terms of energy flow in the system is then a strict one-way. 

For example, reference can be made to the situation of an adiabatically isolated bouncing ball described in the 

introduction to this chapter. In addition, one can return to the example of car operation, albeit from a different 

perspective. Driving a car from A to B (there is no height difference between A and B) can be considered as an 

adiabatic process in a system consisting of an automobile, the track it travels and the immediate external 

environment of a moving car. By realizing the internal energy of the fuel, work is generated with some efficiency - 

the car moves from A to B. By moving from A to B, the car will not gain any potential energy (the same energy 

would have to be spent for eventual driving back). However, energy does not disappear, so it must exist in the 

adiabatically isolated system in the form of frictional heat. Without consideration 2nd LT should be able to use this 

heat as energy to drive the car back from B to A..It can be added that the principle impossibility of reversing the flow 

of energy in the described system has no connection with the primary efficiency of the internal combustion engine of 

the car (although, of course, this is also related to the 2nd LT). According to 1th LT heat that corresponds exclusively 

to the work performed should be sufficient for the return drive (heat primarily generated by the combustion process 

with limited efficiency is not in principle part of the considered balance). 

Increase in entropy of irreversible adiabatic process can be deduced also from considerations on 

transfer of heat between two bodies of different temperatures, which form together a thermally 

insulated system. For a change in entropy of this system related with transfer of heat -dQ1 from a 

body of temperature T1 to a body of temperature T2, which receives heat dQ2 (dQ2= -dQ1), it is 

possible to write: 
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Whereof it results 0dS , because heat transfers spontaneously (irreversibly) only from the 

warmer body to the cooler, i.e. dQ1 < 0 at  T2-T1 < 0, or on the contrary, dQ1 > 0 at T2-T1 > 0; there 

are no other possibilities.  

 

 

1.5 Gibbs energy 

For the course of spontaneous process of the system (thermally not-isolated) it applies as follows: 

T

Q
S

d
d             (1.71) 
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If this process proceeds under isothermal-isobaric conditions, it is possible to substitute dQ with 

enthalpy change dH. After adjustment the inequality is obtained implicating spontaneous course 

of the process: 

0dd − STH            (1.72) 

This inequality leads to introduction of thermodynamic state function consistently including 

common thermodynamic principles making possible to evaluate spontaneity of the course of the 

process under isothermal-isobaric conditions - Gibbs energy. 

ΔG = ΔH - T ΔS   

 dG = dH - T dS                   (1.73) 

Therefore, value ΔG is a criterion (or potential) of spontaneous course of thermodynamic 

processes. Chemical reaction (or any other process) will proceed, if overall balance of Gibbs 

energy (final process state minus the initial) is negative. In multicomponent processes, as 

chemical reactions and the like, the overall Gibbs energy as potential of the course (to 

equilibrium) in direction reactants → products is given by difference of summary combination 

ΔG
o
 of reactants and products (ΔG

o
products - ΔG

o
reactants).

 
Values ΔG

o 
for individual reaction 

components (compounds) are, of course, available in tables. 

Negative value of Gibbs energy corresponds (in addition to entropy change) to heat released 

during reaction under isobaric-isothermal conditions. In real reactions heat is not generally 

dissipated without rest - reacting substances also warm up, nevertheless, the fact that the system 

is not adiabatically isolated, justifies us to talk about isothermal conditions. Gibbs energy is 

defined so that it reflects final thermal and entropy balances of the process, i.e. including heat 

consumed or released in connection with would-be volume work. 

It can be added that balance relation (1.72) does not mean in principle that spontaneity of any 

process is automatically conditioned by increase in disorderliness (ΔS > 0). This relation only 

says that would-be rising of orderliness of the system (decrease of entropy - minus ΔS or negative 

factor TΔS) is lower than the value that would correspond to negative enthalpy of the process. 

See the second law of thermodynamics, which does not exclude conversion of heat to work, it 

only says that this conversion cannot be equivalent, i.e. decrease in disorderliness - decrease in 

entropy is not impediment to a partial spontaneous process.  

Possible decline of entropy during spontaneous partial process is conditioned by energy 

consumption. In partial processes, which are not doped with energy from without, the source of 

this consumed energy is naturally decline of internal energy ΔU < 0. However, it applies for 

spontaneous cyclic process not receiving energy from without that the system, after completion 

of this cycle involving any number of partial processes, in which change in internal energy may 

occur and possibly to increase or decrease in disorderliness, will return to the initial state (ΔU = 

0) more disarranged (ΔG < 0 and ΔS > 0).  
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Helmholz energy 

Helmholz free energy ΔA relates to an isochoric process, when ΔU = ΔQ applies, i.e. volume 

work is not carried out.  

Likewise in Gibbs energy, Helmholz energy is a potential of the course of an isothermal – 

isochoric process: 

ΔA = ΔU - T ΔS   

 dA = dU - T dS                   (1.72) 

Of course, Gibbs energy is more suitable as a criterion (potential) of the course of chemical 

reaction proceeding most often under atmospheric pressure, i.e. in isobaric manner. 

 

 

1.6 Thermodynamic potentials 

For differentials of quantities representing thermodynamic potentials – U, H, G, A, the following 

relations can be deduced. 

Internal energy – by combination of relations resulting from the 1st and 2nd law of 

thermodynamics (1.19) and (1.64), or T dS = dQ (reversible process), can be obtained: 

 dU = -pdV + TdS natural variables (V, S)      (1.73) 

Enthalpy – according to the 1st LT, the total differential dH = dU + pdV+Vdp, by combination 

with relation (1.73) is obtained:  

dH = Vdp + TdS natural variables (p, S )     (1.74) 

Gibbs energy – according to (1.71), the total differential is in the form dG = dH – TdS - SdT, by 

combination with relation (1.74) is obtained:   

 dG = Vdp - SdT natural variables  (p, T)      (1.75) 

Helmholtz energy – according to (1.72), the total differential must be given in a form dA = dU – 

TdS - SdT, by combination with relation (1.73) is obtained:   

 dA = -pdV - SdT natural variables (V, T)      (1.76) 

 

Maxwell equations 

Relations for thermodynamic potential (1.73 – 76) can be simply written by the help of partial 

differential quotients: 
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So that it comes out: 
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For partial differential quotients in (1.81), it is possible to further deduce: 
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Order of derivations is interchangeable – Euler's reciprocal formula applies: 
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In the same manner other resulting Maxwell´s relations are obtained: 
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1.7 Third law of thermodynamics 

The content of the third law of thermodynamics is the following statement: By no procedure, no 

matter how idealized, it is possible to achieve decrease in its temperature to absolute zero by 

finite number of operations in any system. 

Entropy of substances at temperature of absolute zero is a limit – is gets a final lowest possible 

value S0 , or according to Planck, it is zero (which probably applies only to pure substances in a 

state of a perfect crystal). 

0
0

lim SS
T

=
→

,  or 0lim
0

=
→

S
T

        (1.91) 

However, in limit T → 0 quite surely applies ΔS0 = 0 for any reversible process. Decrease of 

temperature in cooling operation (step) in limit T → 0 will be zero regardless of expended energy. 

In addition to classic experiments based on isothermal compression and adiabatic expansion of 

operating gas, the principle of the third law of thermodynamics practically manifests itself in 

lowering temperature by adiabatic demagnetization of salts of rare earths elements with high 

values of magnetic susceptibility. By this experimental procedure, temperatures were achieved so 

far that may seem to be very near to absolute zero (fractions of K, nevertheless achieving 0K is 

impossible).  

 

 

Curve B = Bi in Fig. 1.2 corresponds to magnetized state 

with oriented (i.e. organized) structure, B = 0 is a state 

without action of magnetic field. Adiabatic 

demagnetization - step 2 →3 etc., is an isentropic process, 

i.e. increase in structural disorderliness after cut-off of 

magnetic field must be compensated by decrease of 

temperature, or structurally more disorderly state 

corresponds to the same entropy only after lowering of 

temperature. It is evident from the graph that in proximity 

of absolute zero (0 K), decrease of temperature achieved 

by demagnetizing step is close to zero. 

 

       Fig . 1.2  S – T graph of adiabatic demagnetization  
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2. Equilibrium constant of chemical reactions and its relation to Gibbs 
energy 

Meaning of the term chemical equilibrium is connected with the fact that chemical reactions 

generally do not proceed to the entire depletion of starting substances, but they reach a steady 

state, when beside the products, there are present also reactants, even though often in negligible 

quantities. 

The chemical reaction 

A + B - X + Y 

can be understood as two partial processes - one proceeding in direction from left to right at rate 

v1, and the second proceeding in the opposite direction at rate v2. If it concerns an exothermic 

reaction with a smooth course, it will naturally apply for the beginning of the process v1 >> v2. 

The equilibrium is achieved at the moment, when both rates match one with another. 

These partial rates can be expressed on the basis of Guldberg-Waage law on "active mass" action. 

This law reflects the fact that instantaneous rate of chemical conversion of any substance must be 

directly proportional to its relative quantity, or concentration. For two reacting substances this 

rate will then logically be proportional to the product of their current concentrations (probability 

of meeting molecules or atoms of reacting substances determining the reaction rate is, of course, 

proportional to the product of their concentrations). A factor quantifying this proportion is the 

rate constant, which is specific for every process. It applies: 
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For equilibrium state then: 

YXBA cckcck 21 =           (2.2) 

Ration of rate constants k1/k2 is taken as equilibrium constant for the given reaction K. 
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Relation (2.3) can be generalized for a reaction with any stoichiometry 

 aA + bB - xX + yY 

 and transcribed to more correct form while using activities instead of concentrations. 
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Activity describes real potential of substance behaviour in solution. In more concentrated 

solutions, activity more markedly deviates from molar concentration (corresponding to molar 

quantity of substance added to the solution) towards lower values, because every ion is in its 

chemical manifestations "damped" by action of opposite charged surrounding ions, i.e. effect of 

ionic atmospheres – see following Chapter 3.  
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The values of equilibrium constants for standard chemical reactions carried out under isobaric 

conditions are available in tables. Of course, the equilibrium constant of a chemical reaction 

allows to determine equilibrium concentrations (or activities) of substances participating in the 

reaction for various conditions designated by concentrations (activities) of other components. It 

can be added only that everything applies to the stable steady state only. 

Higher value of K represents smooth reaction course from left to right, when after achieving 

equilibrium expressive surplus of products is present in the reaction system. Naturally, a negative 

difference in Gibbs energy of equilibrium (final) and starting states appertains to this case. This 

connection implies evident link between K and ΔG. Derivation of relationship between Gibbs 

energy and reaction constant comes out from relation (1.71), from which it results for isothermal 

conditions that change in Gibbs energy at pressure change is equivalent to volume - see (1.83) 
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When considering (1.1), it comes out for isothermal conditions: 
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For transition of gas from the standard state (i.e. the state under standard pressure of 101.325 

kPa) characterized by quantities G
o
 and p

o
 to any other state expressed as G, p, it applies: 
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i.e. ratio p/p
o
 is expressed as relative pressure pr. 

Equation (2.6) can be generalized for a mixture of k components - ideal gases, which will 

chemically react together.  
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In this case it does not already concern transition of the system to an arbitrary state. The final 

state characterized by term ΔGr corresponds to a reaction mixture of ideal gases in equilibrium, 

i.e. after completion of reaction, when the chemical process achieved the minimum energy. The 

initial state is expressed by a balance of starting energy states, i.e. standard combination of Gibbs 

energy ΔG
o

sl of individual components of the reaction mixture. During the process reactants are 

consumed - their ΔG
o

sl is then calculated with a minus sign.  
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Term ΔG
o

r means standard reaction Gibbs energy (potential of the reaction course), which is 

related to 1 mol of basic reaction turnovers, i.e. symbol n designating number of mols in equation 

(2.7) does not feature any more. On the contrary, stoichiometric coefficients νi of individual 

components were added for reaction mixture.  
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Equation (2.7) then describes a process, on beginning of which there is a mixture of k ideal gases, 

starting partial pressures p
o

i of which correspond to a unity (and of course, relative partial 

pressures pr,i too, at the beginning pi = p
o
i). In case ΔG

o
r < 0, partial pressures of components, 

which are taken as products, will increase, and pr,i of reactants will decrease. Under gradual 

lowering of the rate of chemical conversions, the process will tend towards the equilibrium state, 

instantaneous Gibbs energy of the process ΔG will retreat from initial value ΔG
o

r, moving 

towards zero (from below).  

It applies for the equilibrium state ΔGr = 0 (with constant T and p). In consideration of balance 

equation (2.8), it is possible to write: 
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Whereas relative partial pressures of the reaction components pr in equation (2.9) correspond to 

final equilibrium state. Chemical conversion of every component (ideal gas) of the reaction 

mixture can be then taken as an independent process with change of partial pressure 

corresponding to ΔG
o

sluč. of this component. Of course, relation (2.9) can be converted into a 

form: 

p
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The result is then relation of standard reaction Gibbs energy and equilibrium reaction constant Kp 

(for chemical reactions in gaseous state). 

For reaction in a solution also constancy of pressure can be considered - isobaric conditions, in 

addition to isothermal conditions. Both terms resulting from definition of dG as general 

thermodynamic potential (1.79) are then zero for isothermal processes in solution. In connection 

with chemical changes, change in Gibbs energy is equivalent to change of mol amounts of 

individual substances n in product with their chemical potential μ. 
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=++−=
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ii nnVdpSdTG   [T, p]       (2.11) 

It applies for a change in mol quantity of a reaction component: 

iii ddn =            (2.12) 

  is a scope of reaction defined as a ratio of substance quantity of any reaction component 

formed or consumed to its stoichiometric coefficient.  
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i
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i.e.: 
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It applies for equilibrium: 
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It applies for chemical potential of a substance ai (reaction component) as for equivalent of Gibbs 

energy - see (2.11):  

iii aRT ln0 +=            (2.16) 

Relation (2.16) is an analogue of (2.6) (activity in solution corresponds to relative pressure in 

mixture of gases).  

It is possible to write for activities of reaction components: 
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Considering sign convention expressed in (2.8), resulting relation is obtained between standard 

reaction Gibbs energy ΔG
o

r and equilibrium constant Ka for chemical reaction in solution: 

a

mreaktreakt

lprodprod

r KRT
aa

aa
RTG

m

l

lnln
,1,

,1,0

1

1

−=−=







       (2.18) 

In the context of the above mentioned, standard reaction Gibbs energy ΔG
o

r can be determined as 

the change of free energy, which occurs at chemical reaction of components, initial activities of 

which equal to one (or they are such that the fraction in (2.18) equals to one).  

It is also possible to say that the standard combination Gibbs energy of compounds - i.e. of 

individual reaction components ΔG
o

sl,, which serve to balance derivation of ΔG
o

r, are defined as 

Gibbs energies (related to 1 mol of basic reaction turnovers) for reactions, by which the given 

substances were formed directly from elements. The starting referential state are then elements, 

ΔG
o

sl of which is logically zero. 

Logarithmic relation (2.18) is naturally valid also for dissociation processes. For dissociation of 

water 

   H2O - H
+
 + OH

- 

it applies: 
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v
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RTG lnln
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       (2.19) 

Kv is dissociation constant of water. The rate of dissociation of pure water is very low (under 

standard conditions, activity - concentration H
+ 

and OH
-
gets near to the value of 10-7 

mol.l-1). 

Activity of non-dissociated molecule is then practically maximum, i.e. = 1. It was measured for 

dissociation constant of water:  

 
1410−== −+ OHHv aaK  

Of course, the constant value of this ionic product is valid also for all water solutions in 

equilibrium under standard conditions.  

It can be seen from the mentioned facts that the suitable parameter for balance evaluation of 

chemical and physico-chemical processes is always a function characterizing the state of the 

given system, which is logarithmically dependent on a parameter determined by relative quantity 

(molar) of each of the components. In this connection and also from practical reasons given by 

the measured value of dissociation constant of water (whole negative power of number 10), a 

parameter pH = -log aH+ was introduced, which characterizes the state of aqueous solutions in 

light of measure of acidity or alkalinity. For slightly acidic or slightly alkaline environment, it is 

possible to replace activity H
+ 

with concentration - it is possible to write: pH = -log [H
+]

. 

Analogous parameter is often used for description of the state properties of alkaline solutions 

pOH = -log aOH, or pOH = -log [OH
-
].

  

 

 

 

3. Selected aspects of behaviour of ions in solutions 

 

3.1  Activity and activity coefficient 

Definition of ideal solution, physico-chemical state of which is determined by equations of 

thermodynamic equilibria (e.g. ΔG0 = -RT ln K) involving directly concentrations of dissolved 

substances, is in reality approached only in diluted solutions of nonelectrolytes, where Coulombic 

interactions have no effect. 

Solutions of electrolytes, i.e. substances in water dissociable to ions, are non-ideal solutions. 

Equations of thermodynamic equilibria here apply for activities of components (ions) of these 

non-ideal solutions. 

Activity a means real (consistent with thermodynamic equations) action of dissolved substance i 

(ion) corresponding to its concentration corrected by inclusion of "shielding" Coulombic 

interactions expressed by the activity coefficient γ. 

iii ca =           (3.1) 
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At infinite dilution of solution of electrolyte γ → 1 and the solution is getting close to the ideal. 

The relation of activity coefficient and Gibbs energy (i.e. state quantity) results from comparison 

of chemical potential of i-th component of ideal and non-ideal solutions. 
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++=

+=
        (3.2) 

Term RT ln γi corresponds to a change of molar Gibbs energy ΔG of i-th component (ion) of the 

solution in transition from ideal to non-ideal state (ΔG of the equilibrium process is in solutions 

equivalent to chemical potential multiplied by stoichiometric coefficient), γi is an individual ionic 

activity coefficient. From measurement or calculation it is possible, with respect to electro-

neutrality (naturally both ions are always present), to obtain mean activity coefficient γ± of the 

given electrolyte.  

Change of Gibbs energy for transition of 1 mol of general electrolyte 

 AK AKAK
zz

yx yx +⎯→  

from ideal to non-ideal state - so-called additional Gibbs energy is expressed as: 

( )−+ +=  lnln yxRTG          (3.3) 

or 

 ( ) += lnyxRTG          (3.4) 

Relation for mean activity coefficient of electrolyte results from comparison of (3.3) and (3.4): 

( ) ( )yxyx +

−+ =
1

.           (3.5) 

Mean activity and molar concentration are established likewise mean activity coefficient: 



+

−+ == caaa yx yx .          (3.6) 

 yx yxyx yx yxcccc ++

−+ == ..         (3.7) 

In more diluted solutions, mean activity coefficient of strong electrolyte is not dependent on a 

type of ions, but only on concentration ci and charge number zi of all ions in solution. In this 

connection, ionic strength is established for expression of effect of ions in solution Ic: 

=
i

iic zcI 2

2

1
          (3.8) 

Dependence between mean activity coefficient and ionic strength is for diluted electrolytes 

expressed by Debye-Hückel's limit law:  

cIzzA AKlog =−           (3.9) 
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3.2 Debye-Hückel theory of ionic atmosphere 

Debye-Hückel theory derives analytical relation for calculation of potential of ionic atmosphere 

φ' (additional potential), on the basis of which it is possible to calculate additional Gibbs energy 

of electrolyte solution, i.e. φ' is the exact basis for numeration of activity coefficient. 

 

 

 

 

Fig. 3.1 Central positive ion (cation) 

surrounded by ionic atmosphere of negative 

and positive ions. All ions have radius a. The 

described model (Debye-Hückel theory) 

calculates additional potential at the point of 

central ion, or in distance a from the centre. 

 

 

 

 

The primary solution is Poisson equation describing relation of potential φ to volume density of 

charge ρ for spherical symmetrical arrangement. 
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Charge density in the surrounding of the central ion is not naturally constant for the situation 

being solved - it is dependent on potential of all ions that operate in the given place by its reach. 

It is then necessary to find appropriate dependence ρ = f(φ). Applicable solution is Boltzmann 

theorem (3.11) determining number of particles of i-th type C'i with energy higher by value of E 

than the average energy, which corresponds to thermal motion kT (if E = 0, C'i = Ci). 

 kTE

ii CC −= e           (3.11) 

while Ci is a mean number of ions of i-th type in volume unit of solution. Application of (3.11) to 

situation being solved assumes that energy E may correspond to work needed for bringing ion of 

charge Q to the point of potential φ, i.e. product of Qφ.  

 kTQ

ii
iCC
−

= e           (3.12) 

Relation (3.12) then determines number of ions of i-th type (related to the volume unit) acting 

with its potential in the surrounding of the central ion delimited by ionic atmosphere. Charge 

density then equals to the total charge of all acting ions (charge is summed over all types of ions). 
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After substitution (3.13) to (3.10) it can be obtained: 
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The sought function for potential of the central ion and ionic atmosphere φ = f(r) can be obtained 

by solving this spherical symmetrical differential equation. To preserve possibilities of finding 

analytical solution, which is the goal of the described model, however, it is necessary to introduce 

certain simplifications into equation (3.14), which is non-linear. Exponential factor on the right 

hand side of (3.14) can be, with respect to relation Qiφ << kT valid for diluted solutions, 

approximate using Taylor series. 
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When neglecting all higher terms of series (3.15), except the first two, a linear dependence on 

potential (with negative slope) comes out for charge density. 
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Moreover, in connection with electro-neutrality, the first term is zero. Expression of ion charge 

Qi by means of a charge number zi × elementary charge e then leads to simple relation: 
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By substitution of this simplified linear dependence of charge density on potential (3.17) to 

(3.10), a linearized Poisson-Boltzmann equation is obtained: 
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Parameters, which are constant in light of the sought solution of Poisson-Boltzmann equation, 

can be summarized as parameter b. 

 
 222

d

d

d

d
rb

r
r

r
=








         (3.19) 

 = 2

0

2
2

ii

r

zC
kT

e
b


         (3.20) 

By substitution u = r φ, equation (3.19) passes to form: 
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the right-hand side of (3.19) is then: 
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General form of (3.21) allows looking for its solution in a form generally suitable to the given 

equation:  

br-br BAu ee +=           (3.22) 

For original (3.19) is then available the following form:  

br-br
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Constants of integration A and B will ensue from boundary conditions. Deduction of B is trivial:  

For r →   it must apply φ = 0, i.e. 


+


= ee0

BA - , which applies only for B = 0. The 

applicable solution is then in the form: 
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Calculation of A is based on expression of charge density ρ = f(r). After substitution of (3.24) as 

the calculated function of dependence on potential φ on r to (3.17), and in consideration of (3.20), 

it is obtained for charge density as function r: 

brr
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Ab −−= e0
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           (3.25) 

Relation (3.25) reflects charge density in ionic cloud under consideration (in dependence on r). 

Total charge of ionic cloud, i.e. integral over spherical surfaces surrounding the central ion (see 

Fig. 3.1) in distance interval from a to infinite, then must be equal to a charge of the central ion, 

except for the sign: 
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After substitution of the expression for charge density (3.25)  
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and value of constant A is obtained by integration from this model consideration.  
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It then comes out for the resulting potential from (3.24) and (3.28): 
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Calculated potential φ includes Coulombic contribution of the central ion itself 
r

ez

r

i
c




04
= , 

and contribution of ionic atmospheres φ' .It results for φ': from relation φ = φc + φ'  
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For potential of ionic atmospheres at the point of central (shielded) ion it comes out after 

substitution r = a (a is a minimum possible distance corresponding to radius of the central ion). 
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For extremely diluted solutions ba << 1 applies and expression (3.31) can be simplified: 
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Calculated additional potential φ' determined by ionic atmosphere corresponds with additional 

Gibbs energy of electrolyte solution, i.e. it is in relation with activity coefficient.  

Additional ΔG for charging an ion with "shielding" charge corresponding to the effect of ionic 

atmospheres is expressed: 
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It applies for additional Gibbs energy for one ion: 

ikTG ln=            (3.34) 

Relation (3.34) in principle corresponds to (3.4), which is though related to the molar quantity.  

By combining (3.33) and (3.34), it comes out: 
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Relation (3.20) for parameter b can be converted into a form for molar concentration of 

represented ions (R = NA k, ci = Ci /NA applies). 
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By combining (3.35) and (3.36) and other adjustments, a standard form of Debye-Hückel limit 

law comes into being (3.9), describing dependence of mean activity coefficient on ionic strength 

and charge numbers of cation and anion of the electrolyte. 
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 cIzzA AKlog =−   

The derived parameter includes only general constants – within the frame of simplification under 

consideration applicable for extremely diluted solutions the activity coefficient is not dependent 

on radius of present ions. 

 

 

 

4. Oxidation – reduction processes, relation of Gibbs energy and 
oxidation-reduction potential 

Standard reaction Gibbs (free) energy ΔG
o

r is thermodynamic potential of the course of chemical 

processes. In oxidation-reduction reactions connected with exchange of electrons, potential of the 

process course manifests oneself in a form of electric voltage, which is measurable in specific 

arrangement as an electrochemical cell.  

For example, oxidation-reduction reaction    

 Zn
o
 + CuSO4 → Cu

o
 + ZnSO4  

running from left to right can be arranged so that its course entailing exchange of electrons will 

be limited by (large) resistance on voltmeter attached to the electrodes from metals in question - 

see Fig 3.2. This effect is achieved by that the running partial oxidation-reduction processes 

Zn
2+

/Zn
o
 a Cu

2+
/Cu

o
 are separated by semipermeable diaphragm, i.e. reaction may proceed only 

by means of electrons transferred by external conductor with voltmeter. This electrochemical cell 

is described as a Daniel cell. 

 

   Fig. 4.1 Daniel cell 

Electric voltage has dimension of energy – it applies for relationship between oxidation-reduction 

potential and Gibbs energy as general thermodynamic potential: 

 ΔG = -nfE          (4.1) 
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Therefore, if activities of Cu
2+ 

and Zn
2+ 

in the presented Daniel cell equal to one (or if their ratio 

equals to one; activities of metals Zn
o 

and Cu
o 

forming the electrodes are maximum, i.e. equal to 

one), voltage measured on voltmeter (with infinite resistance) will correspond to standard Gibbs 

energy of the given reaction ΔG
o

r divided by Faraday constant and number two (2 exchanged 

electrons). 

For electric voltage, which can be measured for oxidation- reduction reaction in a described way, 

i.e. for instantaneous redox potential of this reaction apply the same basic starting points as for 

Gibbs energy ΔG. I.e. in the initial state, to which activity of reaction components of one unit 

corresponds, applies E = -ΔG
o

r/nf, and in equilibrium (the final state, which gets stabilized, if 

electrodes are interconnected with a conductor), redox potential of the reaction equals to zero - 

the cell is discharged. It means that for general oxidation-reduction reaction with m reactants and 

l products, Nernst equation applies: 
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Evaluation of the course of oxidation- reduction processes is carried out by balancing potentials 

of partial semi-cells, i.e. electrode reactions. 

Within the frame of the above mentioned reaction, two partial processes proceed: 

 Zn
2+

 + 2e
-
 - Zn                      -0.7628 V 

 Cu
2+

 + 2e
-
 - Cu                      +0.337 V 

On the right hand side, standard electrode potentials E
o
 of both electrode reactions are given. 

Values E
o 

can be found by measurement of individual semi-cells (electrode made of appropriate 

metal immersed into the solution of its cation of unit activity) compared to standard hydrogen 

electrode, standard electrode potential of which is taken as equal to zero. 

Electrode reactions are conventionally written in the direction of reduction. Zinc tends to pass to 

an oxidized form (to the solution), ΔG
o

r of this electrode reaction for this element (written in the 

direction of reduction) is positive - the reaction in the given conventionally designated direction 

will not proceed. Standard electrode potential E
o 

for this reaction according to (4.3) is negative. 

Copper is a noble metal - it has no tendency to oxidize (dissolve), i.e. the electrode reaction in 

question will proceed in the given direction - ΔG
o

r < 0, E
o
 > 0. 

Oxidation- reduction reaction running in Daniel cell includes electrode reaction of zinc in the opposite direction. In 

balance calculation of the standard electromotive tension of this cell will then be included E
o

Zn+/Zn with opposite sign 

(+0.7628 + 0.337 = 1.0998 V). The stated value corresponds to voltage, which will be measured, if activities of Zn
2+ 

and Cu
2+ 

equal to one. 

Generally, for individual electrode reactions, it is possible to write: 
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Most of electrode reactions (for metals all) include only two components in the reaction mixture - 

reduced and oxidized forms, whereas stoichiometric coefficients of both equal to one. For this 

type of processes Nernst equation can be written in a simplified form: 

red
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EE ln0 +=           (4.5) 

Or if reduced form is formed of metal (i.e. a semi-cell with an electrode from the appropriate 

metal), activity of which is a maximum - equal to one, it is possible to write: 

oxa
nf

RT
EE ln0 +=           (4.6) 

 

Oxidation - reduction potential of environment - Eh 

Oxidation-reduction processes in environment (natural water) are represented by a complicated 

system formed of greater number of individual counterions (Fe
3+

/Fe
2+

, Mn
4+

/Mn
2+

, PO4
3-

/PO3
3-

 , 

etc.) - semi-cells. For such environment a general - summary oxidation- reduction potential is 

instituted, referred to as Eh. Eh value could be expressed in numbers as a sum of all partial 

electrode potentials calculated for individual counterions, while substituting currently found 

concentrations of these ions into the given equation. Finding Eh of any aqueous environment is 

practically carried out by measurements - with an electrode of bright finished platinum 

interconnected with a suitable reference electrode. Generally a non-zero value is measured, Eh > 

0 represents oxidation properties and vice versa. 

Natural (aqueous) environment is especially in flowing water considered to be steady in 

equilibrium. However, for equilibrium conditions ΔG = 0, Eh = 0 generally applies (system in 

equilibrium has no potential – it is "discharged"). This principle (ΔGr = 0, Eequil = 0) relates to 

general opinion on chemical processes, when initial activities of the reaction components are 

considered as one, or having with respect to stoichiometry such values that the fraction on the left 

hand side of (4.4) equals to one. For the initial state it theoretically applies: ΔG = ΔG
o
, E = E

o
, 

”Eh = Eh
o
".In aqueous systems in natural environment this general solution naturally is not 

observed, and zero value Eequil cannot be achieved for the state, when fraction on the left hand 

side of (4.4) corresponds to equilibrium, . 

Measured Eh > 0 of a real system corresponds as a rule to the concentration excess of dissolved 

oxygen. The system is in its energy minimum, however, it cannot achieve the general equilibrium 

state ΔG = 0, i.e. Eh = 0 in connection with concentration disproportion of oxidizable 

components compared with dissolved O2. 
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5. Kinetics of physico-chemical (and other) processes in environment 

 

5.1 Rate, scope and order of processes 

Kinetics of processes in environment, especially of chemical reactions, studies the course of these 

possible processes in time in view of thermodynamics, i.e. their rate. Generally, one isolated 

process or more simultaneous processes may proceed in the system, as are reversible, side, and 

subsequent processes. The processes are further distinguished (especially chemical reaction) as 

homogenous, when all components of the system are in one phase, and heterogeneous processes, 

e.g. controlled diffusion on phase interface. 

The attributes in question – rate, order, and scope, are primarily instituted for chemical reactions 

– in the following text terminology relating to chemical processes is then observed. Nevertheless, 

the described principles have more general importance and correspond also with other types of 

dynamic processes in environment (nuclear, biological, physico-chemical, etc.). 

For general reaction: 

 αA + βB › ηY + ωZ 

a differential of the scope of reaction is defined – see (2.13): 


 ZYBA nnnn dddd

d +=+=−=−=        (5.1) 

α, β, η, ω are stoichiometric coefficients, nA, nB, nX, nZ are substance quantities of reaction 

components. The following applies for infinitesimal time change in the scope of reaction, i.e. 

reaction rate w 

t

n

t

n

t

n

t

n

t
w ZYBA

d

d1

d

d1

d

d1

d

d1

d

d




+=+=−=−==      (5.2) 

Relation of w to the unit volume leads to definition of rate of standard reaction in solution vv. 

 
t

c

t

c

t

c

t

c

tV
Vwv ZYBA

d

d1

d

d1

d

d1

d

d1

d

d




+=+=−=−===      (5.3) 

Instantaneous concentration of the reacting substance is connected with its initial concentration 

by relation: 

xcc iii += 0            (5.4) 

where Vx = is the scope of reaction related to volume unit and νi is stoichiometric coefficient 

of the substance i. Stoichiometric coefficients are taken for starting substances as negative, for 

products as positive. I.e.: 

xccxccxccxcc ZZYYBBAA  +=+=−=−= 0000 ,,,     (5.5) 

For reaction rate (proceeding in constant volume) it then applies: 
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t

x

t

c
v i

i d

d

d

d1
==


          (5.6) 

 
t
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t

c

t

c

t

c

t

x ZYBA

d

d1

d

d1

d

d1

d

d1

d

d


+=+=−=−=  

Reaction rate is dependent on temperature and concentrations of reacting substances. Under 

isothermal conditions it applies: 

s

B

r

Ackcv =            (5.7) 

Reaction rate is proportional to the power of instantaneous concentrations of reacting substances. 

An important term is the order of reaction, which is defined as a sum of exponents of 

instantaneous concentrations of reacting substances found by measurement of reaction rate. It 

may be emphasized that the exponents determining the reaction rate are in general independent 

on stoichiometry. 

 

  

5.2 Dynamic processes of the zeroth and first orders  
 

In processes of zeroth order the rate during an action is constant and independent at concentration 

of reacting materials.  

k
t

c
v A =−=

d

d
                      (5.8) 

Therefore, for the time course of concentration (generally of relative amount) of material A being 

consumed (starting material), it applies as follows: 

ktcc AA −= 0                       (5.9) 

Processes of the first order proceed at a speed depending on instantaneous concentration (relative 

amount) of a component being consumed (starting). It concerns speed of degradation of this 

component A, i.e. with a minus sign. 

YA ⎯→⎯k  

A
A kc

dt

dc
=−                     (5.10) 

The simplest possible common differential equation (5.10) may be easily integrated after 

separation of variables. 
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 −= kt
c

dc

A

A                     (5.11) 

CktcA +−=ln                    (5.12) 

The constant of integration is simply expressed in numbers in point t = 0. It applies in the 

beginning of the process as follows: 

0ln AcC =                     (5.13) 

And the resulting solution is in the form: 

kt
c

c

A

A =
0

ln                     (5.14) 

Or: 

( )ktcc AA −= exp0                    (5.15) 

It applies for the instantaneous concentration of initial component A, expressed generally by the 

help of (5.4) as follows: 

( )
kt

xc

c

A

A =
−0

0

ln                    (5.16) 

( )( )ktcx A −−= exp10                    (5.17) 

Of course, in addition to the time course of concentration of initial components A, the function 

for concentration of product Y is also expressible. 

( )( ) 00 exp1 YAY cktcc +−−=                   (5.18) 

Another parameter, which is often solved for dynamic processes, is a half-life, i.e. the time, in 

which the concentration of the initial component is exactly half compared to the initial value: 

05,0 AA cc =                     (5.19) 

After substitution of (5.19) to (5.14), it is obtained for the half-life as follows: 

21

2ln
t

k
=                     (5.20) 
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5.3 Dynamic processes of the second order 

 

Dynamic processes of the second order for two reactants 

produktyBA ⎯→⎯+ k
 

The unit exponents in equation (5.7) correspond to this category of kinetic processes, and the 

reaction rate depends on the instantaneous concentration of both starting components. With 

regard to the two initial reactants, the speed of the process is expressed generally in the sense 

(5.6), ie: 

( )( )xcxck
t

x
BA −−= 00

d

d
                  (5.21) 

After separation of variables: 

( )( )
tk

xcxc

x

BA

d
d

00
=

−−
                   (5.22) 

The integration of the left side (5.22) is conditioned by the decomposition into partial fractions. 

( )( )
( ) ( )
( )( )xcxc

xcNxcM

xc

N

xc

M

xcxc BA

AB

BABA −−

−+−
=

−
+

−
=

−− 00

00

0000

1
              (5.23) 

From (5.23) the equality follows: 

( ) ( )xcNxcM AB −+−= 001                   (5.24) 

The enumeration (5.24) for the initial state x = 0 represents: 

100 =+ AB NcMc                    (5.25) 

Therefore, for any x > 0, with respect to (5.24) (multiplied) and (5.25): 

0=+ NM                     (5.26) 

The combination of (5.25) and (5.26) gives: 

( )
M

cc
N

BA

−=
−

=
00

1
                   (5.27) 

The form of the right side (5.21) is already suitable for integration after substituting (5.27) into 

(5.23) 
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( ) ( ) ( ) ( )  =
−−

+
−−

− tk
xc

x

ccxc

x

cc BBAABA

d
d1d1

000000                (5.28) 

Which (including the right-hand side (5.28)) follows after a trivial substitution in the form: 

( )
( )

( )
( ) Cktxc

cc
xc

cc
B

BA

A

BA

+=−
−

−−
−

0

00

0

00
ln

1
ln

1
               (5.29) 

As with first-order processes, the integration constant is simply calculated using the initial state 

t= 0. 

( ) ( )
0

00

0

00
ln

1
ln

1
B

BA

A

BA

c
cc

c
cc

C
−

−
−

=                  (5.30) 

It is now possible to return from the general range of the reaction (relative to the unit volume) x 

to the concentrations of the reactants - BBAA cxccxc =−=− 00 , . I.e.: 

( )
( )

( )
( ) ktcc

cc
cc

cc
BB

BA

AA

BA

=−
−

−−
−

0

00

0

00
lnln

1
lnln

1
  

( ) ( )
kt

c

c

ccc

c

cc B

B

BAA

A

BA

=
−

−
− 000000

ln
1

ln
1

                 (5.31) 

The resulting formula including the time course of the concentrations of the reactants in the 

second order process is thus in the form: 

( )
kt

cc

cc

cc BA

AB

BA

=
− 0

0

00
ln

1
                  (5.32) 

Of course, the instantaneous concentrations of the reactants are not independent of each other - 

see (5.5). 

 

Dynamic processes of the second order with a single starting substance  

Naturally, processes of the second order may also concern degradation of a single component, 

when this action is generally subject to interaction of two particles of the same component A. 

products2A ⎯→⎯k  

Accordingly, it applies for degradation rate of component A: 
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 2

d

d

2

1
A

A kc
t

c
=−                     (5.33) 

The factor of one-half on the left-hand side is related to the fact that the loss of starting substance 

A must, by definition, correspond to an increase in the extent of reaction x that is half the actual 

second-order concentration loss of substance A in the process – dx = ½dcA. 

After integration and numeration of the constant of integration (at point t = 0) it is obtained as 

follows: 

0

1
2

1

AA c
kt

c
+=  

kt
cc

cc

AA

AA 2
0

0

=
−

                    (5.34) 

The half-life of the initial components A is then: 

2102

1
t

kcA

=  

 

Dynamic processes of the n-th order 

General kinetic relation for processes of any order n = r + s + ..., which (the order) is considered 

as a variable, may be valid only for the situation, when initial concentrations of reacting 

components exactly correspond to stoichiometry of the process (e.g. chemical reaction). Only in 

this case the ratios of instantaneous concentrations of reacting components remain constant in 

time.  

E.g. for reaction: productsγCβBαA ⎯→⎯++ k   

it is possible to write  

( ) ( ) ( )










 xcxcxc
k

t

x CBA −−−
=

000

d

d
                (5.35) 

i.e. the general relation for the process of n-th order  

( )nxck
t

x
−= 0

d

d
                  (5.36) 

may apply only to the described condition valid for the initial concentrations of the reactive 

components, i.e.: 
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 0000

CBA cccc ===                  (5.37) 

(5.36) may be simply integrated after trivial separation of variables 

( ) =
−

tk
xc

x
n

d
d

0
                  (5.38) 

Of course, the constant of integration is expressed in numbers through initial condition (t = 0). 

( )( ) ( )( )nn
c

n
ktxc

n

−−

−
+=−

−

1010

1

1

1

1
                (5.39) 

The following general relation for any order of the process is obtained after adjustment. 

( ) ( )( ) nkt
ccn

nn
=












−

−
−− 101

11

1

1
                 (5.40) 

The multiplication by order of the process n on the right-hand side of (3.40) is related to the same 

general assumptions as in relations (5.33) and (5.34). Going to relation (5.40), where the 

concentration decay of the starting substance(s) is no longer expressed in general terms - via the 

extent of x (as in (5.39), the ratio of the infinitesimal change in extent to the actual concentration 

decay must be taken into account - dx = dc/n. 

 

5.4 Simultaneous dynamic processes 

Within simultaneous processes, it is generally possible to talk about lateral, reversible and 

subsequent processes (reactions). 

Lateral dynamic processes  

 

    Y 

a) A 

      Z 

 

b) 
ZCA

YBA

2

1

k

k

⎯→⎯+

⎯→⎯+
 

 

k1 

k2 
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c) 
ZC

YB

A

A

⎯→⎯

⎯→⎯

+

+

 

Lateral dynamic processes can take place as branched - a), competitive - b), or. independent - c). 

It applies for the case of branched processes: 

( ) ( ) ( )21

0

2

0

1
d

d

d

d
kkc

t

c
xckxck

t

x
A

A
AA +=−−+−=                (5.43) 

It then results for the concentration of starting material A as follows:  

( ) 0

21 lnln AA ctkkc −+=−  

( )tkk
c

c

A

A
21

0

ln +=                    (5.44) 

Within the frame of the first order under consideration, the growth rate of product concentrations 

is in both processes proportional to cA. 

A
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                    (5.45) 

When considering (5.44): 

( )
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tckc
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tkk

AZ

tkk
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21
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                   (5.46) 

Relations (5.46) expressed in numbers are no longer differential equations, but only equations of 

independent derivations. It is obtained after integration and numeration of the constant of 

integration as follows: 
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                  (5.47) 

Whereas the constant of integration in the form of  

21

0

1

kk

ck
C A

+
=                      (5.48) 
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is expressed in numbers for the initial conditions cY, cZ = 0, at t = 0. 

 

 

 

Reversible dynamic processes 

 

A   B 

 

The first order is considered for both directions of the process. For the equilibrium state, a 

significant excess of product B or the starting component A is not assumed. The corresponding 

equation is logically in the form: 

( ) ( )xckxck
t

x
BA +−−= 0

2

0

1
d

d
                  (5.49) 

The definition of the reverse process practically corresponds to the principle of defining the 

equilibrium state, which can be used to quantify one of the rate constants using the equilibrium 

constant, which is often available. The following applies to equilibrium: 

( ) ( )
rovBrovA xckxck +=− 0

2

0

1                   (5.50) 

With regard to (2.3): 
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( )

K
k

k
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0
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Fig. 5.1 Possible trend of concentrations of 

components of branched process at k2 > k1 

   k1 

   k2 
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Substituting (2.3), (respectively (5.51)) into (5.49) allows to obtain a form suitable for simple 

integration. 
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After integration and enumeration of the integration constant (for t = 0, x = 0): 
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The resulting relation for x = f(t) is in the form: 

( )
( )( )( )tKkBA

K

cKc
x

1
00

2e1
1

+−
−

+

−
=                   (5.55) 

 

 

 

 

 

Fig. 5.2 Possible trend of the components 

concentrations of the reversible process. 
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Subsequent dynamic processes  

 

YBA 21 ⎯→⎯⎯→⎯
kk

 

Degradation of starting components A with formation of component B is considered as the first 

order process, i.e.: 

A
A ck
t

c
1

d

d
=− ,  t-k

AA cc 1e0=  

It then applies for time change cB: 

t-k

ABAB
B ckckckck
t

c
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d

d 0

1212 −=−=−                 (5.56) 

Formation of final product Y is similarly considered as a simple process of the first order, 

therefore it must apply: 

B
Y ck
t

c
2

d

d
=                     (5.57) 

Equation (5.56) is easily analytically solvable, even though here it is impossible to carry out 

simple separation of variables as in the previous cases. The solution results as an application of 

substitution of cB ≡ u∙v. 
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

=
d

d
 

It results from comparison with (5.56) as follows: 
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The resulting function is then in a form of: 
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Naturally, the constant of integration C = C1C2 is obtained for t = 0. 
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It then applies for the time course of concentration of component B as follows: 
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Relation (5.59) is then substituted to (5.57), and for growth of concentration of the resulting 

product Y it is possible to write: 
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Rate equation (5.60) is of the same type as (5.46) and may be easily integrated. 
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Fig. 5.3 Possible trend of concentrations of 

components of subsequent process. 
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6. Non-linear dynamic systems described by a set of common 
differential equations  

 

Oscillating Belousov-Zabotinsky chemical reaction 

Within the research of chemical or biological dynamic processes, chaotic behavior was observed 

in some specific cases, characterized by the time oscillation of some parameters. A significant 

breakthrough in the field of chemical kinetics was the discovery of an oxidation-reduction 

reaction system showing a continuous concentration oscillation of some reactants. The so-called 

the oscillating reaction named after its discoverers as the Belousov-Zabotinsky reaction is very 

complex. In one modification of this reaction, the following main processes can be estimated: 

 

The observed oscillation course generally did not correspond to the assumption that the 

concentrations of the reacting components of the chemical system should return to an equilibrium 

steady state within clearly definable trends, as discussed in the previous chapter. Of course, the 

general thermodynamic principles also apply here. The equilibrium state associated with the end 

of the Ce3+↔Ce4+ oscillation occurs at a time when the starting components are predominantly 

consumed. The oscillating behavior of this chemical system corresponds to a state far from 

equilibrium. It can be said that the time course of concentrations of some components of the 

system is chaotic on the way to equilibrium. 

 

Brusselator model  

In connection with an effort for clarification of experimentally found oscillating (or chaotic) 

character of system behaviour of oscillatory chemical reaction, a simplified kinetic model, or 

dynamic system was designed: 

 I. XA ⎯→⎯  

 II. 3XY2X 1⎯→⎯+
k  

 III. CYXB 2 +⎯→⎯+
k  

 IV. DX ⎯→⎯  
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If components A, B are taken as constants, to which their large surplus would correspond in real 

(i.e. the kinetic model concerns the condition remote from equilibrium), it is possible to express 

the mentioned scheme by two differential equations. 

( ) YXX11X 2

12 kk ++−=                      (6.1) 

 YXXY 2

12 kk −=                       (6.2) 

For the speed of the processes I. and IV., it is then calculated with a constant equal to one for 

simplification, constant concentrations of components A and B are also taken as ones. Time 

derivations on left-hand sides are expressed in short - by notation, which is most frequently used. 

Symbols designating system components X, Y, A, B, C, D have in equations meaning directly of 

their concentrations, or more generally, relative quantities 

This model is referred to as Brusselator according to the place of its origin. Both equations 

contain a non-linear terms, and analytical solution of this system is not offered. Numerical 

solution is not a problem, the result being the oscillatory course of parameters X and Y, really 

corresponding to experimental findings.  

 

 

The principle of this complicated dynamic behaviour is non-linearity of the set of common 

differential equations to be solved. Therefore, the models of this type are referred to as non-linear 

dynamic systems, and their solution exhibits oscillating (or chaotic) nature. If systems of 

equations do not contain any parameter with in advanced determined time course, these systems 

are referred to as autonomous. 

 

Oregonator model  

Oregonator model, the name of which is also connected with the place of origin (the University 

of Oregon), was also developed as theoretical analogy to oscillating chemical reaction, even 

though it is evident that its meaning is more general likewise in Brusselator model. The model 

kinetic scheme consists of five partial actions, in which three variables operate, other initial or 

produced components are considered constant likewise in the previous case. 

Fig. 6.1 The resulting oscillating 

course of variables X, Y obtained 

by numerical solution of 

Brusselator model (6.1), (6.2). 
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 I. XYA 1⎯→⎯+
k  

 II. PYX 2⎯→⎯+
k  

 III. Z2XXB 3 +⎯→⎯+
k  

 IV. Q2X 4⎯→⎯
k  

 V. fYZ 5⎯→⎯
k  

Therefore, the corresponding set of differential equations has the following form: 

2

4321 XBXXYAYX kkkk −+−=                     (6.3) 

ZXYAYY 521 kkk +−−=                      (6.4) 

ZBXZ 53 kk −=                       (6.5) 

The symbol of the system components have in the equations meaning directly of their 

concentrations, or more generally, relative quantities. Non-linearity of equations (6.3) and (6.4) 

results in typical oscillatory nature of the solution. Likewise in the previous case of non-linear 

dynamic system, the solution of Oregonator model exhibits antagonistic oscillation parameter X, 

with respect to Y, while variable Z imitates X. 

 

 

Lorentz model of convection in the atmosphere 

This model, which is considered a pioneering work in the field of nonlinear dynamical systems, 

describes convection in the Earth's atmosphere at a slightly supercritical value of the Rayleigh 

number, ie a problem, in contrast to previous cases, purely physical. Briefly, this nonlinear 

Fig.6.2 The resulting oscillating 

course of variables X, Y, 

Z obtained by numerical solution 

of Oregonator model (6.3), (6.4), 

(6.5). 
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dynamical system consisting of three ordinary differential equations, ie comprising three 

variables X, Y, Z, was created by applying Galerkin's method (see … of this text) to the initial 

nonlinear equations for thermal convection in a fluid (derived with general NS equations) in the 

space of three wave modes characterizing the idealized image of convective (ie vertical 

temperature gradient conditioned) processes in a fluid. The variable X corresponds to the 

convective flow velocity, Y is equivalent to the temperature difference between the rising and 

falling flow in the fluid heated from below and Z reflects the deviation of the vertical temperature 

profile from the linear profile. 

YXX  +−=                      (6.6) 

YXXZY −+−= r                     (6.7) 

ZXYZ b−=                         (6.8) 

For completeness, it can be added that σ is the Prandtl number, r is the ratio of the Rayleigh 

number to its critical value Ra/Rakrit (the elaboration of specific physical or meteorological aspects 

of atmospheric convection is beyond the scope of this text). At this critical value, a fluid with a 

certain vertical temperature profile becomes unstable and convective movements occur. 

The results of the numerical solution of the Lorentz model are standardly displayed as a so-called 

phase portrait, ie (phase) solution course in the space of three parameters X, Y, Z. The time axis 

is not displayed by default as in previous cases, it is actually parallel to the trajectory of the phase 

course of the solution. The phase portrait of the Lorenz model as a nonlinear dynamic system is 

the so-called chaotic (it is also referred to as a strange) attractor - see Fig. 6.3. The display of the 

chaotic oscillation course of individual parameters in the time axis - as in the previous cases, is of 

course also easily imaginable. 

Lorentz's model was created in his time (1962) as part of an analysis of the problem of numerical 

weather forecasting. The results clearly show the basic property of the behavior of nonlinear 

dynamical systems (describing not only convective processes in the atmosphere or fluids in 

general) and the extreme sensitivity of the solution course to the initial conditions. 
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As can be seen, the course of solving the Lorentz model is drawn into a certain form, respectively 

the oscillations of individual parameters show a certain order and regularity. On the other hand, 

even a slight change in the initial conditions leads to a completely different position of a point in 

the trajectory of the solution in the phase space X, Y, Z after a small number of oscillations (or 

cycles). This fundamental property of nonlinear dynamical systems, referred to as deterministic 

chaos, is the essence of, for example, the practical impossibility of long-term weather forecasting. 

For the sake of completeness, it can be added that the possibilities for the formulation of 

nonlinear dynamical systems are of course countless, the three cases presented here are perhaps 

most well-known next to the Lotka-Volterr model describing the biological (or ecological) 

predator-prey system. This simplest nonlinear dynamic system showing an oscillating course of 

parameters was formulated as early as 1925 (it can be found, for example, in Begon, Harper: 

Ecology). 

 

 

 

 

 

 

Fig. 6.3 Phase portrait of a numerical 

solution of Lorentz model (6.6), (6.7), 

(6.8) in the space of parameters X, Y, Z - 

chaotic (or strange) attractor 
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7. Example of solution of ion exchange kinetics at flow through a 
path with active surface 

 

Physical problems solved in the space of Cartesian coordinates (ie R2, R3) and in time are 

generally described by partial differential equations. The problem of ion exchange kinetics when 

flowing through an active surface path does not require this approach with respect to one spatial 

dimension and the considered  

 

Fig. 7.1 Considered notion of flow of profile elements through path x 

The formulation of the task is presented in Fig. 7.1. The solution containing the exchanged ions, 

i.e. hydrogen cations H+ and metal cations Me+, flows at a velocity v in a 1D path of length X 

with an active surface (indicated by dots) with bound H+, Me+ referred to in this context as HS 

and MeS. Thus, ion exchange is considered between the flowing solution and the static active 

surface: 

 

++HMeS    SHMe ++  

 

Fixation of ions on the active surface, which is really related to sorption factors, is expressed in 

the considered formulation of the problem simply as a general second-order process dependent on 

the concentration of these ions in solution and the relative number of (sorption) exchange sites on 

the active surface, ie sites occupied by the exchanged ion - Sc
Me

, Sc
H

. I.e. can be written: 

SS cckcck
t

c

HMe2MeH1

Me

d

d

++

+

−=                    (7.1) 

The model calculation of the resulting course ),(
Me

txfc =+  and the functions derived from it for 

other components of the indicated ion exchange can in this case be based on the idea of a profile 

element of width dx flowing in the path x and interacting with the active surface - see Fig. 7.1. 

With regard to the constant flow rate v, the time step can be "measured" by a corresponding 

displacement of the profile element in the path dx = vdt. The change in the metal concentration in 

   k1 

   k2 
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the solution filling the profile element can then be expressed as a function of the displacement in 

the path: 

( )SS cckcck
vx

c

HMe2MeH1

Me 1

d

d

++

+

−=                    (7.2) 

To solve this initial equation, it is of course necessary to eliminate the unknown on the right. The 

concentration of hydrogen cations in the profile element can be expressed with a simple balance 

with regard to the considered ion exchange (which takes place during the passage of this element 

through the path with the active surface): 

( )),(),0(.),0(),(
MeMeHH

txctctctxc ++++ −+=                 (7.3) 

The factor  reflects the possible relative loss of H+ in the solution associated with the possible 

displacement of other metals from the active surface into the solution in parallel with the metal 

Me+, the concentration of which is calculated. The degree of this parallel elution of metals is 

identical to the behavior of Me+ within the simplification used.  

From the point of view of the static active surface, the given displacement of the profile element 

represents the change of the state of this surface (determined by Sc
Me

 a Sc
H

) in the spatial step dx 

= vdt by the time step dt. Therefore, the following applies throughout the flow path:  

 
x

c
v

t

c S

d

d

d

d
MeMe +

−=                      (7.4) 

The total change of the "concentration" of the metal ion in the active surface  Sc
Me

 in the whole 

path x <0,X> in the time step thus corresponds to an increase or decrease (due to back fixation) 

of the concentration +Me
c  in the profile element that flowed through this path. 

),(),0(
d

dd

MeMe

0
Me

tXctc
t

xc

X

S

++ −=


               (7.5) 

The following profile element represents the next time step for the active surface. - see Fig. 7.1. 

Then the value Sc
Me

 fixed at point x in the flow path corresponds to the total time t = τ, which is 

"measured" by the integral of the flowing (and ion-exchanging) profile elements. 


+

−=




0

Me0

MeMe
d

d

),(d
),( t

x

txc
vcxc SS

               (7.6) 
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For the initial 
0

MeSc  and 
0

HSc , constant values over the entire path x are considered. Similarly, 

),(
H

xc S  can be expressed: 


+

+=




0

Me0

HH
d

d

),(d
),( t

x

txc
vcxc SS

               (7.7) 

Substituting (7.3), (7.6) and (7.7) the initial differential equation is created, the solution of which, 

ie the course of +Me
c   (via a profile element) in the path x corresponding to one time step, is 

sought: 
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               (7.8) 

After adjustment: 
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      (7.9) 

The integrals over the time interval <0, τ> (corresponding to (7.6) and (7.7)) refer to the current 

state of the active surface (at point x), which will interact with the solved profile element, ie the 

element represented by the derivative of +Me
c   on the left side of ( 7.9). This current state of the 

surface was created by interaction with profile elements "flowed" in front of the solved element. 

I.e. the time integrals read the changes of  Sc
Me

 at point x represented by the derivatives of 

+Me
c into a state at time τ, while the derivative of )1,(

Me
++ xc  on the left of (7.9) already 

expresses the state at the next time step. Integrals over a time interval can therefore be taken in 

(7.9) in general as independent functions of x, and this equation therefore corresponds to an 

ordinary differential equation of the type: 

)()( xyfxgy −=              (7.10) 

The general solution of equation (7.10) is obtained by a simple procedure using the substitution y 

= uv (see the procedure in chapter 5.5 - Subsequent processes): 
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xxgxy xFxF de)(e)( )()(


−= ,  xxfxF d)()( =                (7.11) 

The analytical solution of the integrals v (7.11) for the specific functions f(x), g(x) of course leads 

to the subsequent enumeration of the respective integral constants. Within the general form, these 

integrals can be rewritten to certain, while the integration interval (on the x-axis) <0, xl > will 

correspond to the point in the argument of computed y(xl). For the integral curve going through 

the point [x0, y0] then follows: 
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Based on (7.12), the solution (7.9) sought for the course of +Me
c in a flowing profile element in 

the path x can be written in the form: 

( )








































−

+++

++

=+

 
+

++

+

−

+

l

l

x

xz
S

xz

l

xt
x

txc
vc

cck
v

c

xc

0

),(

0

Me0

Me

MeH1

Me

),(

Me

ded
d

),(d

)1,0(.)1,0(
1

)1,0(

e)1,(




 



              (7.13) 

Whereas: 
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The primitive function to the integrand in (7.13) containing the derivative of the unknown 

function in the product with ez cannot be expressed in contrast to the integral in (7.14) (where 

only this derivative appears), ie only an adjustment can be made: 
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The form (7.15) reflects (7.14), or the zero value z at the point of the beginning of the path - x = 

0. The solution of the problem (7.13) in the path x therefore takes the form: 
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Where of course: 
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Equation (7.16) (incl. (7.14) and (7.17)) of course relates only to the time step τ + 1, ie it 

expresses the course of )1,(
Me

++ xc  in the profile element in the path x, which is in the state τ 

after the "flow" of the previous element represented by ),(
Me

xc + , respectively derivatives of 

),(
Me

xc + . This situation therefore corresponds to recurrence. The initial course of )1,(
Me

xc +  (+ 

derivation) for the first profile element interacting with the path surface in the initial 

homogeneous state is easily expressed: 
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Where:  
0
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0

Me11 . SS ckckK += , ( ))1,0(.)1,0(
MeH1

0

Me2 ++ += cckcK S   

 

The relatively "usable" analytical form with the enumerated primitive function of the integrand in 

(7.15) can also be obtained for the following time step: 
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It is obvious that the analytical form for the nth time step is theoretically expressible in the form 

of a binary tree. If a generalized structure of the problem in the time axis is introduced, where the 

course of +Me
c  in the profile element in the nth time step can be simply referred to as cn and the 

corresponding function (ie solution) (7.13), resp. (7.16) as fn, it is possible to write in the sense of 

a given recurrence: 

 )(
1

1


−

=

=
n

i

inn cfc                    (7.21) 

ci figure on the right-hand side of (7.13) and (7.16) of course also as the sum of their derivatives 

in the path x, however, this is a detail not reflected in its structure within the considered 

generalization. E.g. the solution for c3 is simply given by: 

 ))(( 11233 ccffc +=  

Then: 

 ))())((( 112112344 ccfccfffc +++=  

 ))())(())())(((( 11211231121123455 ccfccffccfccffffc +++++++=             (7.22) 

etc. Ie. the structure of the solution in the time axis corresponds to a binary tree of type (7.22). 

Finding an explicit analytical form of the solution for the nth time step is obviously not practical. 
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The total number of occurrences of functions corresponding to individual time steps in a given 

binary tree for expressing cn is calculated as (of course c1 = f(c0)): 

 
12 −−= in

f i
m ,  i = 1, n-1                  (7.23) 

In practical applications of this concept, recurrent reading in the time axis is solved in numerical 

form on a computer (as a recurrent sequence with an initial value of c1). This is not a numerical 

approximation - step dx is with respect to the existence of the analytical solution (7.16) in the 

path x infinitesimal, ie dt according to (7.4) as well. The numerical approximation generating 

inaccuracy must be used only for the calculation of the integral (7.15), whose explicitly expressed 

integrand has the form of a binary tree (7.22). 

It can be added that the developed concept providing a semi-analytical solution of ion exchange 

kinetics at the flow of a 1D path with an active surface depending on the inflow concentrations of 

exchanged ions is generally applicable to a number of real processes. In laboratory conditions, of 

course, it is about modeling interactions in columns of various types, in the natural environment, 

the model is very well applicable, for example, for simulations of acidification or other episodes 

in watercourses.  
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Appendix A - Basic numerical methods of problem solving with initial 
conditions, i.e. of common differential equations and their sets  

 

It concerns systems with collected parameters, which are described by sets of common 

differential equations for state variables in dependence on time. 

 

Euler's explicit single-step method  

Numerical solution of a common exercise with an initial condition expressed by a common 

differential equation  

))(,()( tytfty =                     (A.1) 

00)( yty =  

is based on approximation of derivative of the function in search on the left hand side of (A.1) by 

its difference in the selected time step h. 

h

tyhty
ty

)()(
)(

−+
                     (A.2) 

It means: 

))(,()()( tytfhtyhty ++                    (A.3) 

For calculation of a new value y(t+h) then the known value present itself of y(t), or f(t,y(t)) from 

the previous step, which is the principle of the Euler´s explicit method. 

),(1 nnnn ytfhyy +=+                    (A.4) 

Therefore, numeric approximation gets near to the exact solution at h→0. It is possible to add 

that (A.4) puts the equal sign between difference (yn+1–yn)/h and the right-hand side function at 

point tn, yn. The nature of this error connected with this fact is shown in Fig. A.1. The value of the 

right-hand side function at point tn+1/2, yn+1/2, which would evidently correspond best to the given 

difference, is not available, indeed.  
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Euler's implicit (backward) single-step method  

Within the frame of Euler's single-step method, it is also possible to come out from the right-hand 

side function at point tn+1, yn+1.  

))(,()()( htyhtfhtyhty ++++                   (A.5) 

),( 111 +++ += nnnn ytfhyy                    (A.6) 

Unknown yn+1 is now contained also in the right-hand side of (A.6). The value of the right-hand 

side function obtained after expression of unknown yn+1 in the left-hand side is, of course, 

available for any point in the time axis  (i.e. also for tn+1).  

 

 

The same differential approximation (Euler's explicit and implicit ones) may also be, of course, 

used in case of the set of common differential equations. In the equation being currently solved of 

the set, it is possible for the right-hand side function, which includes other variables as a rule, to 

select for some of these variables between the state from the previous step n and state n+1, which 

is already available, if it concerns parameters calculated from equations preceding the one being 

currently solved. 

Fig. A.1 The error arising in numerical solution using 

Euler´s single-step explicit method. The difference in 

the first step is for the given form of the function of 

accurate solution overestimated, which is demonstrated 

even in the following steps – the sequence of numerical 

solution is “unaware" at all, that accurate solution is 

below. After the fourth step the situation is then 

opposite. 

 

Fig. A.2 The error arising in numerical solution using 

Euler´s single-step implicit method. The situation is 

logically quite opposite to the explicit scheme. 

 



62 

Runge – Kutta methods 

Again, it concerns a single-step approach, however, which provides significantly more accurate 

numerical solution compared to the Euler's elemental method. This conception, the principle of 

which is sophisticated estimation of the value of the right-hand side function at the point properly 

corresponding to approximating difference, was designed by German mathematicians Carle 

David Tolme Runge and Martin Wilhelm Kutta. 

The initial numerical scheme of the common differential equation being solved, is in a form of 

),( ytfy = : 

),,(1 hythyy nnnn +=+
                   (A.7) 

Whereas Φ(tn,yn,h) is the sought for estimation of the right-hand side function. A local error 

relating to (A.7) as to a common single-step method may be expressed as follows: 

)),(,()()());(( htythtyhtyhtyL −−+=                  (A.8) 

The relative increment of the exact solution may be in a discreet form given by the difference of 

the left-hand side at the non-zero step h. 

h
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= , h ≠ 0                  (A.9) 

Of course, in general (h = 0) it corresponds to the right-hand side function: 

 ),(),,( ytfhyt = , h = 0                 (A.10) 

It then applies for the local error: 

 )),(,()),(,());(( htythtythhtyL −=                (A.11) 

With respect to (A.10), the step increment of the accurate solution hΔ(t,y,h) corresponds to 

Taylor expansion of the right-hand side function f(t,y(t)) through individual powers of step h. 

( ) )(),(
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1
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1
),()()(),,( 112 +− ++++=−+= ppp hytfh

p
fhythftyhtyhyth   (A.12) 

)( 1+ ph  is the residual error in the order of the respective power h. It then applies for the relative 

increment of the exact solution: 
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)()(
),,( 11 ppp hytfh

p
fhytf

h

tyhty
hyt ++++=

−+
= −−        (A.13) 

The best estimation of the right-hand side function is then the following expansion: 
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( ) ),(
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1
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2

1
),(),,( 11 ytfh

p
fhytfhyt pp −−+++=               (A.14) 

Numeration of respective derivations f(t,y) in (A.14) (expressed by an index in parentheses) is not 

available within the frame of a single-step method. 

The optimum value of the right-hand side function for numeration of the relative increment of 

exact solution is naturally f(t,y) at point topt, y(topt) lying in interval tn ≤ topt
 ≤ tn+1. Therefore, Φ 

may be sought for as a linear combination of functional values f of this interval. If these 

functional values are expressed as terms ki, it is possible to write: 

 
=

=
s

i

iikwhyt
1

),,(                   (A.15) 

Of course, within the frame of the starting numerical scheme of the single-step method only value 

yn is available (from the step n currently expressed in numbers), i.e. the right-hand side function f 

is enumerated at point tn, yn. The principle of Runge-Kutta method is recurrent structure of 

approximating terms of the values of the right-hand side function ki. The primary starting value 

f(tn, yn) is known (hereinafter f(t,y)). It means: 

),(1 ytfk =                    (A.16) 

Other approximating terms are designed in accordance with the following principle: 

),(
1

1


−

=

++=
i

j

jijii khyhtfk  , i = 2,...,s              (A.17) 

This scheme directly results from the definition of the differential equation, because common 

step displacement in axis y is given as yhy + , i.e. ),( ythfy + , 1),( kytf =  etc. Or in ki is 

nested i – 1 (within the frame of the sum in the argument also i – 2, ...,,1) cycles of a predictor – 

corrector type.  

It is possible to add that one of the established methods of numerical solution of common 

differential equations is just predictor – corrector progress, when starting value is  yn+1, which is 

calculated using the standard Euler's explicit method, and subsequently substituted to the right-

hand side function f(t,y), and a new corrected value yn+1 is expressed in numbers. This cyclic 

progress may be repeated, e.g., until the selected convergent criterion is achieved. 

The approximating values of the right-hand side function ki in the proposed form of (A.17) are 

enumerable within the frame of the calculated step, with respect to recurrent nature (k1 = f(t,y) is 

available), providing the values of factors αi, βij can be found. Further, it is necessary to deduce 

values of weighted factors wi so that sought for Φ(t,y,h) could be expressed in numbers. It is 
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evident that the criterion of correctness of values of these factors is conformity of Φ expressed 

according to (A.15) with Taylor expansion Φ (A.14) as its best estimation. Or wi and their 

products with αi, βij should be equivalent to factors 1/p! for terms representing the relevant 

powers hp-1 in (A.14). In individual ki ´s, h, αi, βij are a part of the argument, and may be 

converted to required form of coefficients by (Taylor) expansion of functions ki for given 

displacement t + αih, y + βhki-1. 

Therefore, for k2 the following may be written with respect to the form of the total first and 

second derivations of the equation being solved: 

 ),(),(),(),(),( ytfytfytfyytfytfy ytyt +=+=               (A.18) 
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              (A.19) 

 (derivations y' formed from argument f(t,y) are constants): 
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           (A.20) 

The relevant derivations are expressed by lower indices. The simplest application of Runge - 

Kutta approach is numeration of wi, αi, βij for second order, i.e. the linear combination: 

 2211),,( kwkwhyt +=                  (A.21) 

In this case expansion of k2 is sufficient in order h1, i.e.: 
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             (A.22) 

It results from comparison of corresponding terms of powers h (ie. h0, h1) of Taylor expansion: 

121 =+ ww , 
2

1
2 =w , 

2

1
2 =w                (A.23) 

The set of three equations (A.23) containing four unknowns has, of course, infinite number of 

solutions. For each of these solutions, there is arbitrary p ≠ 0, or the solution is given by setting of 

this parameter. It is possible to write: 
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pw −=11 , pw =2 , 
p2

1
= , 

p2

1
=              (A.24) 

Parameter p is most often selected as p1 = 1 and p2 = ½, from which results as follows: 
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2 nnnnnn ythfyhtfytf +++=               (A.26) 

Or: 
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1 nnnnnnnn ythfyhtfytfhyy ++++=+              (A.28) 

The enumeration of the coefficients wi, αi, βij for higher orders of the Runge - Kutta methods is 

already more extensive. For the third order can be written: 

( )

( ) 

( ) ( )  )(2
2

),(

),(

32

2321312321313

2

3

2

2321313

23213133

hfkkfkkf
h

fkkfh

ytf

kkhyhtfk

yytytt

yt

+++++

+++

+

=+++=







             (A.29) 

Derived terms ft, fy, ftt, fty, fyy are taken in (A.29) as independent of a specific point in the interval 

<tn, tn + h>, and <y(tn), y(tn + h)> respectively. This point, to which the derivative of f relates, 

appears in the product with  fy  (ie in the form of the derivative of the compound function f), 

where y’ = (β31k1 + β32k2), and (y’)2 = (β31k1 + β32k2)
 2 respectively in the product with fyy etc. It 

can be also written: 
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I.e. in the term of k3 development in h1 the development of k2 is also considered in the order h1. In 

the next term of k3 development (in h2), k2 is "developed" only to h0, ie here is k2 = k1 = f(t,y)  - 

then it holds: 

 ( ) ( ) 22

3231

2

232131 ),( ytfffkk yyyy  +=+  
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This gradual reduction of the development of k2 appearing in k3 is logical in connection with the 

fact that for Runge-Kutta the third order methods are sufficient terms of the development (A.14) 

to h2. For k3, after the clarification (A.30), the following applies: 
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The approximating function of the right-hand side Φ for the third order of the Runge-Kutta 

methods can be expressed on the basis of (A.20) and (A.31): 
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The following breakdown is useful: 
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The comparison (A.33) with (A.14) therefore gives: 

1321 =++ www                   (A.34) 

2

1
3322 =+  ww                   (A.35) 

( )
2

1
32313212 =++  ww                  (A.36) 

3

12

33

2

22 =+  ww                   (A.37) 

( )
6

1
3231332122 =++  ww                 (A.38) 

( )
3

12

32313

2

212 =++  ww                  (A.39) 

6

1
 3223 =w                    (A.40) 

6

1
 32213 =w                    (A.41) 

From (A.40) and (A.41)) the equality follows: 

212  =                    (A.42) 

I.e. for (A.35) and (A.36) the identity follows and the following applies: 

32313  +=                    (A.43) 

 

Thus, (A.37) and (A.39) are identical, and (A.38) contradicts (A.39) or (A.37) and cannot be used 

to calculate unknown parameters. This contradiction (A.38) is not without context - this equation 

(and of course it also (A.63), (A.39)) does not figure in the final form when it is with relations 

(A.42), (A, 43 ) is already calculated when deriving k2, k3 and Φ. This more correct statement Φ 

takes the form of: 
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           (A.44) 

Whereas: 

 ),( ytfffF yt += , 
2),(),(2 ytffytfffG yytytt ++=  

So there are four equations (A.34), (A.35), (A.37), (A.40) with six unknowns (w1-3, α1, α2, β32) - 

the solution is similar to Runge - Kutta second order methods ambiguous. It is possible to occur, 

for example: 
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Most often, however, the sequence is applied: 
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I.e.: 
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The reader himself can perform deriving of the parameters of Runge- Kutta methods of fourth 

order, which is most effective for numerical solution of differential equations (higher orders does 

not mean significant improvement any longer). The resulting scheme is as follows: 

 ( )43216
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1 22 kkkkhyy nn ++++=+  

 ),(1 nn ytfk =  
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2 hkyhtfk nn ++=                  (A.49) 
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3 hkyhtfk nn ++=  

 ),( 34 hkyhtfk nn ++=  

Of course, the values of derived parameters in (A.49) represent only one out of an infinite 

number of possible solutions (the solution is ambiguous even for the fourth order), nevertheless, 

it is frequently used. In software applications for numerical solution of differential equations (or 

their sets), an option of the following set of parameters is also often available: 
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Appendix B - Numerical solution of partial differential equations – 
approximation using Galerkin´s method 

 

General starting data 

A common partial differential equation can be expressed in the following form: 

0~ =− fuA                       (B.1) 

Where u~  is the exact solution, i.e. a function, e.g. in space R3, f is any function of three-

dimensional coordinates (e.g. in R3) or in time (in parabolic differential equations), in a number 

of cases (hyperbolic and some elliptic equations) is f ≡ 0. A is a differential operator, i.e., e.g.: 

 
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
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


+




zyx

zyx
eee                     (B.2) 

Nabla operator in physical R3 space, ex, ey, ez are unit vectors in this space.  
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Laplace´s operator in R3. 

When describing time-dependent actions, corresponding differential operators are applied: 
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D'Alembert´s operator operating in equations of a wave expanding with a speed of light c. 
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                    (B.5) 

Non-linear operator, which is part of equations describing a vector field of flux and other actions 

in liquids. 

Discretization of partial differential equations (hereinafter PDE) is within the frame of conception 

of so-called weighted residues, where Galerkin´s method belongs to, based on that the exact 

solution is in region Ω approximated by linear combination of a finite number of selected 

functions. It means that spectrum of these so-called base functions would be designed so that 

their specific linear combination could approach the exact solution. 
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
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iiuuu
1

~                       (B.6) 

These functions φi forming the base are, therefore, linearly independent, i.e. none of them may be 

expressible as a linear combination of others. Fulfilment of this condition is guaranteed by 

orthogonality of the base functions φi. It then applies for the scalar product expressed by integral 

over region Ω in R3, in which base functions φi are established: 

( ) ijjiji  == 


d,                     (B.7) 

δij je Kronecker´s delta, which takes the value 1 for i = j and 0 for i ≠ j. The functions of the base 

are then standardized ((φi , φi ) = 1) and conform to requirement: 

 1
1

=
=

n

i

i                        (B.8) 

Condition (B.8) is met for any triplet (if Ω is considered in R3) of values of local variables in the 

region Ω substituted to the base functions. 

It is possible to state more precisely that the base functions are orthonormal with respect to (B.7) 

and (B.8). This orthonormal base is in this respect defined in Hilbert´s space H, where it forms 

the final subspace of base functions of dimension n, or the approximating solution of PDE u is 

sought for in this subspace of base functions in H. The solution (sought for according to (B.6)) in 

commonness will approximate the exact solution depending on abundance of the selected base, 

i.e. the dimension of subspace of base functions in H.  

Approximate solution u is not exact for PDE (B.1), i.e. it is possible to write:  

rfAu

fAu

=−

− 0
                      (B.9) 

Where r is the residuum expressing the "measure" of inaccuracy u. Solution u in form (B.6) will 

then come mostly close to the exact solution at finding the set of coefficient values ui 

representing the smallest possible residuum in sense of (B.9) (i.e. coefficients ui would give in 

commonness larger weight to the base functions approaching the exact solution and vice versa). 

Residuum r is naturally the function of relevant coordinates in region Ω, and in its evaluation or 

minimization, it is possible only to start from the principles applicable to space of functions H. In 

particular, the residuum can be "weighed" through scalar product (on region Ω) with selected so-

called weight function w, when this scalar product of two functions (in H) is put equal to zero. 

 ( ) ( ) 0,, =−= fAuwrw  
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i.e.: 

( ) 0d =− fAuw                    (B.10) 

Therefore, this condition means orthogonality of the residuum and weight functions w - see (B.7), 

or stated simply, the residuum and weighting functions do not "overlap" in region Ω (for any 

(3D) coordinate in region Ω, one of the functions is always zero, and the whole integral of their 

product is then zero). Besides, the fact should not be forgotten that equation (B.10) would be met 

also in the event that the function representing the residuum would be zero in the entire region Ω, 

and u would then be exact solution (w is non-zero in any case).  

Generally, the following equation then applies: 

 ( ) ( ) 0d~d =−=−  
fuAwfAuw                 (B.11) 

Relation (B.10) then conforms to given PDE (B.1) in integral sense, or function u expressed from 

(B.10) is so-called weak (or generalized) solution of (B.1) in region Ω.  

Of course, in terms of (B.10) one weigh function w may only "displace" residuum outside its 

non-zero value in region Ω. For finding solution u close to the exact solution, a possibility is 

certainly offered to weigh the residuum multiple times using more selected functions wi, or if a 

number of weight functions corresponds to dimension n of subspace of base functions φi, a closed 

system is available of n integral equations (in case of time independent operator A) for calculation 

of n unknown coefficients ui, and also for finding approximate solution u. J-th row of the given 

matrix is then in the form: 
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iij               (B.12) 

Of course, weight functions wi must be suitably selected. Primarily, the logical condition is 

offered for this choice that the resulting residuum was "displaced" by "weighing" with n 

functions wi outside the subspace of base functions φi. Then it is assured that the weak solution u 

in form (B.6) will be within the frame of dimension n of this subspace the best possible – most 

approaching the exact solution, or that given set of base functions already cannot offer a better 

variant of solution. 

Solution of system (B.12) (i.e. calculation of set ui , i = 1, .., n) leads to the residuum, which must 

be orthogonal with all wi´s. It is evident that if the base functions are directly used as weight 

functions wi  = oi, (i = 1, ..., n), by solving (B.12) the desirable "displacement" of residuum 

outside the subspace of base functions is achieved. This variant of method of weighted residua 

(wi  = φi) is called Galerkin´s method after its author.  
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Weak solution u in form (B.6) is a generally applicable approximation at the level of numerical 

solution of discretized PDE within the frame of step corresponding to region Ω (identified with 

the final element). Of course, a possibility arises, especially when solving PDE with non-linear 

operators – e.g. (B.5), that the exact solution u~  will get within the frame of criteria Ω 

complicated fluctuating course, which will not be caught by weak solution u (suitable in integral 

sense of criterion Ω) in any case. Or the resulting residuum (function in H except subspace of 

base functions) will acquire not negligible functional values in region Ω. 

 

Stationary exercises 

The resulting system of algebraic equations formed by application of Galerkin´s method on time 

independent PDE is in the form: 
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               (B.14) 

Functions Aφi created by operation of differential operator A on base functions are not orthogonal 

with weight (i.e. base) functions φi, and individual integrals are generally non-zero (max. value = 

1). In the same way f, i.e. integrals of their products with φi, form a non-zero vector of the right-

hand side function (if it does not concern a type of PDE not containing f).  

It should be added that the resulting set of linear equations (B.14) allowing us calculation of 

values ui after numeration of individual integrals, e.g. by Gaussian elimination, corresponds to 

time independent linear operator A (i.e. it concerns a solution of a stationary problem). For a non-

linear operator (time independent), e.g. products uiuj would appear within the frame of individual 

terms of the resulting system – it would concern a system of non-linear equations solvable by a 

suitable iterative procedure. 

 

 

 

Time dependent exercises 

In time dependent PDE application of Galerkin´s method leads to a system of equations in the  

form: 
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            (B.15) 

Sought for coefficients ui are then variables in time. Of course, a term representing time 

derivation appears only once on every line (with respect to (B.7)). Integrals for scalar products 

(φi, φi) in this term are equal to one, and need not have to be written at all. Therefore, (B.15) 

represents a set of common differential equations (hereinafter ODE). For parabolic PDE it 

concerns ODE of a standard type, for hyperbolic PDE, system of ODE type is created. Therefore, 

application of Galerkin´s method converts time dependent PDE to a set of common differential 

equations providing weak solution for region Ω, i.e.: 


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=
n

i

ii tutu
1

),,()(),,,(                   (B.16) 

where  ,,  are local three-dimensional coordinates in Ω. Again, it is necessary to add that the 

non-linear operator will lead to a system of non-linear ODE. The set in form (B.15) will not also 

be suitable for PDE containing the second time derivation, or the first and the second one 

simultaneously. Analysis of these events is already over the frame of this text. 

Possibilities of numerical solution of systems of type (B.15) are already outlined in the previous 

chapter (numerical methods of solution of ODE systems). In this place, it is possible to very 

briefly mention other possible alternatives. One of these is an analytical solution applicable for 

the system of linear ODE with zero vector of the right-hand side. This system, which is a result of 

discretization of linear PDE with first time derivation and f ≡ 0 using Galerkin´s method, has the 

following form: 
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               (B.17) 

The solution represented by n functions of the time course of individual ui may be anticipated in 

a form of products of time averaged iu  with generally convenient function of time: 

 t

ii utu −= e)( ,  (i = 1, ..., n)                 (B.18) 

After substitution of (B.18) into (B.17) (and cancelling out) a homogeneous system of n linear 

algebraic equations for unknown components of the eigenvector u is obtained: 
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              (B.19) 

Detailing of (B.19) corresponds to a matrix record: 

 ( ) 0uEA =− λ                    (B.20) 

Where element Aij of matrix A is equal to  dji A  and E is a unit matrix. Equation (B.20) is 

in the form of a problem of eigen numbers λ of matrix A, because it applies as follows: 

 uuA =                     (B.21) 

For a non-zero solution of the homogeneous system (B.19) the eigen number λ must be selected 

so that: 

 ( ) 0EA =− λdet                    (B.22) 

Expression of determinant (B.22) leads to a characteristic equation of matrix A for unknown λ. 

Roots of the characteristic equation are generally n values λ, i.e. n eigen numbers λi of matrix A. 

A partial result is then n possible time courses of the vector u , which is available in n forms as a 

solution of (B.19) for individual eigen numbers λi, therefore as n eigenvectors of matrix A. If the 

obtained vectors 
iu  are normalized to the unit size, i.e. if the following applies: 

 ( ) 1, =ii uu                     (B.23) 

It is possible to express the general solution of system (B.17): 

                  (B.24) 

The weak solution of linear PDE generating system (B.17) for region Ω is then in the form: 


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ii

t utu
1

),,(e),,,(  
                 (B.25) 

The resulting forms of (B.24) and (B.25) represent identical evolution for time dependent 

parameters ui within the frame of general solution (in time). This situation documents linearity, 

or the result of this type would not come into consideration for a non-linear problem. 

Another possible alternative for solution of time dependent PDE is assignment of time axes to 

spatial dimensions of region Ω, i.e. introduction of base functions, which include dependence on 

time. The time course of the solution u (of course only for local time interval of region Ω) is then 
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calculated directly within the frame of discretization of PDE using Galerkin´s method, and not 

subsequently, as it is in the above developed approaches. More detailed description of this 

conception already exceeds the frame of this text.  

 

 

Expansion to finite elements 

On solving practical problems in R3, especially modelling of transport processes, the need arises 

as a rule of expansion of numerical solution of PDE to more regions. This requirement is 

reflected by introduction of so-called finite elements. The Finite Element Method constructs 

individual local regions Ω as elements, which fill the entire global region of the solution          - 

they are introduced through a grid. The Galerkin´s discretization of PDE (or PDE system) in the 

entire global region, the shape of which is given by physical assignment, then generates a large 

thin system with non-zero terms in the proximity of the diagonal. 

Basic procedures of grid formation lead in 2D physical space to triangular or tetragonal elements. 

Tetrahedral and hexahedral elements correspond to them in 3D. Problems of construction of 

finite elements and to them appertaining base functions are considerably wide. Within the frame 

of the focus of this text, only selected (practically the simplest) example may be brought in.  

Tetragonal element in 2D 

 

 

Fig. 8.1 Tetragonal element 

with marked course of linear 

base functions L1 – L4. 
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The element is instituted in the local three-dimensional coordinates ξ, η, which need not 

correspond with global Cartesian coordinate system with respect to possible non-orthogonal form 

of the element. On discretization of PDE, which are formulated in Cartesian coordinate system, it 

is necessary to carry out relevant transformation operations among local and global coordinates. 

It is possible to introduce a linear isoparametric base in 2D local coordinates: 

( ) −= 1
2

1
)(1L , ( ) += 1

2

1
)(2L , ( ) −= 1

2

1
)(1L , ( ) += 1

2

1
)(2L             (B.26) 

Therefore, functions (B.26) are designed as the simplest polynomials of the first order with 

functional value <0,1> in the region of the element - see Fig. B.1. Naturally, the base functions, 

which are "offered" for the possible course of PDE solution, must be functions of two spatial 

variables in 2D application. From (B.26) is then derived bilinear base: 

( )( ) −−== 11
4

1
)()( 111 LL                 (B.27) 

( )( ) −+== 11
4

1
)()( 122 LL                 (B.28) 

( )( ) ++== 11
4

1
)()( 223 LL                 (B.29) 

( )( ) +−== 11
4

1
)()( 214 LL                 (B.30) 

It means that base functions (B.27 – 30) have in respective corner points the value of one. It 

follows from Fig. 4.1 that the even such a simple base of four functions "offers" basic 

possibilities of variability of the three-dimensional course of the solution u in the region of 

element Ω.  For practical calculations more complex types of bases are available. E.g. biquadratic 

base, which is derived from three basic types of the polynomials of the second order, which 

generally leads for a square element in 2D to nine base functions, whereas this number may be 

purposefully reduced (eight functions – so-called serendipian element). The base function may 

likewise be derived from Lagrangian or Hermitian polynomials, then it concerns Lagrangian and 

Hermitian elements. 
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