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1 Gaussian smoke plume dispersion model 

1.1 Derivation of the Gaussian model 

 

The Gaussian model calculates the concentration field of pollutant admixtures in a static smoke 

plume that propagates in a straight line direction at a constant velocity. It is therefore a greatly 

simplified view of the transport problem of the source-side propagation of a pollutant 

admixture, where there may be directional and velocity fluctuations in general, induced by the 

flow field, which can be quite complex, e.g. near a complicated surface. A correct and close-

to-reality simulation of this situation is based on the numerical solution of modified moment 

equations computing, at an appropriate scale, the individual components of the velocity vector 

flow field u ≡ ux, uy, uz  and the equation for the scalar concentration field c. This approach is 

considerably complicated and demanding in machine time and is therefore not suitable for 

practical air pollution prediction tasks requiring multiple iterations of simulation calculations 

for a wide range of classified meteorological situations. 

The procedure of derivation of the Gaussian model reflects the above described complex 

differential form of the transport problem of pollutant admixture propagation from the source 

as an initial formulation, which is converted into a relatively simple analytical relation using 

the maximum of applicable symmetries through significant simplifications. 

A Reynolds PDE of the form used to calculate the pollutant concentration field 𝑐̅ (averaged 

over a suitable time interval to exclude turbulent fluctuations) may be considered as a specific 

initial formulation (if compressibility and air viscosity are not considered): 
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Where 

The other three equations for calculating the components of the flow velocity vector u ≡ ux, uy, 

uz need not be considered, since the particular form of the flow field is completely eliminated 

in the next step of the derivation of the Gaussian model. 

The starting principle in the derivation of the Gaussian model is a simplifying idealization based 

on the neglect of the nonlinear advection transport dependent on the complex 3 D flow field (a 

term representing inertial forces).  
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That is, the generally valid equation of motion for the conservation of the concentration of the 

passive admixture in the approximation for an incompressible fluid reduces to the equation 

describing turbulent diffusion (1.2), which no longer contains any information about the 

entrainment flow field - the Gaussian model does not take into account (and of course does not 

calculate) the flow field in the solved region. 

 

(1.1) 

z

c
u

y

c
u

x

c
uc zyx




+




+




=)(u



















+















+















=





z

c

zy

c

yx

c

xt

c
zyx 

 
 

Furthermore, the assumptions of isotropy (µx = µy =  µz  =  µ , i.e., the character of turbulent 

diffusion is independent of direction) and spatial and temporal homogeneity of turbulence (µ = 

const.) are introduced. Thus, (1.2) reduces to (1.3): 
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For this equation (1,.3) of spherically symmetric diffusion, an analytical solution (suitable for 

derivation of the smoke plume model) is available in the form of a concentration function 

dependent on two variables - t and the distance from the source (centre of the sphere) r. 
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Q is the mass flux of the pollutant (g/s), r is the distance from the source at the centre of the 

spherically symmetric concentration field (see Figure 1). It can be added that the first part of 

equation (1.4) - fraction represents the concentration at the source location, which decreases in 

time after pulsed emission, and the exponential part reflects the concentration field in its 

vicinity. 

 

 
 

To derive a model of the concentration field of the smoke plume, it is also necessary to introduce 

an advection displacement representing its drift in the horizontal direction. Considering that 

(1.4) does not reflect any connection with the flow field, this drift is formulated in the simplest 

possible way - as a displacement with constant velocity 𝑢̅ in the x-axis. Simply, 𝑟 =
(𝑥′2 + 𝑦2 + 𝑧2)1/2, where the original x' corresponding to a spherically symmetric arrangement 

can be replaced by the difference between the distance x reflecting the diffusion + advection 

displacement of the dispersing spherical element and the trajectory of this displacement 

expressed as 𝑢̅𝑥𝑡. 
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Fig. 1. Graph (1.4) - dependence 

of c on the distance from the 

central source r for two different 

times t2 > t1 from the emission (at 

t = 0). 



 

Figure 2 shows the situation. 

 

 
 

Fig. 2. Introduction of advection shift in x-axis - positions of dispersing elements are shifted by 

paths 𝑢̅𝑥𝑡𝑖, i = 1,2,3. 

 

The obtained expression (1.6) reflects the concentration field of an individual spherical element, 

which is dispersed at a rate corresponding to time t while being transported at a constant velocity 

𝑢̅𝑥 in a path identified with the x-axis of length 𝑢̅𝑥𝑡. 
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The smoke plume concentration field model is logically obtained by including all the dispersing 

elements representing each time interval (from 0 to ∞) with an infinitesimal step. Thus, relation 

(1.6) is integrated in the time axis: 
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The resulting formula (1.7), after integration (and neglecting the small terms), expresses a time-

independent 3D field of the spatial distribution of the pollutant concentration corresponding to 

the smoke plume propagating from a continuous source. Again similar to (1.4), the fraction in 

equation (1.7) represents the concentration in the axis of the smoke plume and the exponential 

part represents the concentration field around this axis, i.e. the intensity of the lateral dispersion. 
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The structure of relation (1.7) allows the backward implementation of the dispersing anisotropy 

in the horizontal and vertical planes. The isotropic turbulent diffusion coefficient determining 

the intensity of the dispersing can be expressed through the product of the anisotropic 

coefficients: 

zy =
 

(1.6) 

(1.7) 

(1.8) 



 

After substituting them into (1.7), the relation (1.9) is obtained, where for the exponential terms 

of the side dispersing (after the isotropic µ), µy for the horizontal plane and µz for the vertical 

plane are logically substituted. 
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The relation (1.9) could be considered as the resulting analytical model of the smoke plume 

concentration field, however, for its practical applicability for air pollution calculations it is 

advisable to replace the turbulent diffusion coefficients µy and µz by the so-called dispersion 

parameters σy and σz, which do not depend on time but on the distance from the source x (i.e. 

the length of the smoke plume axis) and can be well derived parametrically for different types 

of specified dispersion conditions. 
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Using relations (1.10), the resulting form of the Gaussian smoke plume concentration field 

model (1.11) is obtained, where the decrease in pollutant concentration values with distance 

from the plume x-axis in the horizontal and vertical directions corresponds to a general Gaussian 

distribution (where σ represents the standard deviation). 
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Fig. 3. Gaussian model of the smoke plume concentration field 

(1.9) 

(1.10) 

(1.11) 



From a dimensional point of view, the general form of the Gaussian model is appropriate, the 

term reflecting the trailing axis has the dimension of the mass concentration: 
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The exponential terms characterizing the side dispersion in the y and z axis are dimensionless 

and can take values in the interval (0,1). 

It may be added that the above procedure for deriving the general form of the Gaussian model 

(1.11) is not the only way to consistently arrive at this result; approaches can also be found in 

the literature where time integration is already performed in the diffusion equation, which is 

converted to the form (1.12) 

𝑢̅𝑥
𝜕𝑐̅

𝜕𝑥
= 𝜇∆𝑐̅ 

 

 

 

1.2 Application of the Gaussian model of the smoke plume 

 

In general, the Gaussian model has only local applicability for principled reasons.  The model 

does not in any way resolve the flow field in the MVA (which determines the advective 

transport trajectories of particulate pollutants), but only "notes" that a certain bounded area is 

subject to a long-term average frequency of occurrence of typified meteorological situations 

involving flow directions. In this sense, the Gaussian model, as a body, can be "planted" 

somewhere in the flow field where it is locally applicable. In this context, the locality is defined 

by a distance from the source(s) for which the deviation of the pollutant transport trajectories 

from a straight line shape due to the curvature of the streamlines can be neglected. This distance 

is, of course, highly variable, particularly in relation to the ruggedness of the Earth's surface. 

For practical applications, the general form of the Gaussian model (1.11) is modified in terms 

of the calculation of vertical dispersion - z represents the height difference between the ground 

level at the base of the stack and the level at the reference point for which the pollutant 

concentration is calculated. The distance from the axis of the smoke plume is then h - z, see 

(1.13).  
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where: 

Q = the mass flow of the pollutant emitted by the continuous source - [mg.s-1] 

𝑢̅ = velocity of the advection drift flow in the axis x [m.s-1] 

σy, σz  = transverse dispersion parameters - characterizing the dispersion by turbulent diffusion 

[m] (from a statistical point of view these are the standard deviations determining the 

Gaussian curve in the direction of the y and z axes in the profile of the smoke plume) 

(1.13) 

(1.12) 



y = the perpendicular distance of the point at which the concentration is calculated (= reference 

point) from the plume axis, i.e. y > 0 if the direction vector source-reference point is 

different from the specified flow direction 

x = length of the plume axis, i.e. x < r (r is the distance between the source and the retention 

point) if the source-reference point direction vector is different from the specified flow 

direction 

z = the height difference between the position of the reference point and the height at the source 

location, which is the level of the base of the stack. 

h = effective source height, i.e. the sum of the building height of stack and the thermal 

buoyancy of the plume 

 

 
 

Fig. 4. Situation corresponding to the lower estimate for the vertical reflection of the 

pollutant 
 

The formula (1.13) corresponds to the so-called lower estimate of the concentration of the 

pollutant impurity (see Figure 4). Within the z-axis, the reflection of the dispersing gaseous 

pollutant from the ground surface is also correctly included in the model - see the last term on 

the right-hand side. Here, z + h is taken as the total z-axis component of the path of the reflected 

pollutant particle, i.e. the reflection from the level of the base of the stack is calculated. 

Obviously, this assumption (valid for the plane and for a reference point on a "lonely hill" at a 

greater distance from the source) is not appropriate for the case where the level of the 

surrounding terrain in the flow direction rises already close to the source. 

For this specific case, it is closer to reality to use the so-called upper estimate (see Figure 5), 

where the reflection from the ground level of the reference point is calculated. The formula 

(1.14) for the calculation of the immission concentration will then reflect twice the term 

containing the distance from the siding axis z - h (2 is truncated), since the vertical component 

of the path of the reflected pollutant particle from the ground surface to the level of the reference 

point will be zero (practically it is a reflection into the respiratory layer - max 2 m, which is 

neglected). 
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(1.14) 



 
  

Fig. 5. Situation corresponding to the upper estimate for the vertical reflection of the 

pollutant 

 

The two limiting possibilities for including the reflection of the pollutant admixture from the 

land surface can be included continuously in the Gaussian model via the factor , see (1.15). 
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The factor  is evaluated as the ratio of the vertical areas A1 and A2 (1.16) defined by the 

terrain configuration at the junction between the source and the reference point, see Figure 6. 
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Fig. 6. Parameter  determination = grey double hatched area / area of the marked 

rectangle  

(1.15) 

(1.16) 



Since all terrain height extremes exceeding the A2 rectangle (top and bottom) are not counted - 

they are "clipped", they  can take values in the interval (0,1). In the context of the above 

discussed question of how to include the reflection of the pollutant admixture from the ground 

surface - see the lower and upper estimates of pollution, the coefficient in equation (1.15) 

defines continuously the degree of inclusion of these two limiting modes (  = 0 → lower 

estimate,   = 1 → upper estimate).  

The pollutant concentration field obtained using the Gaussian model is strongly dependent on 

the setting of the dispersion parameters σy and σz, which is defined within the classified classes 

of dispersion conditions. In the Czech Republic, a classification including five classes of 

atmospheric stability derived from the vertical temperature profile is used. This is based on a 

comparison of the temperature profile (for which the calculation is performed) with the 

moisture-adiabatic gradient derived by an adiabatically isolated air particle moving vertically 

in the atmosphere. Outside the Czech Republic, the Pasquil classification into six classes of 

atmospheric stability based on the evaluation of several specific meteorological factors is the 

most commonly used.  
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The dispersion parameters σy and σz (1.17) are a function of the length of the axis of the smoke 

wake x and the tabulated factors ay, az and by, bz characterizing the specified scattering 

conditions defined by the stability class according to the classification used. The magnitude of 

σy and σz increases with decreasing stability, i.e., with increasing turbulent mixing (improving 

dispersion conditions). 

 

Fig. 7. Concentration field of pollutant admixture in the smoke plume profile simulated by the 

Gaussian model as a function of the specified Pasquill atmospheric stability class. A represents 

the highest dispersion intensity - the most favourable dispersion conditions, F applies to the 

highest atmospheric stability - the least favourable dispersion conditions. 

(1.17) 



The Gaussian model can also be used to calculate the dispersion of pollutant impurities from 

area sources, which is simply based on the application of the initial dispersion parameters σy0 , 

σz0, so that the sums σy + σy0  and  σz + σz0 appear in the formula. In this way, the smoke plume 

is already found to have a certain initial width y and height z at the source location (x = 0) (the 

source is thus planar). Further, the source can be taken as non-symmetric in the model - e.g. a 

rectangle. The initial dispersion parameters σy0 , σz0  are then also calculated as a function of the 

angle taken by the flow direction and the longer side of this rectangular planar source. 

The calculation of the dispersion of pollutants from a line source is performed by replacing this 

source with a set of contiguous length elements - rectangles (see previous paragraph) with a 

length usually ranging from tens to hundreds of metres and a width adapted to the width of the 

actual source (usually the width of the roadway - up to 15 m). 

This more complicated method of immission calculation is generally applicable to a line source 

corresponding to a length segment of arbitrary shape. In the case of a more or less linear line 

source (with the same emission flux along its entire length) approximated as an infinite straight 

line, the substitution of length elements is redundant and the calculation is further simplified 

compared to (1.15), since the y-axis side dispersion becomes meaningless.  

The calculation of dispersion by Gaussian model can also be performed for dust particles - PM, 

for which the effect of gravity must be taken into account. This situation can be solved by 

introducing a drop in the drift axis due to the particle fall velocity. This drop factor, which 

depends on the distance between the source and the reference point, the flow velocity and the 

specific fall velocity for a given size class of dust particles, is then included in the vertical 

dispersion terms. 

 

 

Input data for calculating ground air pollution with Gaussian model  

The calculation of immission characteristics by the Gaussian dispersion model requires three 

types of input data: 

 

− Orographic data: 

Digital terrain model - this is used to determine the vertical profiles of the transmission 

paths from the source to the reference point. Orographic data are essential in calculating 

immission characteristics in areas with more complex landforms.  

 

− Meteorological data: 

Detailed wind rose with 45° angular step of flow direction (i.e. 8 flow directions), broken 

down for each atmospheric stability class and wind speed class. I.e. data specifying the 

long-term average frequencies of occurrence of a large number of different meteorological 

situations in the area of validity of the wind rose. These data are provided by the 

meteorological service (in the Czech Republic, the CHMI), including the definition of the 

specific validity area. The data from the detailed wind rosettes are used to calculate 

statistically defined characteristics - the average annual concentration, the average 

contribution of the source group to pollution and the average duration of possible 

exceedances of the selected limit value (e.g. immission limit) for short-term immission 

peaks.  

 

− Source data - emission data: 

For the proposed sources (and those assessed in the EIA), these data are part of the project 

documentation supplied by the investor or technology supplier. For sources already in 



operation, emission data are usually available in the meteorological service database. For 

each source, the following must be entered: 

Exact position in the selected coordinates. 

Mass flow rate of pollutant emission (mg.s-1). 

Building height of stack, flue, etc. 

Source heat output (MW) or flue gas temperature (oC) and volume flow (m3.s-1) 

In the case of a surface source, including the length element of a line source, the area 

(m2) and, if applicable, the length, width and orientation (angle  with the north-south 

axis in the case of a non-symmetrical surface source) must also be specified. 

 

 

 

Obtained output data - immission characteristics calculated for the surface respiration 

layer in a grid of selected reference points in the area of interest 

 

− Arithmetic mean / calendar year (annual average immission concentration) 

It tells the distribution of the long-term average air pollution level (in terms of 

meteorological situations occurring during the year) from the counted sources.  

The resulting value obtained at each reference point is therefore the sum of the contributions 

corresponding to the concentration values for each typified meteorological situation 

multiplied by the average frequency of occurrence of these situations. 

 

In equation (1.18), where the complete set of parameters on which the value of the average 

concentration depends is broken down: 

i - index for the flow directions to be counted, for each source, directions within ± 45o of 

the direction vector formed by the source-reference point line are usually included, i.e. 

the included directions form a rectangular section. The standard angular step for the 

directions to be included is 1o - the wind rose data (with a 45o step) must be interpolated 

j - index for flow velocity classes 

k - index for atmospheric stability classes, which determine not only the dispersion 

parameters, but also the effective source height and the initial flow velocity at the level 

corresponding to the effective height 

l - index for included sources - practical immission calculations are usually performed with 

the inclusion of multiple sources (evaluation of background effects, etc.), see Figure 8 

m - reference point index, relation (1.18) calculates the concentration at the m-th reference 

point 

fijk - the frequency factor of occurrence of each typified meteorological situation - is 

obtained from the wind rose (after interpolation of angular steps), of course applies: 

 

(1.18) 
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Other parameters are already explained in the previous.  

The calculated values of the annual average immission concentration of the pollutant in 

ground air are directly comparable to the immission limits for this characteristic.  

 

 

Fig. 8. The situation when calculating air pollution from multiple sources in a network of 

reference points. Of course, the following applies xi = ri cos αi, yi = ri sin αi  

 

− Maximum short-term immission concentrations - are not a statistically defined parameter, 

i.e. they are not averages as for other immission characteristics, but the maximum 

theoretically possible values that the immission concentration at that location can reach in 

the model. 

The resulting immission map therefore corresponds to the maximum unfavourable 

dispersion conditions and flow directions indicating the maximum rate of transport of 

pollutants from the dominant source(s) to individual reference points. The value of the 

maximum short-term immission concentration at each point in the area of interest 

practically represents a different flow direction - a different situation. The resulting 

distribution of maximum short-term concentration values in the area is therefore the sum of 

all (in terms of each individual reference point) maximum adverse meteorological 

situations.  



− The average duration (h/year) of a possible exceedance of the selected limit value - usually 

the immission limit for the arithmetic mean / h. This type of calculation, similar to the 

annual average concentration, is based on statistical characteristics. The principle is to 

successively load the frequencies of occurrence of fijk at each reference point for those 

situations where immission concentration values exceeding the limit are obtained. 

 

- The average contribution of a selected source or group of sources to the total air pollution 

by a given pollutant. Thus, at each reference point, it is the ratio of the value of the annual 

average concentration obtained for that selected source to the total annual average 

concentration corresponding to all sources included. 

This parameter, which is of importance for example in identifying the causative agents of 

immission damage to forest stands, cannot practically be determined by routine 

measurement of automatic immission monitoring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

 

 

Fig. 9. Examples of the output of air pollution calculations using a Gaussian model 

 

A - modelled immission field of 

maximum short-term 

concentrations of gaseous 

pollutant in the vicinity of a point 

source of smaller effective height 

located in a valley position below 

a hill. 

B - modelled field of annual 

average gaseous pollutant 

concentrations in the vicinity of a 

line source - road. 

C - modeled immission field of 

maximum short-term 

concentrations of fugitive dust at a 

quarry site that is included as a set 

of area sources. 

A 

B 

C 



2 Gaussian puff model of transport in a flow field 

 

The Puff model is more general than the Gaussian plume model. The formula for calculating 

the concentration field of a pollutant admixture (2.1) reflects the individual loaded elements of 

the time-dependent spherically symmetric dispersion of that admixture corresponding to 

turbulent diffusion from a source at the centre of each element. 
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Thus, formula (2.1) is not a continuous integral of the individual states (as in the plume model), 

it expresses the sum of the individual loaded elements. The coordinates xk, yk, zk represent the 

position of the centre of the kth element (x, y, z then of course the position of the reference 

point). The parameters σ that determine the diffusion state of the pollutant admixture in each 

element are of course dependent on the total diffusion duration in each element related to the 

total number of time steps k that the element has taken in transporting from the source in the 

drift velocity field. The plume is then modeled as the sum of elements that are loaded at 

positions given by the configuration of the input (measured or numerically simulated) flow 

field. The trajectory of the smoke plume thus simulated corresponds to the directional 

complexity of the transporting flow field (it is by definition not linear as in the plume model) - 

see Figure 2.1. 

 

 

 
 

Fig. 2.1. Transport of dispersing elements in a drifting velocity flow field  

 

 

(2.1) 



Thus, formula (2.1) is not a continuous integral of the individual states as in the "plume" model, 

it expresses the sum of N individual loaded elements. 

From the point of view of one element, (2.1) is therefore analogous to the analytical solution of 

the diffusion equation - relation (1.4), which was subsequently (after modifications) 

continuously integrated in the derivation of the Gaussian model of the smoke plume. This 

principled equivalence between (2.1) and (1.4) can be easily deduced by considering the 

relationship between the turbulent diffusion coefficient and the dissipation term (2.2), which is 

the isotropic analogue of (1.10). 
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Substituting (2.2) into (1.4) yields a relation for the concentration field of the symmetric 

dispersing element (2.3), which is equivalent to one of the sum terms in (2.1) (the time step Δt 

can be assumed to be primarily equal to 1). 
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3   Lagrangian models of particle dispersion in a flow field 
 

The Lagrangian model, like the Gaussian puff model, is applicable to simulate the transport of 

pollutant admixtures in the flow field that constitutes the input data. Thus, the Lagrangian model 

does not solve this flow field in any way, but only uses it to calculate the transport of individual 

model particles emitted from a source in the solution region. The input 3D flow field 

corresponding to some specific situation in terms of boundary conditions in the solution region 

may be based on measurements - most often satellite data from the Earth's atmosphere - or it 

may be obtained as the result of a model calculation for the solution region based on numerical 

solution of the initial nonlinear PDEs in a suitably modified form.  

The local spatial displacement of each model particle is essentially determined by the flow 

velocity vector acting in the path of this displacement. This vector u  is obtained by linear 

interpolation of the input flow field. However, in order to obtain a result corresponding to a 

smoke plume simulation, it is necessary to include an additional component of the transport 

vector defining the particle dispersion by turbulent diffusion. The calculation of this fluctuation 

vector is based on the use of a random parameter ξ. 

The particle displacement simulating dispersion is based on the Langevin equation of the form 

(3.1) containing the random parameter ξ.  
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Where ui is the component of the fluctuation vector, σui are the dispersion parameters, ξ is a 

parameter with a random value in the interval (-1,1), δi3 is the Kronecker delta - index 3 

represents the vertical z-axis, i.e. the corresponding term is non-zero only for the calculation of 

the vertical component of the fluctuation vector, TLxi is the Lagrangian integration time, which 

is most often set to 200 s in the horizontal plane and 20 s in the vertical plane. The parameters 

a and b define the rate of inclusion of the new variation - at time t + Δt and are defined based 

on the ratio of the simulation time step Δt and the Lagrangian time TLxi, so that the sum of their 

squares is equal to 1. 

a = exp(-∆t/TLxi) 

 b = (1 – a2)1/2 

For the case of the modelled flow field, the dispersion parameters in each direction σui are 

derived from the values of the turbulent kinetic energy k available in the most commonly used 

approach, where the k-є turbulence model is applied: 

σu = 0.91k1/2 

σw = 0.52k1/2 

The index u represents the horizontal direction, w the vertical direction. The corresponding 

constants correspond to neutral stratification conditions. 

The new position of the passive gravitationally non-decaying particle is given by the joint action 

of the components of the averaged flow velocity vector u (which forms the input data) and the 

vector of turbulent fluctuations representing the dissipation obtained from equation (3.1). 

(3.1) 
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In a practical application of the Lagrangian model, e.g. in a region for which a flow field with 

a velocity in the range of 2 - 8 m.s-1 is available in a grid of values with a horizontal step of 100 

m, the time step of the passive particle displacement ∆t can then be chosen as e.g. 5 s. The 

emission flux from the simulated source can be set to e.g. 1000 particles in the time step ∆t. 

The result of a simulation set up in this way is shown in Figure 3.1. 

 

 

 

Fig.3.1. Lagrangian model result - concentration field of deposited pollutant emitted from a 

point source  

 

It may be added that the above description represents only a simple basic form of the Lagrangian 

model of transport and dispersion of a pollutant in the flow field. In more complex applications, 

other parameters such as potential temperature field, etc., may also be considered. In terms of 

model particles, possible gravitational drop, chemical transformations, etc. can then be 

accounted for.  
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4   Modeling the flow field in planetary boundary layer (PBL) - Part I. 

 

 4.1   The basic equations for fluid flow and their justification 
 

The basic relation for a general description of the fluid flow (represented by velocity vector u) 

is a nonlinear equation of motion (moment equation) in 3 
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Where p is the static pressure, μ is the dynamic viscosity, I is the unit tensor (the second term 

on the angular bracket is the effect of volume dilation) and ρf are an external body forces. 

The equation (1) express conservation of momentum in an inertial (non-accelerating) reference 

frame and represents three equations for the individual components of the flow velocity vector. 
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The conservation of mass in the flow field is expressed by continuity equation: 
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For the case where the fluid is considered to be incompressible, the basic equations are in 

simplified form: 
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For the individual components of the flow velocity vector we have: 
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Where  ν = μ/ρ  is the kinematic viscosity 

The simplified continuity equation has form: 

 0= u  or     div u = 0      (4) 

 

The equation (3) (or equations (3a)) are called Navier-Stokes. 

 



 

Equation (1) includes the basic principle of balance of inertia and external forces. External 

forces are represented by volume and surface forces (Einstein summation convention is used). 

The balance can be expressed as integral for deformable region Ω (t). 
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Equation (5) expresses the local process in the coordinate system with the origin naturally 

localized at the center of region Ω (deformable volume element). Transferring the principle of 

local balance of forces to the global (Eulerian) coordinates represents consideration of the 

motion of flowing continuum - every single point in the volume element changes the position 

over time, respectively performs a continuous movement in the global spatial coordinates. 

Expression of the left side of equation (5) - material derivative of the velocity vector 

components for deformable volume element in global coordinates is included in Reynolds 

transport theorem, which has the form for a general variable α. 
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This theorem is justified as follows: The default relation express the difference of state of 

variable α and considered integral region (volume element) at time t + δt and t related to 

infinitesimal time step δt. 
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After adding the terms representing the integral region on the time t and variable α on time t + 

δt in positive and negative sense, the relation has form: 
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Equation (8) can be written in a more compact form: 
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Only the first term on right hand side remains for further derivation. The movements in the 

region Ω represented by change of volume dV can be expressed by the scalar product of the 

flow velocity vector and the normal of element of the region surface. 
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A change of state of the integral region - Ω(t + δt) - Ω(t)  is given as a flow of velocity vector 

field of fluid through closed surface – see figure. 
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After applying limits δt → 0, tj. α(t+ δt) ≡ α(t) the relation (11) goes to the form involving two 

separate terms representing infinitesimal spatial shift of integral region Ω in the flow field and 

temporal change of variable α at the region Ω 
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The resulting Reynolds transport theorem (6). is obtained after applying the Gauss - 

Ostrogradsky (or Divergence) theorem ( ) ( )
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In the context of Reynolds transport theorem (6) the inertial forces are expressed in the motion 

equations (1), (1a) by the expression: 
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The term representing in equation (5) the surface forces can be expressed as a volume integral 

using Gauss - Ostrogradsky (Divergence) theorem. (Since three components of the strain tensor 

τij representing vector are included in the equations of motion (1a) for each i-th velocity 

components.) 
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The strain tensor τij can be expressed in terms of the approximation known as Newtonian fluid 

which is suitable for air at low velocities:  
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This approach is contained in equations (1), (1a). Surface forces correspond to the pressure 

gradient term and term representing the effect of dynamic viscosity of a fluid. 

The volume forces are expressed in the equations (1), (1a) as a general external force f. 

 

In the general formulation of the problem of fluid flow in an area with defined boundary 

conditions is assumed conservation of mass, respectively mass flow, then the spring or the 



mouth are not considered. Integral of material derivative of density over the region Ω is equal 

to zero.  
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If the mass flow rate to be maintained at any point of the region Ω, the equality to zero is valid 

also for integrant. 
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Equation (16) is the general form of the continuity equation for compressible fluids (2). For 

incompressible fluid (ρ =  const.) is obtained the reduced formula (4). 

 

Equation (1), (1a) can be converted into a form for incompressible fluid. Considering (4) 

0u =  and const.==  , the second term on right hand side of equation (1) is: 
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The term 2232 ii xu −  is zero because the sum of the three equations of motion (for 

individual components of velocity vector ui, uj, uk) is 032 =− u  (if 0= u  then 0= u

). 

The left hand side of equation (1), (1a) can be simplified for the case of incompressibility. 

( ) 0=− uiu  can be added (ρ = const.). Then, according to the theorem of the product 

derivative is: 
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The resulting equation is: 
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So we obtain N-S equation (3), (3a). 

It may be added that the term representing the inertial forces in global coordinates can be 

justified also purely general in the sense of total differential of the velocity components in time 

and 3. 
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Divided by δt → 0 : 

i
ij

j

iii u
t

u

t

x

x

u

t

u

t

u
+




=




+




= u








     (18) 

 

4.2   Reynolds averaging 

 

Air flow in the PBL has predominantly turbulent character. Turbulence involves a complex 

movements of various scales. Larger vortex decay into smaller and finally leads to the 

dissipation on the thermal motion of air particles. The smallest scale of turbulence is called 

the Kolmogorov scale which is close to the movements of the molecular clusters. Equations 

(1) and (3) are non-linear (inertial term is nonlinear) and for turbulent flow reflect these 

movements of Kolmogorov scale. The equations are therefore not applicable for practical 

numerical modeling of flow field in a suitable scale usable for example to simulate the 

transport of pollutants. 

To be equation (1) or (3) are used for the simulation in a reasonable scale, it must be adjusted 

by averaging. This procedure was introduced by Reynolds, is called the Reynolds averaging. 

The velocity vector of fluid flow (or air flow) representing instantaneous turbulence 

movements expressed by equations (1) and (3) can be decomposable to a mean (averaged) 

component of velocity for a time interval and dynamic component of a turbulent fluctuations 

on arbitrary small scales. 
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The turbulent fluctuations are compensated around an average value over the selected time 

interval. 
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Pressure, external forces or other parameters (potential temperature, etc.) can be averaged in 

the same manner. 

After substituting (21) into the equation of motion (1a) is: 
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Related to (21), after averaging the equation over a time interval is obtained: 
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Respectively for incompressible fluid – after substituting and averaging the equation (3a) is: 
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The newly formed nonlinear term of turbulent fluctuations should be in the form of Reynolds 

tensor. The usual form of N-S equations for averaged velocity components of flow - Reynolds 

equations (24) are obtained by adding the term 0= uiu  in the averaged form on the left side 

of equation (23) and applying theorem for the derivative of the product of the variables (taking 

into account the continuity - div u '= 0 and therefore also u′ div u' = 0). 
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The equations (22) and (24) are suitable for the simulation of flow field in a reasonable scale 

(eg in PBL in tens of meters). The formation of the new terms of the products of averaged 

turbulent fluctuations - Reynolds stress is a direct consequence of nonlinearity of equations of 

motion. These equations can be adapted for use in a reasonable scale but this arrangement 

represents the formation of a new unknown terms. 

 

4.3   Turbulent closure problem 

 

Time-averaged products of components of turbulent fluctuations jiuu  - second-order 

correlation (Reynolds stress) contained in equations (22, 24) can be in principle expressed in 

terms of the equations of motion similar to individual velocity components. An adequate 

explanation may be based on the situation for incompressible fluid.  

The distribution to the average and fluctuation (turbulent) component of flow (19) can be 

substituted into the initial N-S equation for component ui. The distribution is performed for all 

dependent variables, including external forces (in the previous it was not necessary, since 

terms with f′ were eliminated after averaging).  Of course, pressure is not distributed because 

it is not a solved variable in N-S equations - the pressure gradient is only a set constant here 

(the pressure field is derived from the continuity equation by a separate calculation). 

Subsequently, the equation is multiplied by the fluctuation component uj’. 
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After counting with the same modified equation for the component ui: 
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and after applying the theorems for derivation product: 
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Averaging - application of rules (21) leads to the elimination of a number of terms: 
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The last term on the left hand side can be adjusted into a third-order correlation - after adding 

the zero element 0= ujuu  (continuity) and application of the product derivative theorem: 
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  (25) 

 

Equation (25) is theoretically applicable to calculate the field of second-order correlations. 

However, there is not analytically solved (in the same way as the default equations of motion). 

But, the problem is also with the numerical solution of the equation because it contains a new 

unknown - correlations of third-order. 



The introduction of differential relations for the time derivative of the third-order correlations 

is easily feasible after a repetition of the procedure (multiplication, counting, averaging). 

However, the equation for the time derivative of the correlation of n-th order but will always 

include the correlation of higher order - the system will never be closed. This situation is called 

turbulent closure problem and is simply the consequence of starting equations nonlinearity. 

Thus formulated scheme is called the Keller-Friedman equations. 

 

4.4   Approximative turbulence models 

 

Turbulence models approximate the unknown averaged products of turbulent fluctuations - 

correlation of various orders. Reynolds stress - the second-order correlations are often 

approximated. Then it is a first-order turbulence models. 

A common method employs the Boussinesq hypothesis to relate the Reynolds stresses to the 

mean velocity gradients (components of rate strain tensor): 
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μt is coefficient of isotropic turbulent viscosity, k is turbulence kinetic energy. For 

incompressible fluid relation (26) is reduced to: 
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Respectively: 
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First-order turbulence models for the calculation of new parameters μt, k may be varying 

degrees of complexity.  

The basic model type turbulence - first order closure which approximates the Reynolds stress 

algebraic expression, based on the Prandtl theory of momentum transfer in turbulent flow. This 

approach is based on a model assuming that the turbulent velocity fluctuations in the medium 

velocity flow field are reflected in the extent defined by the so-called mixing length. 

The mixing length is the distance that a turbulent fluctuation travels before losing their 

individual features and will merge with the new surroundings. The scaling relation between u' 



and ū is within this concept approximated by the product of the mixing length and change 

(derivative) of the component ū in individual directions. 
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To express the product of the i-th and j-th components - 
jiuu  are adequate the reciprocal 

derivatives and the mixing length is considered to be symmetric lij = lji.  
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This relation (29) corresponds to the Boussinesq hypothesis for incompressible fluid. However, 

it is simpler - the factor: kij32−  is ignored.  

Then, according to Prandtl theory, the anisotropic turbulent viscosity coefficient 
ijt  is 

calculated by the following formula: 
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       (30) 

To approximate the Reynolds stresses are frequently used turbulence models with differential 

equations. They can be single-equation - eg Spalart-Allmaras model. However, most are used 

the two-equation models (with two differential equations), especially k-epsilon model. The 

standard k-є model is a semi-empirical model based on model transport equations for the 

turbulence kinetic energy k and its dissipation rate є. The model transport equation for k is 

derived from the exact equation, while the model transport equation for є was obtained using 

physical reasoning and bears little resemblance to its mathematically exact counterpart. 

In the derivation of the k-є model, the assumption is that the flow is fully turbulent, and the 

effects of dynamic viscosity are negligible. The standard k- є model is therefore valid only for 

fully turbulent flows. 

The turbulence kinetic energy k, and its rate of dissipation є, are obtained from the following 

transport equations: 

 



 
 

In these equations, Gk represents the generation of turbulence kinetic energy due to the mean 

velocity gradients, Gb is the generation of turbulence kinetic energy due to buoyancy, YM 

represents the contribution of the fluctuating dilatation in compressible turbulence to the overall 

dissipation rate, C1є, C2є, and C3є are constants. σk and σє are the turbulent Prandtl numbers for 

k and є, respectively. Sk and Sє  are user-defined source terms. 

The turbulent viscosity μt is computed by combining k and є as follows: 


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2k
Ct =

 

where Cμ
 is a constant. 

If the third-order correlation are parameterized, default system of equations is extended by six 

equations for the correlation of turbulent fluctuations (Reynolds stress) type (25) + four 

equations for correlations involving fluctuations of potential temperature. In this case, the 

closures is the second order. Higher-order turbulent closures are already very problematic with 

regard to the sharply rising number of initial equations and practically no use. 

 

 

4.5   Discretization of equations – finite (control) volumes method 

 

The equations of motion for the numerical calculation of flow field of compressible fluid at 

the appropriate scale of movements are in the form (if Boussinesq hypothesis and first order 

turbulence model is used): 
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  (31) 



In accordance of the finite volume method, the equation can be integrated in a finite volume 

V: 
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The Gauss - Ostrogradsky (or Divergence) theorem can be applied to the terms containing the 

divergence of the vector. 
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Now the integrals can be realized in the volume elements with a finite number n of the faces 

that correspond to the structure of used grid. 
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For example, n = 4 for the tetrahedral element. For quasi-regular hexahedral element etc., this 

approach leads to a differences defined by distances within the opposite sides. The values 

locate on the centers of faces are multiplied by the areas of these faces (e, w, n, s, t, b – see 

Figure): 
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The derivative in the diffusion and pressure terms are approximated as a difference in numerical 

calculation. 

Other used equations (equations of motion vector components for further flow continuity 

equation, etc.) are discretized in a similar manner.  

 

 



4.6   Transformation of coordinates 

 

Numerical calculation of flow field over complex terrain can be realized in a network with 

nodes lying in the centers of hexahedral 3D elements. An effect of bottom boundary complexity 

may be include by approach which maintain the same number of nodes in the vertical direction 

in the entire computational domain, ie the vertical distance between the nodes is adapted to the 

shape of the bottom boundary – see Figure. 

 

This "boundary-fited coordinate" (BFC) system automatically loads non-orthogonality of the 

grid. Local coordinates for discrete operations within each control volume are defined by the 

local generalized space coordinate ξ, η, ζ. The equations then include the transformational 

relations for the projection of local coordinates to the orthogonal physical space x, y, z. 

The coordinate transformation between the physical space (global coordinates xi, xj, xk ≡ x,y,z) 

and generalized computing space (local coordinates) is in general: 

 

  ξ = ξ(x,y,z),    η = η(x,y,z),      ζ = ζ(x,y,z)    

 

 



For the partial derivatives: 
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In the matrix form: 
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The transformation of derivatives in local coordinates to global coordinates of the physical 

space is realized by the inverse Jacobian matrix. 
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J  =  det J 

It is of course necessary to invert J represented by projections of global x, y, z to local 

coordinates having in the given differences the dimension 1 (created network obviously does 

not give any other information than a x, y, z coordinates of the nodes). 

For the simplest type of network - BFC that introduces a minimum possible non-orthogonality, 

can be deduced: 
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5     Modeling the flow field in PBL - Part II. 

 

 

5.1 Discretization of the initial equations - derivation of the numerical 

scheme 

 

The initial equations for the flow of a compressible fluid (valid for the calculation on a usable 

scale - after Reynolds averaging) - i.e. the moment equations for the components of the velocity 

vector can be broken down in a generalized form with respect to the derivatives in the individual 

components.  
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For practical reasons, the components of the flow field velocity vector are superscripted - 

i

i uu   etc. Subscripts  - kji xxx ,,  and t denotes the derivatives by spatial coordinates and time 

(µt is, however, the symbol of turbulent viscosity - the index does not denote the time 

derivative - which is true throughout the text). The equations are simplified - given the minor 

importance of molecular dynamic viscosity compared to turbulent viscosity, terms containing 

µ are neglected.  



The moment equation for calculating the velocity vector component of the flow field 

kjilu l ,,,   is of the form (2.3): 
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After rearranging the order of the terms, equation (2. 3) is integrated in the final volume 

element, see  (2.4): 
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By applying the Gauss-Ostrogradsky theorem (divergence theorem), the first derivatives are 

eliminated: 
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For completeness, we may add that the term k  (as well as t ) is of course a scalar, but the 

G-O (divergence) theorem is logically valid for the flow of a scalar quantity through a closed 

surface. The term containing k occurs only once in each of the three equations for calculating 

the individual components of the flow vector kjil uuuu ,, , and its values on the surface of the 

volume element are multiplied with the corresponding component of the normal vector ln .  

After integration in a volume element with a finite number of straight faces - an arbitrary 

polyhedron with at least four faces, of course - the general form (2.5) translates into the sum of 



the inertial and diffusive fluxes through the individual faces (2.6) (for therms to which the G-

O theorem has not been applied, the volume integrals are evaluated as the volume of the element 

V). 
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            (2.6) 

For each volume element in the created computational grid, data on its volume V, the areas of 

individual faces An and the magnitude of the components of their normal vectors kji nnn ,,  are 

of course available. The values of the components of the flow velocity vector on the faces 

( )nkji uuu ,,  are available after interpolation of the velocities in the neighbouring nodes of the 

selected grid  ( ) ( )
n

l

NB

l

Pn

l uuu += 21  (neighbouring volume elements are of similar size, i.e. the 

junction of neighbouring nodes is bisected by a common face). In the diffusion terms, the 

corresponding derivatives have to be quantified as values on the walls of the volume element. 

In the context of the numerical solution, these derivatives are approximated as the difference of 

the components of the flow velocity vector between the values at the central node inside the 

volume element and the values at the nearest nodes in adjacent elements - see Figure 2.1. The 

interconnection of these nodes represents the local coordinates of the discretization scheme, 

which generally do not correspond to orthogonal global coordinates kji xxx ,, . 

 



 

Fig.2.1. Tetrahedral volume element. Connections with nodes lying in adjacent elements 

represent local coordinates  . 

 

In view of the specific representation of the derivatives according to the individual global 

coordinates in the diffusion terms of the three moment equations, and also in connection with 

the fact that the specific configuration of local coordinates in the selected network is usually 

not spatially homogeneous (volume elements near the surface may be flattened, etc.), it is 

necessary to quantify the specific projection of local coordinates into global coordinates. The 

discretized form of the equation of motion for the calculation lu  is then of the form (2.7): 
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Where ( )
nxi

  is the projection of the local coordinate ( )n  corresponding to the link between 

the central node and the neighboring node that passes through the corresponding area nA , into 

the global coordinate ix , etc. Local coordinates  are defined such that they always point (in a 



positive sense) from the central node P to the neighboring nodes (the value of any   in P is 

always 0). 

The inertial or advection (this term can also be found in the literature) terms can be expressed 

in abbreviated form: 
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Similarly, diffusion terms can be expressed: 
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The Cn term in (2.8) contains the solved dependent variables ( ) ( )( )
n
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i uuu 2+= , etc., and in 
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uuu  −= , etc., in (2.9); however, these are not the 

values that are calculated in the current iteration step in this approach to local discretization of 

equations of motion, i.e., they do not have to be explicitly expressed (the term ( )
n

l

DS can be 

taken as a source). 

The discretized initial equation of motion (in a volume element with N side faces) for the 

computation lu  can then be expressed in the compact form (2.10): 
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For the case of hexahedral elements in the BFC arrangement - see Figure 2.2, which is most 

commonly used in numerical modelling of the flow field in MVA (the iterative procedure 

converges well), equation (2.10) takes the form: 



( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
b

l

De

l

D

l

l

P

l

Bb

l

P

l

Tt

l

P

l

Ss

l

P

l

Nn

l

P

l

Ww

l

P

l

Ee

l

B

l

Pb

l

T

l

Pt

l

S

l

Ps

l

N

l

Pn

l

W

l

Pw

l

E

l

Pe

l

t

SSV

uuDuuDuuDuuDuuDuuD

uuCuuCuuCuuCuuCuuCVu

+++=

−−−−−−−−−−−−

++++++++++++

...

 

S



 (2.11) 

Taking into account the specific orthogonality-preserving measure of the BFC ordering (the 

grid is planar orthogonal,    is identical to x in plan,   is identical to y in plan), the terms C, D 

and SD have the following simplified form: 
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That is, for lateral faces e, w, n, s having only one non-zero (horizontal) component of the 

normal vector, the terms of C are reduced to only one non-zero term. Similarly, the terms D are 

reduced on these faces, although the local coordinates   and   defining spatial derivatives of 

the solved component lu  include projections with the vertical z-axis. However, these 

projections defining the quantification of the z-axis derivatives of lu  as k-components of the 

gradient lu  (defining vector) are multiplied by the zero components of the normal vectors of 

the side faces in the framework of the G-O (divergence) theorem. For the SD source terms on 

the lateral faces, the components of the vector are defined by the individual components of the 

flow velocity kji uuu ,,  (which are always derivative in the xl-axis). That is, in the case 

0, =jlil  , the SD are quantified as derivatives of ji uu ,  in the vertical via non-zero projections 

  and   with zxk =  (in the horizontal plane, these local coordinates are orthogonal). 

On faces t and b the situation is different. The normal vectors on these walls generally contain 

three non-zero components kji nnn ,, , and conversely the local coordinate   is identical to the 

global axis zxk =  (see Fig. 2.2). The terms Ct, Cb therefore represent three non-zero 

components. For the terms Dt, Db only the derivative component in the vertical is non-zero (  



does not contain horizontal projections). In this context, the source terms 
l

DS  are non-zero on 

the faces t and b only in the case of 1, = klkl  . 

 

 

 

Fig.2.2. Hexahedral volume element in a BFC grid arrangement. The local coordinate   is 

identical to the global axis zxk = . Lower case letters denote individual walls and parameter 

values on these walls, upper case letters denote values at neighboring nodes that are at the 

centers of neighboring volume elements. 

 

For hexahedral volume elements (which have opposite walls but need not be in the BFC 

configuration), the generalized form of the initial difference relation (2.11) allows the 

construction of a so-called hybrid numerical scheme. This scheme switches between a 

directional ("upwind") and a central differential scheme via dimensionless multipliers  and   

depending on the degree of representation of the inertial (advection) and diffusive (=turbulent 

diffusion - viscosity) components of the flow, i.e. on the Peclet number expressing the ratio of 

inertial and diffusive flows - DCPe  .  



For the terms of C (respectively C - to construct a hybrid scheme, the C terms must be 

undivided by 2) and D can be written: 
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After summing the rearrangement: 
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              (2.14) 

 

The evaluation of Pe, i.e. the degree of representation of C and D, can then be implemented 

through the coefficients B selecting the maximum value of the three factors: 
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The inertial (advection) and diffusion terms can then be expressed in the form:   
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                   (2.16) 

That is, in the case of eE CB −= , while coming out 0=WB , the first line in (2.16) is reduced to 

l

Pw

l

Ee uCuC + , which is an upwind scheme - the differentiation of the flow velocity component 

l

Pu  (arising from scalar products with the normals of opposite walls) representing the inertial 

flow in the ξ-axis is shifted (in the E direction) from the positions e - w on the element faces to 

the grid nodes E - P. The diffusive flow is completely omitted in the case of the application of 



the upwind scheme - D does not appear in the term 
eE CB −= , see Figure 2.3. In terms of 

multipliers  and   comes out - in the sense of (2.13):  = 0,  = 0.. 

An analogous possibility is 
wW CB −= , 0=EB  - in the first line of (2.16) follows l

Ww

l

Pe uCuC +

, i.e., the "opposite" upwind scheme - the differentiation variable l

Pu  is shifted (in the W 

direction) from positions e - w on the element facess to the grid nodes P-W, the diffusion flux 

is omitted. In the sense of (2.13) is:  = 1,  = 0. 

If the maximum is represented by a factor involving the diffusion flux, i.e. 2eeE CDB −=  and 

also 2wwW CDB −= . In the first line of (2.16) then it follows: 
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which is a general - central numerical scheme for hexahedral volume elements (2.11) , see 

Figure 2.3. In the sense of (2.13) is:  = ½,  = 1. 

The possibility of switching to the upwind form of the scheme (for hexahedral volume 

elements) increases the probability of successful convergence of the numerical calculation. 

Omitting diffusion terms is not an error, switching the scheme to the upwind form is not 

permanent within the volume element - diffusion flows can be currently realized during 

convergence. 

  

Fig.2.3. Hybrid numerical scheme (for a hexahedral volume element, example for axis  ). On 

the left is the central scheme including inertial and diffusion terms, on the right is the scheme 

"shifted" to upwind not including diffusion terms 



To discretize the time derivative of lu  in the control volume, or in its central position P can be 

written (the derivative is replaced by a differentiation): 
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Thus, for hexahedral volume elements, this final form of the discretized moment equation, 

respectively a hybrid numerical scheme for calculating l

Pu , is available (2.18): 
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The general discrete form of the equation of motion - reflecting the N-face volume elements 

in the general (non-hybrid) numerical scheme (2.10) has the following final form (2.19): 
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The numerical scheme (2.18) and (2.19) is implicit in the sense of the symbols denoting the 

solved variable l

Pu  - the value from the previous time step 
0l

Pu  is contained only in the time 

differentiation. Of course, the scheme could also be explicit - then the currently solved value of 

l

Pu  would only figure in the time differentiation, the other terms of equations (2.18), (2.19) 

would contain only 
0l

Pu . 

In a similar way, the equations for the calculation of the kinetic energy of turbulence and its 

dissipation (using the k - є model) can be discretized, etc. 

 

 



5.2. Calculation of continuity in the flow field 

The continuity requirement can be practically solved in numerical simulation of the flow field 

in two ways: 

1. By solving the continuity equation for a compressible fluid (2) in the discretized form 

of a generalized numerical scheme, i.e. by a similar approach as for the equations of 

motion - see the previous section. The solved variable is the density   at the central 

nodes of the volume elements - P  and this type of continuity solution is referred to as 

"Density - Based" in the English literature. However, the input file for the solution of 

the moment equations (calculation of the flow vector field) is the pressure field - the 

pressure values (or their spatial derivatives) are in the source terms of the moment 

equations S  in the individual elements of the grid. This pressure field is derived from 

the calculated density field based on the ideal gas equation of state: 


RT
p = ,    is the 

specific volume, i.e: 



1

=  and therefore for the calculation of the pressure value:   

    RTp =        (3.1) 

  

2. Solving the pressure correction equation derived by combining the discretized  moment 

equations and the continuity equation. In this approach, the pressure values are directly 

calculated in the grid elements and in the English literature it is called "Pressure - Based" 

continuity solution. 

 

Pressure correction equation 

The pressure field (or its spatial derivatives) entering the calculation of the flow velocity 

components in the moment equations is optimized during the iterative solution using the 

pressure correction equation. Respectively, through the pressure field, the requirement of 

continuity in the individual volume elements is applied during the convergence of the solution, 

i.e. the pressure correction leads to the minimization of divergence in the region of the modeled 

flow field. 

The pressure correction equation is derived in a number of modifications, the basic form of this 

equation is referred to as the "SIMPLE" algorithm. In the following, the "SIMPLEC" version 



of the pressure correction equation, which is a modification of the "SIMPLE" algorithm, is 

described. 

The moment equations are written in discrete form as: 

( ) l

l

N

n
n

l

NBn

l

PP SV
x

p
uBuB +




−=

=1

       (3.2) 
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Respectively for hexahedral elements in the hybrid scheme: 
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The term ΔtVP  relating (in PB ) to the time differentiation of l

Pu  corresponds to the 

stationary solution, where 0
0
=l

Pu , in the case of a time-dependent solution, a factor of 

ΔtVul

PP

00− would be added (The pressure field calculation is performed via an iterative 

procedure within one time step). 

The density P  is derived from the pressure in the calculation (for a compressible fluid) - see 

(3.1). Relation (3.2) reflects the final form of the calculated velocity pressure field - the 

converged solution (for non-stationary problems within one time step), kjil uuuu ,, and p are 

the converged values satisfying the boundary conditions. 

Furthermore, the instantaneous - non-converged solution - *lu  and *p  of equations (3.2) can 

be considered.  
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Subtracting (3.3) from (3.2) yields: 
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Differences between converged and continuous (non-converged) values can be expressed: 
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'  is subtracted from both sides of (3.4), the equations (3.4) take the form 

(3.5) in accordance with the "SIMPLEC" algorithm: 
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Furthermore, according to the "SIMPLEC" formulation, the first terms on the right-hand side 

of equation (3.5) are omitted, i.e. the internal coupling between the pressure field and the 

differential velocity components is omitted - its preservation would lead to an inhomogeneous 

pressure field for the converged solution. Moreover, the values of the velocity components at 

adjacent nodes do not differ much, so these differences can be neglected (neglecting them is of 

course not the only way to eliminate the coupling). The difference of the moment equations  

(3.4) is thus reduced to: 
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The following is based on the time-independent continuity equation:  
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Considering (3.6) and (3.7), for each component of the velocity of the converged solution we 

can write: 
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Combining (3.8) with the continuity equation (3.7), the pressure correction equation (3.9) is 

obtained:  

( ) ( ) ( ) ( ) ( ) ( )
kji

k
k

j
j

i
i x

k

x

j

x

i

xx
x

xxx uuupppE ***''' ++=





 ++      (3.9) 

This equation, like the moment equations, is solved numerically using the finite volume 

method, i.e.: 
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Next, the G-O theorem (divergence theorem) is applied, which leads to the elimination of first 

derivatives: 
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For an N-hedral element with straight faces, the integrals go to sums: 
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The remaining first derivatives of the pressure are approximated, similarly to the discretization 

of the moment equations, as differences between the central node in the volume element and its 

nearest neighboring nodes, which lie at the centers of the neighboring elements. The situation 

is quite identical to that in the previous section; the union of these nodes forms the local 

coordinates   (see Figure 2.1), whose projection from the global coordinates kji xxx ,,  must be 

quantified in view of the possible irregularity of the   distribution in space. Thus, for each of 

the faces of a volume element, one can write: 
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And further: 

( )( )  ( ) n

N

n
n

kkjjii

n

N

n
n

PNB

k

x

j

x

i

x A*u*u*uAppE
kji

 ''
11


==

++=−++ nnnnnn         (3.14) 

The equation can be further converted into a more compact form: 
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I.e. it is established: 
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Thus, a compact numerical scheme of the pressure correction equation is finally obtained to 

calculate the value of the difference *' pPP ppp −=  (at the centre of the volume element) in 

the n-th iteration step of the solution: 
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For the sake of completeness, the situation for the case of hexahedral elements can be added: 
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I.e.: 
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Where:   ( )*...*,... * beCbeP CCSTTT +−=++=  

Thus, the current corrected pressure value 
n

Pp  obtained in the n-th iteration step at the central 

node of the volume element is: 
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This pressure value is then the input value for calculating the velocity components of the flow 

vector (using the numerical scheme (2.18) or (2.19)) in the next n+1 iteration cycle. 



It can be summarized that the pressure correction equation optimizes the continuity of fluid (air) 

flow through the walls of the volume element. The (correction) components of the flow vector 

',',' kji uuu  appearing within the local discretization scheme on the faces of the volume element 

are replaced by terms containing the (spatial) derivatives of the (correction) pressure differences 

*' ppp −=  via the simplified equations of motion (3.6). That is, the pressure correction 

equations introduce derivatives of 'p  derived from values at the nodes of the grid - the volume 

element centres. 

The optimization of continuity is therefore performed successively in each iterative step by 

calculating the correction pressure value Pp  in the centre of the volume element based on the 

array of 'p  values in neighbouring nodes - in the centres of neighbouring volume elements. 

 

 

Fig. 3.1 Scheme of the calculation of the pressure correction value in the centre of the volume 

element based on the correction pressures p' in the neighbouring nodes and the actual (non-

converged) values of the components of the flow velocity vectors u* on the element faces. 

 

The current corrected pressure field (p-values at the grid nodes obtained from (3.20)) is then 

used to calculate the components of the flow velocity vector. The source term of the discretized 

moment equations (2.18), (2.19) contains the first derivative of the pressure, which is generally 

approximed as the differentiation between its values at the facess of the volume element lying 

between the grid nodes. These pn values are not primarily available from the pressure correction 



calculation and interpolation is necessary. Similarly, the components of the flow velocity vector 

are (using the numerical scheme of the moment equations (2.18), (2.19)) calculated at the 

centres of the volume elements, with the values at the faces n

l*u  resulting from the interpolation 

being inserted into the source term of the pressure correction equation (3.17), (3.19). This 

reciprocal interpolation performed within two partial computational operations of the iterative 

cycle can lead to artificial oscillations of the solution parameter fields. Respectively, specific 

interpolation procedures - Rhie - Chow interpolation - are applied to eliminate these 

oscillations. The described form of calculation of flow velocity and pressure vector components 

in a numerical scheme with the necessity of reciprocal interpolation is referred to as non-

staggered grid arrangement, in English literature as "Collocated" or "Non-Staggered Grid". 

The problem of undesirable oscillations of the solved parameters is also effectively eliminated 

in the case of the so-called alternating grid arrangement, in the English literature it is called 

"Staggered grid". This arrangement is applicable only for hexahedral volume elements. In this 

approach, only the pressure is calculated at the centres of the volume elements, the components 

of the flow velocity vector kji uuu ,,  are primarily evaluated at the faces of these elements (for 

the calculation of p) by means of the volume elements themselves, which are specifically 

displaced. The localization of the element centers for the calculation of the flow velocity 

components is of course determined by the respective directions of kji uuu ,,  - see Figure 3.1: 

 

 

 



Fig.3.1: Alternating - "Staggered grid" arrangement of the discretization scheme - 2D situation 

(components u, v = ji uu ,  ). 

Thus, the calculation of the flow velocity vector component kji uuu ,,  field and subsequently 

the pressure field in the iterative cycle does not require interpolation. Shifting the center of the 

discretization scheme P for the calculation of the flow velocity components relative to the center 

of the pressure calculation scheme by half a grid step means that kji uuu ,,  are available directly 

on the faces of the volume elements for the calculation of p using (3.19), and conversely the 

resulting p values can directly enter the (2.18) solved in the shifted elements. The alternating 

arrangement completely eliminates artificial oscillations of the computed parameters; on the 

other hand, it represents a possible difficulty in computing in elements close to the boundaries 

of the computational domain and is not generally applicable (for other than orthogonality close 

hexahedral elements). 

  



5.3. Iterative solution of a discrete system, time-dependent solution 

As mentioned in the previous text, the calculation of the fields of the solved variables ( kji uuu ,,

, p, k, є, etc.) is done in iterative steps. The initial moment equations and their corresponding 

numerical scheme (2.18), (2.19) are nonlinear and direct linear algebra methods (Gaussian 

elimination method, etc.) cannot be used.  

 

"Steady" solution 

In practical applications, the calculation of the flow in the specified region is solved as "steady", 

where there is no continuous update of the value 00

PP  in the time derivative - on the right-hand 

side of the generalized equation of motion (2.18), (2.19) ( P  denotes the general solved variable 

- kji

P uuu ,, , k, є). At the beginning of the iterative procedure, the fields of the variables 

solved within the computational domain are set to zero, i.e., the term tV PP − 00  is zero during 

the iterative solution. The numerical scheme for calculating the flow velocity components and 

turbulence parameters (in general form see (2.19)) is then applied in a corrected form: 
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     (4.1) 

The "time step" tΔ  is a formal parameter in the "steady" type of solution and is usually taken 

to be equal to one. 

For the general numerical scheme (2.19) corresponding to an n-hedral volume element, it is: 
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For the case of the hybrid scheme for hexahedral elements (2.18) then:  
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In the case of calculating scalar quantities - k, є, etc., the source terms are of course different - 

corresponding to the respective equations. For the solution in the grid, a band matrix 

corresponding to (4.1) arises: 

 

The calculation of the flow velocity components and turbulence parameters according to (4.1) 

proceeds within individual lines in the sense of the Gauss-Seidel method - see figure:   

             

The pressure field is then calculated in the same way according to the equation of such 

correction (3.17) or (3.19) and finally (3.20).  

 

The overall scheme of the iterative solution is as follows: 



 

The turbulence parameters (k, є, etc.) are usually (according to 4.1) solved third in the sequence 

after the pressure field calculation. The iterative procedure is terminated after convergence is 

reached, when all solved parameters meet the convergence criteria - their change in the iteration 

cycle is smaller than the required criterion. Convergence is achieved in practical flow field 

calculations after hundreds of iterations. 

It can be summarized that the "steady" solution represents an iterative optimization of the 

simulated parameter fields within one time step without subsequent retrieval of the calculated 

time differences of these parameters (retrieval for the next time step). The results of this solution 

can then be interpreted as the simulated values (of the flow vector field components, turbulence 

parameters k, є, etc.) representing the most probable form of the flow field for a given spatial 

configuration of the computational domain with the specified boundary conditions and the 

chosen spatial scale of the computation (grid step). 



Time-dependent solution 

In the time-dependent solution, the solution parameters obtained in the first time step 

(corresponding to the "steady" solution) are substituted in the second step as 00

PP  into the time 

differentiation in the generalized equation of motion (2.18), (2.19). The calculation in the 

second time step then proceeds in a similar arrangement to the "steady" type, with the right-

hand side vector b being increased by the term tV PP + 00 . The same loading 00

PPPP  →  

then takes place in the next time step, etc. The size of the time step tΔ  determines here the 

course of the simulation and should be chosen appropriately.  

The time-dependent flow field solution scheme may take the following form: 

 

 



The stability of the numerical solution should be ensured by the implicit type of scheme (2.18), 

(2.19). The time-dependent numerical solution can of course be based on the explicit scheme, 

but the question of numerical stability arises, which must be ensured during the calculation by 

observing the appropriate criteria. 

The time-dependent solution is less used in practical applications (e.g. modelling of ground air 

pollution, etc.) compared to the "steady" type. This is mainly due to the significantly higher - 

even critical - demand on calculation time. Of course, it depends on the chosen scale of 

simulated movements - i.e. the details of the grid. Moreover, for most of these applications, 

including simulations of time-averaged states in air pollution calculations, the outputs of 

"steady" solutions are more often used, information about the possible dynamic behaviour of 

the flow field is not necessary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Appendix - Reduction of the initial equations to a finite-

dimensional dynamical system 

Respectively Galerkin approximation of N-S equations - on a bounded domain 

leading to a finite element solution (domain = element) 

 

The general form of the quadratically nonlinear N-S equations relates to the behaviour of fluids 

on a theoretically limiting scale practically corresponding to the smallest kinematic motions 

before dissipation into thermal oscillations - the so-called Kolmogorov scale. Thus, these 

equations, with respect to nonlinearity, generate a dynamical system with a solution flow in a 

phase space of very large dimension. On the other hand, the flow field, although turbulent, 

exhibits an apparent coherence. In this context, there are varieties of solution flow trajectories 

in a reduced phase space of finite - reasonably bounded dimension K.   

For the transition to a K-dimensional dynamical system in space H describing the motion of an 

incompressible fluid filling the region D, the Galerkin method is applicable.  

As the phase flow of the velocity field in the space H of dimension K, the approximate solution 

is found in the form: 


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φ1,φ2, ..., φK  is a suitable orthogonal normalized basis of ternary vector functions (for practical 

reasons) satisfying a linear boundary value problem on the domain D. The basis functions φ1,φ2, 

..., φK  are chosen to convert the Laplace operator in the term representing the kinematic 

viscosity to an eigenvalue - see (2). 
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    (2) 

In the sense of Galerkin's method applied to the N-S equations, the k-th row of the resulting 

matrix has the form: 
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While of course 

 

( ) xf
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D

kkf   

 

The obtained system of ordinary differential equations (of course, quadratically nonlinear) no 

longer contains a pressure term, since the pressure gradient having the sense of the flow velocity 

field potential is zero when integrated over the region D in connection with the considered 

incompressibility. 
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The system of differential equations (3) represents a nonlinear problem with initial conditions 

(5): 

( ) xxxa
3d)()()0(  =

D

kku    k = 1, 2 .... K   (5) 

 

Solvable by standard numerical methods for problems of this type (Euler, Runge-Kutta 

methods, etc.). 

The described method of reduction to a finite-dimensional system in the space of basis functions 

generally exhibits scale invariance, i.e., it applies to flow-type problems in non-complex, 

geometrically definable (macro) domains, for which one can speak of the aforementioned 

existence of varieties of phase-flow solutions in the space H. The basis vector functions φk are 

ternary within the domain on 3, however, the variation of these individual components over 

time does not figure in the flow field functionals - the parameters uk are scalars. 

The real flow in PBL over a complex Earth surface represents a problem of a different type, 

since the region for which a finite-dimensional system must be defined here is bounded from 

below by a boundary that in general offers no geometric regularities or symmetries that would 

indicate the possibility of seeking a solution in the space of functions applied in the framework 

of scale invariance. The Earth's surface, consistently speaking, exhibits virtually infinite 

complexity. 


