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ABSTRACT
Climate change poses an unprecedented threat to forest ecosystems, necessitating innovative adaptation strategies. Traditional 
assisted migration approaches, while promising, face challenges related to environmental constraints, forestry practices, phy-
tosanitary risks, economic barriers, and legal constraints. This has sparked debate within the scientific community, with some 
advocating for the broader implementation of assisted migration despite these limitations, while others emphasize the importance 
of local adaptation, which may not keep pace with the rapid rate of climate change. This opinion paper proposes a novel pollen-
based assisted migration strategy as a potential middle ground in this debate. By leveraging existing seed orchard infrastructure 
for controlled pollen transfer, this approach aims to enhance forest resilience through the introduction of genetic material from 
climatically suitable sources while acknowledging local adaptation. We assess the genetic implications of the proposed strategy 
through computer simulation. Additionally, we examine the ecological implications of assisted gene flow, discussing the po-
tential benefits of heterosis and the risks of outbreeding depression in intra-specific hybrid populations. We further explore the 
advantages of pollen-based migration in mitigating phytosanitary risks, reducing economic barriers, and simplifying legal con-
siderations compared to traditional seed or seedling transfer methods. Regional perspectives on adapting pollen-based assisted 
migration are provided, with specific examples from Northern and Central Europe. We highlight how this approach could be 
integrated into existing forestry practices and regulatory frameworks within the European Union. We conclude by advocating for 
the inclusion of pollen-based assisted migration in future international projects and operational forestry, emphasizing the need for 
adaptable policies that can support innovative forest management strategies in the face of climate change.

1   |   Introduction

Forest ecosystems play a crucial role in mitigating climate change 
through climate regulation (Smith, Baker, and Spracklen 2023) and 
carbon sequestration, capable of removing billions of tons of car-
bon from the Earth's atmosphere (Canadell and Raupach 2008). 

By fully utilizing available resources, knowledge, and technology, 
their potential for carbon sequestration could be significantly en-
hanced (IPCC 2022). However, tree species are particularly vul-
nerable to the adverse effects of climate change, such as rising 
temperatures and prolonged droughts, which increase their sus-
ceptibility to wildfires, diseases, and pests (Lindner et al. 2010). 
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These factors contribute to landscape changes and a significant 
decline in forest cover, impeding forests' natural capacity to absorb 
carbon. Furthermore, the widespread decline of trees in younger 
age stages is excessively increasing the amount of released carbon 
that has been previously stored (Gorte and Sheikh 2010), further 
elevating atmospheric carbon levels.

Trees can withstand shifts in environmental condi-
tions through phenotypic plasticity (Kramer  1995; West-
Eberhard 1989), which enables them to adjust to the inherent 
diversity of landscapes (Schreiber, Hacke, and Hamann 2015), 
undergoing continual changes. However, it may fall short 
of addressing the unforeseeable impacts of climate change 
(Visser 2008). Therefore, long-term responses such as adapta-
tion through selection and natural migration are essential be-
cause an inadequate response to unfavorable conditions could 
result in species decline (Aitken et al. 2008; Ledig, Rehfeldt, 
and Jaquish 2012).

Natural or artificial selection is an important process that pro-
gressively improves the tolerance to the harmful effects of cli-
mate change by increasing the frequencies of beneficial alleles 
in a population over many generations (White, Adams, and 
Neale 2007). Tree species have a very long reproductive cycle, 
which makes this inherently slow adaptation process out of 
step with the speed of contemporary climate change (Rehfeldt 
et  al.  2002). Thus, migration can be a more relevant climate 
change mitigating mechanism because it can quickly introduce 
climatically preadapted genotypes or haplotypes to existing 
populations (Aitken and Whitlock 2013).

Tree species generally disperse seeds within a limited radius, 
often just a few tens of meters from the parental tree, thereby 
gradually increasing their spatial distribution (Burns  1990). 
However, data shows that forests expanded at an accelerated 
pace after the last glacial period, which could not have been 
achieved by typical seed dispersal patterns. This phenomenon, 
known as Reid's paradox (Reid  1899), challenges our under-
standing of species expansion. Rare long-distance dispersal 
events, potentially driven by unusual atmospheric conditions 
(Clark et al. 1998), may explain the rapid spread.

Pollen-mediated gene flow provides valuable insights into mi-
gration dynamics, particularly in wind-pollinated forest tree 
species. Long-distance pollen dispersal has been repeatedly 
reported, with well-documented cases of grains traveling hun-
dreds to thousands of kilometers from their source (Campbell 
et  al.  1999; Savolainen, Pyhäjärvi, and Knürr 2007). This em-
phasizes the critical role of both seed and pollen dispersal in 
how forest tree species cope with changing environmental 
conditions, including contemporary climate change. However, 
models indicate that most tree species' migration rates cannot 
keep up with the speed of climate change, with some species 
needing to migrate up to a hundred times faster than histori-
cal rates suggest (Sáenz-Romero et  al.  2016). On top of that, 
long-distance dispersion's rate and direction are unpredictable 
(Nathan et  al.  2002, 2011). Contrary to what models predict, 
the actual migration rates are usually slower, likely due to com-
petition at new sites and low seed germination rates (Sittaro 
et al. 2017; Zhu, Woodall, and Clark 2012).

Given the limitations of natural migration, there has been 
a notable focus on human-aided migration, coined by a va-
riety of terms such as assisted migration, assisted coloniza-
tion (Hoegh-Guldberg et  al.  2008), assisted gene flow (Aitken 
and Whitlock  2013), and managed relocation (Richardson 
et al. 2009). These conceptual frameworks have been suggested 
for animals (Bouma et al. 2020) as well as plants (McKone and 
Hernández  2021), including forest tree species (P. W. Clark 
et  al.  2022). They all share a common goal: to relocate popu-
lations to areas with favorable projected climate conditions 
(Mueller and Hellmann 2008; Ste-Marie et al. 2011).

In this opinion paper, we outline several critical challenges asso-
ciated with current methods of assisted migration. Importantly, 
we introduce a novel pollen-based approach to assisted migra-
tion, which may offer solutions to these challenges, as outlined 
in Figure 1. We believe that this innovative method, which could 
be easily integrated into established frameworks, will signifi-
cantly contribute to the broader acceptance and effectiveness of 
assisted migration worldwide.

2   |   Current State: General Challenges of Assisted 
Migration

Assisted migration, the deliberate relocation of tree populations, 
faces several key challenges (Figure 1) limiting its broader appli-
cation: (1) environmental factors and current forestry practices, 
(2) insufficient transfer guidelines, (3) phytosanitary risks from 
seed and seedling translocation, (4) economic and knowledge 
barriers faced by local nurseries, and (5) legal obstacles in seed 
and plant material transport.

Plants' phenotypes evolve to cope with specific local conditions, 
leading to variations in traits within the same species across 
their distribution range. A notable meta-analysis revealed that 
71% of studies across various organisms reported local adapta-
tions, resulting in an average 45% increase in the fitness of na-
tive populations compared to non-native ones (Hereford 2009). 
Additionally, genomic research supports the idea that local 
populations are adapted to factors beyond climatic variables, 
namely soil and photoperiodism (Van Daele, Honnay, and De 
Kort 2022). Local adaptation is especially prevalent in tree spe-
cies (Aitken and Bemmels 2016), where differentiated popula-
tions are referred to as provenances.

The relative differences in growth and hardiness among prov-
enances have been extensively studied over the past centuries 
(Langlet  1971). These experiments have primarily aimed to 
identify the best seed sources for forest establishment by test-
ing the effects of the common environment on different popula-
tions. By the late nineteenth century, it was concluded that local 
provenances usually offer the best balance of growth and har-
diness, leading to the preference for local seed sources (Aitken 
and Bemmels  2016; Langlet  1971). This principle, commonly 
referred to as “local is best,” remains widely accepted. Both 
traditional forestry focusing on maximizing wood production 
and close-to-nature practices emphasizing complex natural pro-
cesses and additional forest functions (O'Hara 2016) continue to 
prefer the “local is best” principle.
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In contrast, earlier recommendations for assisted migration 
often focused exclusively on climate variables, such as mean 
annual temperature, while overlooking crucial non-climatic 
factors like phenological cues and soil properties. These non-
climatic factors are highly location-specific and play a vital role 
in the local adaptation of populations. By ignoring them, one 
risks overestimating the adaptive potential of assisted migration 
(Xu et al. 2024; Xu and Prescott 2024). For example, even under 
optimal climatic conditions, edaphic variables such as soil nu-
trients, water availability, interactions with soil organisms, and 
seed predation can significantly limit plant establishment in new 
areas (Benning and Moeller 2021; Brown and Vellend 2014; Ni 
and Vellend 2024). Phenological cues are equally important to 
the success of assisted migration, especially when relocating 
tree populations over long distances. Many species rely on site-
specific day length, rather than temperature, to regulate pheno-
logical events (Basler and Körner 2012; Laube et al. 2014; Way 
and Montgomery 2015). Consequently, translocating these spe-
cies to areas with different day lengths can cause mismatches in 
the timing of phenological events, leading to reduced growth and 
increased vulnerability to spring and autumn frosts (Montwé 
et al. 2018; Silvestro et al. 2019). This reduces the distances over 
which populations can be relocated, making it more challeng-
ing to align assisted migration efforts with the pace of climate 
change (Cooper et al. 2019; Stinziano and Way 2014).

However, recent advancements in the collection and availability 
of high-quality, large-scale landscape data (Dauphin et al. 2023) 
are addressing these limitations by incorporating a broader 
range of environmental variables into assisted migration frame-
works (Feng et al. 2020). This holistic approach not only aligns 
with traditional forestry practices that emphasize local adapta-
tion but also offers a more robust basis for assisted migration. 
Continued research in this field is essential to develop robust 
recommendations that account for both climatic and non-
climatic variables, thereby reducing the risk of maladaptation 
and promoting population fitness in new environments.

Another significant risk of assisted migration is the potential 
introduction of non-native pests and pathogens. This risk in-
creases with the growing volume of international trade in plants, 
including trees (Eschen, Roques, and Santini  2015; Liebhold 
et al. 2012). As a result, only a small fraction of imported plants 
undergo inspection (Brasier 2008). Furthermore, the effective-
ness of these inspections is limited because infested plants may 
not show symptoms upon arrival, making it difficult to ensure 
complete phytosanitary safety through traditional methods 
(Jung et al. 2016; Liebhold et al. 2012). Phytosanitary risks are 
not confined to living plants alone. Recent studies suggest that 
seeds also pose a significant phytosanitary risk, despite previ-
ously being considered relatively safe for international transfer. 
This risk is particularly pronounced in Europe, where regula-
tions for preventing the introduction of seed-borne pathogens 
are less stringent compared to other regions (Franić et al. 2019; 
Vettraino, Potting, and Raposo 2018).

Forest nurseries are crucial for forest regeneration, requiring 
increased seedling production and diversity to address contem-
porary climate change challenges in forestry. A North American 
study (P. W. Clark et al. 2023) highlights the need for more eco-
logical diversity in nurseries, as the focus on commercially valu-
able species often limits conservation and climate adaptation 
efforts. While there are business opportunities to produce seed-
lings adapted to future climatic conditions, including those phe-
notypes resistant to climate extremes and new pests, this bears 
additional costs, logistical complexities, and financial risks. 
Nurseries often prioritize uniformity in seed lot germination 
and growth for easier cultivation and more effective production 
(Ivetić et al. 2016), which often contrasts with the desired level 
of genetic diversity.

These challenges, especially when sourcing seeds from distant 
locations, have hampered investments, particularly in regions 
where the number of nurseries has declined in recent decades 
in Europe and North America. Moreover, small nurseries fear 

FIGURE 1    |    Assisted migration faces numerous challenges, including the unpredictability of local environmental conditions due to climate 
change, phytosanitary risks associated with the transfer of seeds and live plants, and difficulties faced by stakeholders. Many of these issues can be 
addressed through a pollen-based approach to assisted migration.
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competition from larger foreign entities threatening their prof-
itability in an open-market scenario. Nursery managers across 
Central Europe have also expressed concerns about the impacts 
of climate change on their operations. Perceptions vary by coun-
try, with Austria and Germany expecting higher demand for 
non-native species, while Poland and Hungary anticipate a need 
for more resilient local varieties (Hazarika et al. 2021).

Finally, implementing assisted migration requires consider-
ing various legal regulations, including the “Nagoya Protocol” 
(Secretariat of the Convention on Biological Diversity 2011). It 
may constrain assisted migration in countries that have adopted 
this international agreement with stringency. Nevertheless, as-
sisted migration is predominantly hindered by laws on a national 
and regional level, restricting seed usage to specific “seed zones” 
or “provenance regions”, thereby favoring locally adapted popu-
lations (Konnert et al. 2015). Thus, a dynamic policy framework 
adapting to diverse climate change scenarios is essential for en-
suring long-term forest health and resilience.

3   |   Assisted Gene Flow: Implications of 
Inter-Provenance Hybridization

Assisted migration methodologies can be categorized into two 
general approaches: migration outside the species' geographic 
range and migration within it. It is anticipated that assisted 
migration of tree species will predominantly occur within the 
species' geographic range (Sáenz-Romero et al. 2021). This ap-
proach poses less ecological risk as it avoids relocating trees to 
unfamiliar environments where unforeseen interactions could 
occur (Aitken and Whitlock  2013). Additionally, it is gener-
ally more accepted by the public compared to the alternative 
(Findlater et al. 2020).

Within-range assisted migration has been proposed by Aitken 
and Whitlock (2013) and Kelly and Phillips (2016). These studies 
suggest leveraging existing genetic differences among tree pop-
ulations of a given species by transferring seeds or seedlings to 
introduce preadapted genotypes and increase adaptive genetic 
variation of endangered populations, through “assisted gene 
flow.” However, as these authors caution, this strategy carries 
the risk of unintended interspecific hybridization, particularly 
with closely related species, leading to genetic incompatibilities 
(Critchfield 1967). Furthermore, the effectiveness of genetic in-
fusion of preadapted genotypes can be limited by potential mis-
matches in flowering phenology and will only manifest once the 
introduced seedlings reach reproductive age.

The timing of flowering events in plants is generally highly 
variable (Shelton et al. 2024; Weis 2015). While this variability 
is more pronounced in herbaceous species, it is also observed 
in tree species, albeit to a lesser extent (Horbach, Rauschkolb, 
and Römermann 2023). This variation is a result of adaptation 
to local conditions, which can occur in a relatively few gener-
ations. Differences in flowering phenology may result in flow-
ering asynchrony both within and among populations. This 
asynchrony potentially increases the current variation in the 
reproductive success of forest tree species, thus affecting genetic 
diversity. Flowering phenology asynchrony tends to increase 
with geographic distance, possibly resulting in phenological 

isolation of populations. As a result, migrants rarely mate with 
members of the resident population, promoting assortative mat-
ing patterns, with a higher rate of mating occurring between 
migrants and between residents (Wadgymar and Weis  2017). 
Even when mating between migrants and residents is success-
ful, cones or fruits may not be produced by late-flowering in-
dividuals (Wadgymar, Cumming, and Weis  2015). This leads 
to a reduced rate of hybridization that becomes even more ap-
parent in the second generation of hybrids (F2) (Wadgymar and 
Weis 2017).

Apart from flowering asynchrony, assisted gene flow may lead 
to emergent short-term genetic effects resulting from the hybrid-
ization of genetically divergent populations, which might hinder 
achieving the desired adaptation. These effects can include po-
tential positive impacts such as heterosis in the first generation 
of hybrids or negative consequences like outbreeding depression 
and hybrid decay in subsequent generations.

Heterosis, also frequently called hybrid vigor, is the beneficial 
effect that occurs when a hybrid surpasses the quality of both 
parents (Shull 1914). This phenomenon was already recognized 
by Charles Darwin (1876) and is traditionally exploited in agri-
culture to enhance the yield of inbred crop lines and improve 
resistance to diseases (e.g., Hei, Hussein, and Laing 2016). The 
degree of heterosis generally rises with increasing genetic dis-
tance up to a certain point, after which it declines (e.g., Moll 
et al. 1965; Würschum et al. 2023). Heterosis is also apparent in 
inter-species crosses and is utilized in forestry species, such as in 
the larch genus, with European larch (Larix decidua Mill.) and 
Japanese larch (Larix kaempferi (Lamb.) Carr.). First-generation 
(F1) larch hybrid (Larix × eurolepis Henry) has shown signif-
icant genetic response in growth rate, wood quality, and seed 
yield (Marchal et al. 2017). Thus, they pose overall better per-
formance compared to the parent species and also compared 
to the second-generation hybrids (F2). Similar results have 
been found in poplar (Zanewich, Pearce, and Rood  2018), eu-
calyptus (Madhibha et al. 2013), silver fir (Stejskal, Horák, and 
Typta 2016), and pines (Dungey 2001).

There are two prevalent hypotheses that explain the basis of 
heterosis. The first is the dominance hypothesis, which suggests 
that in hybrids, harmful recessive alleles are hidden by ben-
eficial alleles from either parent (Bruce  1910; Davenport  1908; 
Jones  1917). The second is the overdominance hypothesis, 
which proposes that heterozygosity itself can result in hybrids 
being more vigorous than either parent (East 1908; Shull 1908). 
Those approaches were further expanded by the epistatic theory 
of heterosis, involving interactions among genes (Powers 1944). 
However, the exact genetic and molecular basis behind heterosis 
is still not fully understood (Birchler et al. 2010; Yu et al. 2021).

The question arises whether heterosis occurs only in isolated 
groups, such as between inbred lines and within inter-specific 
hybrids, or also across populations connected by gene flow, sim-
ilarly to forest trees. Simulations of these scenarios suggest that 
heterosis can indeed occur in such cases (Whitlock et al. 2000). 
Moreover, various forest tree species have been tested for po-
tential heterosis effects in their provenance hybrids (Liesebach, 
Liepe, and Bäucker  2021). Harfouche and Kremer  (2000), 
Harfouche et al. (2000) reported an 8.4% increase in growth due 
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to heterosis in maritime pine (Pinus pinaster Aiton) provenance 
hybrids. Additionally, Doerksen, Bousquet, and Beaulieu (2014) 
revealed a heterosis effect in inter-provenance crosses of white 
spruce (Picea glauca (Moench) Voss), with approximately 6% 
greater height growth at age 15 compared to intra-provenance 
progenies. In contrast, Eriksson and Ilstedt  (1986) observed 
heterosis in Norway spruce (Picea abies (L.) H. Karst) prov-
enance hybrids at only one of three test sites, while Kaya and 
Lindgren  (1992) found no evidence of heterosis. Similarly, 
Levkoev et  al.  (2017) did not observe an increase in growth 
and wood density in hybrids compared to the local population. 
Although heterosis was observed in several intra-specific sce-
narios, its impact does not seem to be as pronounced as in the 
inter-species hybrids of forest trees.

Conversely, outbreeding depression occurs in hybrids of dis-
tant populations when local adaptive traits average out, re-
sulting in lower fitness in later generations compared to the 
parental lineage. Although common in plants (Liesebach, Liepe, 
and Bäucker  2021), it is rare in forest trees, with Sakhalin fir 
(Abies sachalinensis F. Schmidt) being a single case study (Goto 
et al. 2011). Outbreeding depression typically appears from the 
second generation onwards, as hybrid vigor masks these ef-
fects in the first generation. From the F2 generation, recombi-
nation disrupts epistatic interactions between coadapted genes 
(Whitlock et al. 2013). However, these interactions are expected 
to be restored over several generations, and the fitness of later 
generations can surpass that of the parental generation as cli-
matically preadapted alleles will become apparent (Aitken and 
Whitlock 2013; Grummer et al. 2022).

Understanding the genetic architecture of adaptive traits is cru-
cial for evaluating the benefits and risks of assisted gene flow 
such as the aforementioned heterosis and outbreeding depres-
sion. This involves examining the number, position, and effect 
sizes of individual genes. Genome-wide association studies 
provide detailed molecular-level insights into gene-trait asso-
ciations. While detecting gene effects is relatively efficient in 
inbred lines, it becomes significantly more complex in outbred 
populations (Lynch and Walsh  1998). Outbred forest tree spe-
cies present unique difficulties due to their large genomes and 
growth in highly heterogeneous environments.

Empirical evidence from tree species indicates that adaptive 
traits, such as resistance to drought, frost damage, and patho-
gens, often exhibit polygenic or complex architectures (De La 
Torre et al. 2019, 2021; Depardieu et al. 2021; Milesi et al. 2019; 
Riehl et  al.  2023; Singh et  al.  2024). These architectures may 
consist of a few genes with relatively large effects but are largely 
controlled by many genes with smaller effects. This predomi-
nantly polygenic inheritance of quantitative traits in forest trees 
is further supported by traditional genetic variance decomposi-
tion, based on controlled crosses and progeny trial evaluations 
(White, Adams, and Neale 2007).

4   |   Pollen-Based Assisted Migration as an 
Innovative Approach

We propose a comprehensive strategy framed around inten-
tional pollen transfer from suitable sources (typically referred 

to as a population of migrants) to reduce the risk of maladap-
tation in adverse climates while preserving the integrity of lo-
cally adapted populations. This strategy involves collecting 
pollen from a source seed orchard and transferring it to a target 
(typically referred to as a resident population) seed orchard for 
intraspecific hybridization (Figure 2), thereby introducing hap-
lotypes suited for anticipated future climate conditions.

A key advantage of this method is that it capitalizes on exist-
ing forestry infrastructure, specifically, seed orchards, which 
already play a critical role in global forestry for large-scale 
seed production (White, Adams, and Neale  2007). In Europe 
specifically, the establishment of seed orchards for seed mass 
production began in the 1950s (see Faulkner (1975), for early re-
view) and has continued to grow, with the current number ex-
ceeding 1500 seed orchards of 40 forest tree species (EU Forest 
Reproductive Material Information System, https://​ec.​europa.​
eu/​forem​atis). Traditionally, seed orchards have been closely 
linked to tree improvement programs, serving as the primary 
source for producing bulk seed for afforestation and reforesta-
tion efforts. Many seed orchards are also established for tree 
species of lower economic but significant ecological importance 
(e.g., So, Theilade, and Dell  2010). Globally, seed orchard net-
works extend beyond Europe to North America (Li, McKeand, 
and Weir  1999; Miller and DeBell  2013; Reid  2008), South 
America (Jayawickrama and Balocchi 1993; Rockwood, Huber, 
and White  2001), Africa (Gapare  2000; Missanjo, Kamanga-
Thole, and Manda 2013; Swain, Verryn, and Laing 2013), Asia 
(Batkhuu et  al.  2010; Chaix et  al.  2011; Leksono, Kurinobu, 
and Ide 2008; Moriguchi et al. 2005; Na et al. 2015; Nicodemus 
et  al.  2009; Shi et  al.  2016), Australia (Burczyk et  al.  2002; 
Johnson, Robinson, and O'Hara  1992; Wu et  al.  2007), and 
New Zealand (Burdon, Carson, and Shelbourne 2008; Dickson, 
Sweet, and Mitchell 2000; Turner 1997).

Collecting pollen in the source orchard is feasible because the 
trees in orchards are pruned to facilitate seed harvest and con-
trol pollination. When choosing a deployment strategy, several 
suitable source seed orchards can be identified to obtain the de-
sired pollen mixture. Thus, the pollen mixture could be adjusted 
frequently based on previous experience and the progression of 
climate change.

Since open pollination (natural random mating) occurs in seed 
orchards, implementing supplemental mass pollination (SMP) 
or controlled mass pollination (CMP) in the target orchard is 
straightforward. SMP or CMP involves disseminating the col-
lected pollen during the peak receptivity of female strobili (Funda 
and el-Kassaby 2012), promoting gametic exchange between mi-
grant and resident population genotypes. Additionally, SMP or 
CMP could be combined with the method of delayed blooming, 
which adjusts flowering times to promote synchronization. This 
reduces pollen contamination from inferior genotypes in non-
selected populations near the seed orchard (Korecký and El-
Kassaby 2016; Song et al. 2018) and increases the annual seed set 
(Pearse et al. 2015), resulting in higher seed orchard production.

In the proposed strategy, seeds produced in the target seed or-
chard will be sown in local nurseries (Figure 2), allowing prog-
enies to undergo their entire embryogenesis and early growth 
under local conditions. This contrasts with traditional transfer 
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methods where seeds or mature plants carry their original epi-
genetic profiles when moved to new locations.

Epigenetics, transgenerational changes that modulate pheno-
type without altering the genetic composition, is increasingly 
recognized as an important factor in shaping adaptive traits 
in plant breeding and ecosystem conservation (Bräutigam 
et al. 2013). Although the effects of epigenetics on tree species 
remain understudied, its significant role has been suggested in 
both Norway spruce (Johnsen et al. 2005, 2009) and Scots pine 
(Bose et al. 2020). Our method may present a significant advan-
tage, as local conditions can modulate gene expression through 
various epigenetic mechanisms (Franks and Hoffmann  2012), 
thus enhancing the adaptive potential of these tree species in 
their native environments and reducing the risk of transferring 
potentially harmful epigenetic settings.

The pollen-based approach facilitates the production of hybrid 
offspring with flowering periods that average the flowering times 
of their parents. Empirical evidence supports this pattern, par-
ticularly in fruit trees like apples (Urrestarazu et  al.  2017) and 
Prunus species, such as sweet cherries and almonds (Branchereau 
et  al.  2022, 2023; Castède et  al.  2014; Dirlewanger et  al.  2012; 
Sánchez-Pérez et al. 2014). Similar trends have also been observed 
in outcrossing plants like maize (Buckler et al. 2009). These stud-
ies reveal that flowering periods are highly heritable and gov-
erned by complex genetic architecture. Moreover, Urrestarazu 
et al.  (2017) highlight that the genes controlling flowering phe-
nology predominantly exhibit additive effects.

The flowering time of hybrids that more closely align with the 
resident population will gradually increase the proportion of 
backcrosses and later-generation hybrids within the population. 

This, in turn, will boost the frequencies of pre-adapted alleles 
in subsequent generations. This process can be particularly ad-
vantageous for enhancing adaptive genetic diversity, as it estab-
lishes a solid foundation for natural selection by favoring the 
best-adapted individuals among a broad range of genotypes, es-
pecially under the competitive pressures of a changing climate. 
To achieve this objective, we recommend supplemental planting 
of orchard-derived hybrid seedlings in a grid or group planting 
(Saha et al. 2012) among the naturally grown seedlings in situ.

This approach aligns with close-to-nature forestry principles, 
where forest stands are primarily restocked by trees growing 
from seeds that fall and germinate on-site, maximizing the 
natural processes within the stand (O'Hara 2016). However, in 
cases where significant heterosis is present, hybrids can sur-
pass all local individuals in fitness, reducing the proportion 
of naturally regenerated individuals in favor of F1 hybrids. 
This poses a risk, as the initial heterosis diminishes in the F2 
generation, leading to a significant decline in overall fitness 
and resulting in detrimental effects on the stand (Kaya and 
Lindgren  1992). In such scenarios, a more effective strategy 
might be to fully utilize the benefits of heterosis in F1 hybrids 
by establishing pure hybrid stands and regenerating them 
through clear cuts. The establishment of pure hybrid stands 
can lead to increased biomass production and overall forest 
productivity due to the superior growth characteristics and 
enhanced resistance to environmental stresses of F1 hybrids. 
This method ensures that the hybrids' genetic advantages are 
fully exploited during their peak growth periods, maximizing 
yield and economic return. Additionally, this strategy still fa-
cilitates the introgression of climatically pre-adapted alleles, 
as their pollen contribution to the neighboring stands would 
promote backcrossing, gradually introducing pre-adapted 

FIGURE 2    |    The map is derived from the species distribution model developed by Chakraborty et al. (2021). The green gradient represents the 
probability of Norway spruce distribution in Europe within the 2041–2060 time range under intermediate climate scenario RCP 4.5. Brown dots show 
the locations of individual seed orchards across Europe based on the European Union's FOREMATIS database and the internal Norwegian database 
of seed orchards. The flowchart represents the transfer of desired haplotypes from source to target seed orchards through pollen and subsequent 
seedling production utilized in target reforestation sites. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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alleles and thereby maintaining the overall fitness. Since this 
process is more gradual, it helps to mitigate the negative ef-
fects of hybrid decay in F2.

The pollen-based method can also facilitate the adaptation 
of exotic species. Douglas fir (Pseudotsuga menziesii (Mirbel) 
Franco), native to the Pacific Northwest of North America, is 
a prime example of an introduced species in Europe. Breeding 
programs for Douglas fir are already established in several 
European countries, with seed orchards located in Austria, 
France, Germany, and other regions. In some countries, such 
as the Czech Republic and Slovenia, these programs are just 
being established. Another example of a successful introduction 
is a Turkish fir (Abies bornmülleriana Mattf.) and Nordmann 
fir (Abies nordmanniana (Steven) Spach), with seed orchards 
in Denmark (Nielsen, Xu, and Hansen 2020; Xu, Nielsen, and 
Hansen 2018).

These exotic species typically underwent intense selection for 
both adaptation and productivity traits. While the genetic diver-
sity of mature stands after introduction seems to be comparable 
with the native populations, it can be reduced due to popula-
tion bottlenecks caused by the variation in reproductive success, 
which is a specific problem in exotic species as their popula-
tions in non-native environments are typically fragmented 
(Neophytou, van Loo, and Hasenauer 2020). The pollen-based 
strategy enhances local populations by increasing genetic di-
versity and introducing climate-adaptive alleles from suitable 
regions within the native range.

Beyond the aforementioned benefits for native and exotic spe-
cies, the pollen-based assisted migration strategy offers solu-
tions to remaining challenges, including phytosanitary risks, 
economic obstacles, and legislative constraints. Managing phy-
tosanitary risks becomes simpler as pollen is typically unsus-
ceptible to pathogens and is expected to be germinated on site. 
The approach is economically feasible as seed orchard managers 
could handle a local pollen collection and storage framework. 
Nevertheless, some investment in pollen storage may be nec-
essary. As both seed and seedlings are locally sourced, forest 
nurseries can continue business operations without disruption. 
Considering these advantages, we anticipate a wider acceptance 
of the pollen-based assisted migration, leading to legislative ad-
aptations enabling pollen transport.

5   |   Simulation Insights Into Genetics of an 
Adaptation Through Pollen-Based Assisted 
Migration

From a genetic perspective, the effectiveness of the proposed 
pollen-based assisted migration depends on several factors. 
These include the degree of population divergence, as reflected 
by differences in genetic structure (allelic and genotypic fre-
quencies) and fitness distribution between the source and tar-
get populations under current environmental conditions; the 
extent of gametic phase disequilibrium; the genetic architec-
ture of fitness traits (including the number of loci contribut-
ing to trait variance and their respective additive, dominance, 
and epistatic effects); biological mechanisms of heterosis and 

outbreeding depression; narrow-sense heritability; and the 
intensity of pollen migration from the source orchard to the 
target orchard.

To examine the genetic implications of pollen-based assisted 
migration, we utilized a computer simulation model presented 
in Supplement S1, which includes parametrization and com-
puter code. A schematic overview of the simulation scenarios 
is provided in Figure  3. Comparative results for pollen-based 
assisted migration, conventional assisted migration, and a ref-
erence scenario relying solely on local populations are shown in 
Figure 4. The model incorporates a mixed genetic architecture, 
with 30% of the genetic variance attributed to 10 quantitative 
trait loci (QTLs), while the remaining genetic variance is poly-
genic. Narrow-sense heritability was set at 0.2, reflecting a sig-
nificant environmental component in adaptive traits. The model 
is specifically designed to simulate diploid populations and, in 
its current implementation, does not support the evaluation of 
interspecific hybridization.

We first evaluated a single reproductive outcome in the target seed 
orchard subjected to pollen-assisted migration, with fitness as-
sessed in the offspring population (forest stands originating from 
the orchard). Our model revealed significant initial heterosis, 
resulting in a mean fitness that exceeded the average of parental 
populations, and even surpassed the mean fitness of conventional 
assisted migration (generation 1 in Figure 4). However, we should 
note that the initial population divergence (difference between the 
allelic frequency of the two founder populations) was assumed to 
be very large which promoted the initial heterosis and outbreed-
ing depression. Typically, differences between allelic frequen-
cies would be lower, thus the mean fitness would more closely 
resemble the average of parental populations in the same figure. 
However, the real adaptive response of the pollen-based assisted 
migration might be underestimated in our simulations given ad-
ditional components, such as retaining the local adaptation when 
using the seed orchard in the target location and additional bene-
ficial factors that were discussed in Section 4.

The dynamic nature of climate change necessitates frequent 
recalibration of assisted migration models and optimization 
of pollen mixtures. This also highlights the importance of pe-
riodical updates of the genetic composition of seed orchards 
in both source and target populations adopting a dynamic sys-
tem that leverages both local (e.g., Lstibůrek, García-Gil, and 
Steffenrem 2023) and distant adaptation, ensuring proper syn-
chronization with practical forest management as discussed in 
the previous chapter.

In line with these options, Figure  4 also illustrates the poten-
tial for maintaining forest plantations established in generation 
1 and allowing natural regeneration in subsequent generations. 
In generation 2, the model predicts an initial outbreeding de-
pression from reduced initial heterosis and unfavorable epi-
static effects. In subsequent generations, however, outbreeding 
depression is purged and the higher overall genetic diversity in 
the population leads to higher subsequent adaptive response, 
eventually resulting in mean fitness comparable to that of con-
ventional assisted migration (assuming the population remains 
in situ and continues to reproduce locally).
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While we aimed to align simulation parameters with empiri-
cal evidence, caution is warranted in generalizing our findings 
across species. We propose systematic computer modelling re-
search to explore complex dynamics of the proposed system. 
Fine-tuning simulation parameters for specific species is nec-
essary to evaluate feasibility and account for additional consid-
eration, including benefits of pollen-based assisted migration 
discussed in our manuscript but not incorporated into the cur-
rent simulation.

6   |   Regional Perspective: Adapting Pollen-Based 
Assisted Migration in Northern and Central Europe

The Scandinavian region has a long history of successfully 
introducing and transferring seed sources of Norway spruce 
and Scots pine (Pinus sylvestris L.) (Myking et  al.  2016). 

Consequently, both selectively bred populations and commer-
cially produced seed lots contain a significant proportion of 
non-local genotypes transferred from various regions within 
and between Northern European countries and beyond. Given 
this established practice, current official transfer guidelines 
are based on past provenance testing and practical regener-
ation experience, often tolerating substantial transfers from 
local origin.

New transfer effect models have been developed for both species 
to predict performance in future climates and facilitate assisted 
migration (Berlin et al. 2016; Liziniewicz et al. 2023). These mod-
els utilize tree phenotype data from all Scandinavian countries 
to provide uniform deployment recommendations across the re-
gion and to develop joint decision support tools. Implementing 
such a framework requires addressing national transfer rules, 
legal barriers, and differences in seed orchard definitions.

FIGURE 3    |    Schematic representation of the computer simulation process. The simulation begins with the creation of two founder populations, 
distinguished by allelic frequencies: One in the source location (light red background) and the other in the target location (light blue background). 
Thirty generations of random mating with a constant population size of 5000 individuals facilitated the build up of linkage disequilibrium (LD). The 
source founder population was modeled with a higher mean fitness compared to the target population, indicating adaptive superiority when intro-
duced to the target environmental conditions. Subsequently, a seed orchard containing 100 individuals was established in each location, derived from 
their respective founder populations. Assisted migration was then simulated, wherein random mating occurred in the source seed orchard, and a 
forest stand of 5000 trees was established in the target location (generation 1). From this stand, 500 trees with superior phenotypes (top fitness) were 
selected and subsequently randomly mated to generate 5000 offspring. Further generations of natural regeneration (2–5) maintained a population 
size of 5000 individuals through successive cycles of natural selection. This process is represented by the leftmost forest stands in the target location 
(darker red ellipses). Alternatively, an additional forest stand was established via assisted pollen migration. In this scenario, male haplotypes from 
the source seed orchard were combined with female haplotypes from the target seed orchard. The resulting forest stand underwent similar mating 
and natural selection processes up to generation 5, depicted by the middle forest stands in the target location (darker red/blue split-color ellipses to 
signify mixed haplotypes). For reference, a control scenario without assisted migration was simulated, where random mating occurred within the 
target seed orchard. This scenario is represented by the rightmost forest stands in the target location (darker blue ellipses).
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For Scots pine, common deployment recommendations have 
been successfully developed and officially approved in Sweden 
and Finland (Berlin et al. 2019). Additionally, a joint Swedish-
Finnish decision support tool called “Plantval” (Skogforsk 2024) 
aids in selecting optimal seed sources. The tool considers the 
origin of both the seed orchard parents and the pollen, which is 
assumed to come from the orchard itself or surrounding popula-
tions (e.g., Heuchel et al. 2022). Introducing external pollen with 
known origin and genetic gain through a pollen-based approach 
can easily be integrated into the tool, directly influencing the 
model's predictions and deployment recommendations.

In the Nordic region, seed orchards have undergone genetic 
thinning and selective harvesting to enhance adaptive proper-
ties, increase tolerance to pests/diseases (e.g., Scots pine blis-
ter rust and root rot), and boost genetic gain. However, these 

methods are limited to existing orchard genotypes. A pollen-
based approach would enable a rapid and substantial improve-
ment in one or more desired traits, particularly if those traits 
are not achievable with the current genetic variation within the 
orchard.

In contrast to Northern Europe, Central Europe encompasses 
a broader range of ecoregions and forest types, from xerophytic 
mixed oak forests to subalpine mountain forests, providing 
habitat for a diverse array of woody plant species. Forest ge-
netic resource management in Central European countries has 
traditionally focused on selecting and transferring genetic ma-
terial with superior growth characteristics, as well as the con-
servation of major and rare tree species. Notably, conifers such 
as European Larch and Norway spruce have been historically 
transferred over larger distances, often outside their native range 

FIGURE 4    |    Predicted mean fitness values in the target location based on computer simulation. The three scenarios include: (1) seedling-based 
assisted migration (red circles), where seedlings derived from the source seed orchard are planted in the target location; (2) pollen-based assisted 
migration (violet squares), where pollen is transferred from the source orchard to the target orchard, and the resulting offspring are planted in the 
target location; and (3) local offspring (blue circles), where offspring derived from the orchard in the target location are planted in the same area. 
Generation 1 represents forest stands established using seeds collected from the target seed orchard for each respective scenario. Generations 2–5 
represent hypothesized forest stands resulting from natural mating among the top 500 individuals in each stand.

1 2 3 4 5
Generation

0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
fit

ne
ss

SOURCE SOURCE x TARGET TARGET

 13652486, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70014 by C

ochrane C
zech R

epublic, W
iley O

nline L
ibrary on [31/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 15 Global Change Biology, 2025

(Jansen, Konrad, and Geburek 2017; Jansen and Geburek 2016). 
However, rare and scattered tree species were often neglected 
in historical forest management practices, potentially impacting 
their genetic variation (Hemery et al. 2010; Lefèvre 2004).

Genetic studies on many Central European species have re-
vealed that populations south of the Alps, in refugial areas, ex-
hibit the highest genetic differentiation, while populations north 
of the Alps display the highest genetic diversity, likely due to the 
admixture of lineages during recolonization (Petit et al. 2003). 
Awareness of genetic resources, particularly for scattered tree 
species, increased towards the end of the 20th century, leading 
to the establishment of several national gene conservation pro-
grams (Müller 1997; Tabel 1997) and the EUFORGEN Network 
for scattered broadleaves. Additionally, the EC directive for for-
est reproductive material (1999/105/EC) was enacted, regulating 
the management of 47 tree species across Europe. These efforts 
have resulted in the establishment of numerous seed orchards 
for gene conservation.

Given anticipated shifts in tree species composition due to 
climate change, there is an increasing need to diversify tree 
species mixtures and incorporate drought-tolerant species 
from continental or Mediterranean climates. Central Europe 
has over a century of experience in assisted migration. One ex-
ample could be a successful transfer of exceptional “Slavonian 
oaks”, valued for their high genetic quality and adaptability, 
from the Save and Drava river plains in Southeastern Europe 
to Northwestern Germany (Gailing et  al.  2012). Similarly, 
“Calabrian” silver firs from South Italy have been successfully 
used for reforestation in Denmark (Larsen  1981). Extensive 
provenance experiments for various tree species were con-
ducted in Europe during the 20th century, and recent compre-
hensive analyses of these experiments have led to transnational 
transfer guidelines (Chakraborty et al. 2024). Central European 
countries can leverage their existing network of 717 seed or-
chards (encompassing 23 native species and hybrids) to im-
plement pollen-based assisted migration. These orchards are 
expected to serve as both pollen sources and recipients across a 
wide range of climatic conditions.

7   |   Conclusions

We propose a pollen-based assisted migration strategy as an 
effective and scalable solution for adapting forests to climate 
change. Through reasoned examples, we discuss the poten-
tial benefits and practicalities of implementing this approach 
in Scandinavia and Central Europe and its compatibility with 
broader EU frameworks. We strongly advocate for its consider-
ation in future international projects and operational forestry. 
A dynamic policy framework adaptable to diverse climate sce-
narios is essential to fully capitalize on this innovative strategy. 
Such a framework could serve as a catalyst for revising current 
EU regulations, thereby enabling more agile and effective forest 
adaptation strategies, crucial for long-term societal resilience 
against climate change. Since pollen-based assisted migration 
relies methodically on seed orchards, we advocate for conven-
tional assisted migration in species and regions where seed or-
chards are unavailable.
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