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ABSTRACT  
In forest tree breeding, there is a growing trend towards using pedigree reconstruction after 
offspring are produced through natural random mating (open-pollination), as an alternative to 
traditional controlled crosses and full-sib genetic trials. Given that most forest tree species are 
predominantly outcrossing organisms, the accuracy of narrow-sense heritability (h2) under 
natural mating conditions has not been thoroughly examined, particularly with regard to 
sample size. Our simulation study focuses on the genetic parameters specific to Norway spruce 
(Picea abies L.) in Norway. We used the stochastic model MoBPS to simulate a founder 
population with 100,000 SNP markers distributed across 12 haploid chromosomes, 
representative of many conifer species. Parental trees were selected from this population, 
followed by random mating and offspring evaluation. We focused on estimating the accuracy of 
h2, with particular attention to its precision and bias. Our results suggest that the population 
sample sizes currently used in forest tree breeding are generally adequate for achieving 
precision. However, we identified two primary sources of bias: one due to dominance effects 
and the other from phenotypic parental selection. We discuss potential strategies to mitigate 
these biases in breeding programs.
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Introduction

Forest tree breeding programs are long-term endeavors 
involving a complex process of mating, genetic evalu
ation, and selection. Traditional tree breeding relies on 
controlled pollination, requiring substantial investments 
and long-term commitment (White et al. 2007). Narrow- 
sense heritability (h2) determines the rate of response to 
both artificial and natural selection, making its esti
mation a critical initial step in plant and animal breeding 
programs (Falconer and Mackay 1996). With advances in 
genomic tools, it has become feasible to determine the 
pedigree of offspring populations originating from seed 
orchards (Marshall et al. 1998; Kalinowski et al. 2007).

In view of this, El-Kassaby et al. (2007) and El-Kassaby 
and Lstibůrek (2009) proposed a cost-effective and 
streamlined method known as ’Breeding without Breed
ing’ (BwB). The methodology is based on natural random 
mating (panmixia) in large seed orchards, followed by 

extensive phenotyping in forest stands that originate 
from a shared parental source. El-Kassaby and Lstibůrek 
(2009) proposed a genetic evaluation approach using 
random and top-phenotypic subsets within forest 
stands, which are jointly treated as a candidate popu
lation. The random subset serves to estimate genetic var
iances required for calculating breeding values of top- 
ranking individuals in the top-phenotypic subset. Details 
on sample sizes are extensively discussed by Lstibůrek 
et al. (2011, 2012, 2015). Subsequent pedigree reconstruc
tion of the offspring population allows for the selection of 
superior individuals, establishing genetically improved 
seed orchards for the next breeding cycle. BwB has 
been successfully implemented on a large scale in the 
European larch (Larix decidua L.) breeding program in 
Austria, assuming multiple forest stands to capture 
environmental gradients and genotype-by-environment 
interactions (Lstibůrek et al. 2020). Alternative successful 

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc- 
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built 
upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. 

CONTACT Milan Lstibůrek lstiburek@fld.czu.cz Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 
165 00, Czech Republic

Supplemental data for this article can be accessed online at http://dx.doi.org/10.1080/02827581.2025.2530427.

SCANDINAVIAN JOURNAL OF FOREST RESEARCH 
2025, VOL. 40, NOS. 5–6, 292–302 
https://doi.org/10.1080/02827581.2025.2530427

http://crossmark.crossref.org/dialog/?doi=10.1080/02827581.2025.2530427&domain=pdf&date_stamp=2025-07-15
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lstiburek@fld.czu.cz
http://dx.doi.org/10.1080/02827581.2025.2530427
http://www.tandfonline.com


implementations of pedigree reconstructions in forest 
tree breeding have been reported by Vidal et al. (2015), 
Hansen and McKinney (2010) and Lambeth et al. (2001), 
eliminating the need for laborious control crosses.

Computer simulations have been employed in animal 
and plant breeding to optimize breeding programs. In 
particular, stochastic simulations have proven valuable 
in addressing the complex genetic architecture of mul
tiple quantitative traits. Several computer simulation 
applications have been developed for this purpose. 
QuLine (Wang and Wolfgang 2007) is applied in crop 
improvement for inbred lines, QMSim (Sargolzaei and 
Schenkel 2009) is utilized for complex livestock pedi
grees in mutation drift equilibrium. DeltaGen (Jahufer 
and Luo 2018) is a decision-support analytical tool 
used in plant breeding although it doesn’t permit the 
use of real genomic maps. AlphaSim (Faux et al. 2016) 
and AlphaSimR (Gaynor et al. 2021) are more flexible 
and frequently used in plant and animal breeding. 
MoBPS (Pook et al. 2020) is highly flexible and computa
tionally faster with bit-wise storage capabilities. It can 
handle very large-scale complex breeding programs in 
both plant and animal breeding and also allows users 
to customize functions for breeding value estimation. 
MoBPS is additionally linked to commercial software 
such as MiXBLUP (ten Napel et al. 2020) and blupf90 
(Misztal et al. 2014) for breeding value estimation.

According to El-Kassaby and Lstibůrek (2009) the 
BwB provides multiple opportunities as a feasible 
alternative to resource-dependent controlled pollina
tion breeding programs. It benefits in terms of time 
and resource savings by circumventing the crossing 
and field experimental trials. Moreover, this method
ology is appropriate and suitable for minor commercial 
tree species facilitating the development of gene con
servation and management programs. In an effort to 
delve deeper into these findings, Lstibůrek et al. 
(2015) conducted a more comprehensive quantitat
ive-genetic evaluation of the BwB strategies. They esti
mated genetic parameters using additive relationship 
matrices for specific sub-populations, including 
random and top phenotypic subsets, while varying 
effective population sizes (Ne). The results of their 
study indicated that only a relatively small subset of 
the offspring population (1200 random + 600 top- 
ranking phenotypes) is necessary for pedigree recon
struction and genetic evaluation, potentially enabling 
the development of economically and logistically 
effective breeding strategies. Given the advancements 
in BwB, further evaluation of the aforementioned 
breeding approaches utilizing natural mating followed 
by pedigree reconstruction is necessary to enhance the 
accuracy of genetic parameter estimates.

Recent research initiatives, including the Swedish 
project “Landscape Breeding: A new paradigm in forest 
tree management” (initiated in 2022) and the project 
“Management of forest genetic resources under climate 
change” (focused on adapting BwB in Norway and the 
Czech republic, completed in 2024), have aimed to inte
grate the BwB methodology into conventional breeding 
programs, with an emphasis on enhancing resilience and 
managing genetic diversity in the face of climate change.

Our objective was to examine how key factors, such 
as plus tree selection, offspring population sampling 
(sizes of random and top-phenotypic subsets), QTL addi
tive and dominance effects, and the presence of nega
tive genetic correlations, influence the accuracy of h2. 
Building on the simulation work by Lstibůrek et al. 
(2015), we employed stochastic simulations followed 
by a comprehensive sensitivity analysis. Through this 
exploratory framework, we identified conditions under 
which BwB could be feasible within the practical scen
arios and genetic parameters typical of Norway spruce 
breeding programs in the Nordic region.

Materials and methods

We employed an allelic-based stochastic simulation 
model tailored for forest tree breeding. To model the 
BwB strategy, we initiated a breeding program involving 
the selection of plus trees, random mating, and the sub
sequent genetic evaluation of the offspring population. 
This modeling process encompassed three key stages: 
(a) Population simulation; (b) Plus tree selection; and 
(c) Genetic evaluation. Our primary objective was to esti
mate (h2) of two quantitative traits (height and stem 
straightness). The MoBPS (1.10.59) software (Pook et al. 
2020) facilitated the population simulation and the 
selection of random offspring subset within the R 
system (R Core Team 2023). For subsequent genetic 
evaluations, we employed the ASReml-R (4.1.0.160) soft
ware (Butler et al. 2017). The entire simulation pipeline 
was initially repeated across 30 independent replications 
to balance computational time and obtain confidence 
intervals suitable for illustrating the precision of h2. 
However, after detecting bias and aiming to refine the 
mean estimates, we incorporated 100 replications, 
which are presented in the Supplement.

Population simulation

A founder population of nf = 5000 haplotypes was gen
erated, incorporating a set of 100,000 SNP markers equi
distantly distributed across 12 haploid chromosomes (as 
in many conifers), each 100 cM in size. Allele frequencies 
were sampled from a beta distribution (Gupta and 
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Nadarajah 2004) with a shape parameter alpha = 0.2 and 
beta = 1.1. Individual alleles were randomly sampled, 
and 5000 individuals were randomly mated for 30 gen
erations to generate a linkage-disequilibrium (LD) struc
ture typical of Norway spruce (Heuertz et al. 2006; 
Larsson et al. 2013).

Tree height and stem straightness were simulated as 
quantitative traits with mixed genetic architecture and 
both were assumed to be controlled by 300 loci with 
additive effects sampled from N(0, s2

a). For dominance 
effects, full dominance QTLs (a = d ) was considered, 
with effect sizes sampled from N(0, s2

d) (Falconer and 
Mackay 1996). Simulation input parameters for the 
respective traits are provided in Table 1.

Selection

A subset consisting of np = 40; 60; 80; 160; and 320 par
ental trees (also referred to as plus trees) was selected 
from the simulated founder population. Subsequently, 
random (open-pollinated) mating among these selected 
plus trees was conducted to generate an offspring popu
lation (no = 6000). Random subsets of offspring (nr) 
were then chosen, with sample sizes set at 500, 1000, 
and 3000 for the purpose of genetic evaluation.

Genetic evaluation

A pedigree-based (additive genetic relationship) genetic 
analyses used the animal genetic model (Henderson 
1984), as presented in Equation (1). The analysis involved 
a randomly selected subset of the offspring (nr) population, 
assuming their pedigree is fully known (in reality, pedigree 
reconstruction is performed based on DNA marker data). 
The effects of nr and np on the accuracy of h2 were exam
ined in consecutive simulation scenarios (Table 2).

Simulation scenarios
In Scenario 1 (S1), we assumed a random sampling of par
ental trees from the founder population (reflecting the 
low selection accuracy during the initial phases of low- 

input breeding programs Lstibůrek et al. 2015), no dom
inance, and the additive genetic correlation was zero. This 
scenario is consequently used as a reference for compari
son. In S2, we are introducing the additional effect of 
dominance on top of the reference S1. Similarly, in S3, 
we expand the reference scenario by phenotypic selec
tion of parental trees (plus-tree selection), considering 
an index with equal weight given to both traits. The nega
tive additive genetic correlation is investigated in S4. 
Next, in S5, we incorporate all described factors (domi
nance, phenotypic parental selection, negative genetic 
correlation). and study their joint effect on the accuracy 
of h2. Refer to Table 2 for more detailed description.

Statistical analyses
Based on phenotypic observations and the pedigree 
information of the parental population and offspring in 
the selected subset nr , we performed a linear mixed- 
model (LMM) genetic evaluation (Henderson 1953). We 
begin by presenting the univariate LMM, which we 
later extend to the bivariate case used in our study:

y = 1m+ Z1a+ Z2 f + e (1) 

where y is the response variable; μ is the overall mean; a 
denotes additive genetic effects (i.e. breeding values) 
with a ≏ N(0, s2

aA), where A is the average numerator 
(pedigree-based) relationship matrix and s2

a is the addi
tive genetic variance; f are family effects, with 
f ≏ N(0, s2

f If ), where If is an identity matrix of order f 
and s2

f is the family genetic variance; e are random 
residual effects, with e ≏ N(0, s2

e In), where In is an iden
tity matrix of an order n, and s2

e is the residual variance. 
In addition, Z1 and Z2 are the incidence matrices for their 
respective terms.

The bivariate version of Equation (1) was fitted to 
model both traits simultaneously, as follows:

y = Xt + Z1a.t + Z2f .t + e (2) 

where y = [y1
′y2
′]′ are the stacked phenotypic records of 

the two traits; t is the fixed effect of the overall mean of 
each trait; a.t represents additive genetic variance 
effects nested within each trait, with a.t ≏ N(0, Ga ⊗ A), 

Table 2. Simulation scenarios.
Scenario Description

S1: Reference No dominance, Random set of parents, and No 
additive genetic correlation

S2: Dominance 
variance

Dominance, Random set of parents, and No additive 
genetic correlation

S3: Phenotypic 
selection

No dominance, Phenotypically selected parents, and 
No additive genetic correlation

S4: Genetic 
correlation

No dominance, Random set of parents, and Negative 
additive genetic correlation

S5: Combined Dominance, Phenotypically selected parents, and 
Negative additive genetic correlation

Table 1. Input parameters for population simulation. The 
genetic parameters were adopted from a diallel experiment 
on Norway spruce, evaluated at 7–10 years. (Skrøppa et al. 
2023).
Parameter Value

Founder population size, nf 5000
Number of parents, np 40, 60, 80, 160, 320
Number of offspring individuals, no 6000
Random subset of offspring, nr 500, 1000, 3000
Narrow-sense heritability, h2 height = 0.2, stem straightness = 0.3
Dominance variance ratio, s2

d/s
2
a 0.2

Additive genetic correlation, rg 0, −0.25
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where Ga is the “corh” variance structure of dimension 
2× 2 defined by the additive variance for each trait and 
the additive correlation between traits; f .t are family 
effects nested within each trait, with f .t ≏ N(0, Ge ⊗ If ); 
e are random residual effects nested within each trait, 
with f .t ≏ N(0, Ge ⊗ Ie). Both the Gf and Ge are variance 
structures of dimension 2× 2 defined in the same way 
as Ga. All of the other terms were previously described. 
This full model was applied to S2 and S5 where the dom
inance was incorporated. In other scenarios, the model 
was reduced by dropping the dominance term from the 
equations. Since the random offspring segments (nr) 
were considered to be located on a single site, the only 
fixed effect was the site’s overall mean.

The variance component estimates were then used to 
calculate h2 as:

􏽢h2 =
􏽢s2

a

􏽢s2
a +

􏽢s2
f +

􏽢s2
e

(3) 

Results

After 30 generations of random mating within the 
founder population, we utilized the complete simulated 
SNP haplotypic datasets to generate the LD decay struc
ture and allele frequency spectrum. We estimated the 
correlation coefficient (r2) between pairs of loci, reflect
ing the level of LD. The r2 values ranged from 
4.2× 10− 4 to 5× 10− 3, with an average of 1.5× 10− 3, 
indicating that most loci are in LD between each other.

In the following sections, we present the results of the 
respective simulation scenarios. It is important to note 
that each parameter has three distinct values. For 
instance, h2 is initially set as a simulation input parameter. 
Subsequently, upon generating the population, the true 
h2 is computed as the variance of the true (computer- 
generated) additive genetic (breeding) values divided 
by the variance of the true (computer-generated) pheno
typic values. Lastly, we report 􏽢h2 following genetic evalu
ation using the ASReml software. This third value closely 
resembles the one calculated by tree breeders in real 
breeding programs. When examining the graphs, it is 
crucial to recognize that a single replication of simulation 
theoretically represents a single instance of the actual 
breeding program. Therefore, it is not only the averages 
of the presented parameters that are significant but 
also the corresponding confidence intervals.

Scenario 1: reference

In Figure 1(a,b), we present the difference between h2 

(averaged across 30 stochastic iterations) and 􏽢h2, along 

with their respective confidence intervals. Assuming the 
30 iterations and a significance level of a = 0.05, we can 
conclude that there is no statistically significant difference 
between h2 and 􏽢h2 in S1. As anticipated, higher values of nr 

led to improved precision (resulting in narrower confi
dence intervals, CIs), irrespective of np. This suggests that 
an optimal np falls within the 60–80 range, while higher 
values of nr , exceeding 1000, were necessary to achieve 
high accuracy in estimating h2. With the increase in 
sample size nr from 500 to 3000, the CIs of 􏽢h2 decreased 
by 47% for height and 38% for stem straightness, assuming 
np = 40. Similarly, with np = 320, they decreased by 81% 
and 72%, respectively. 􏽢h2 showed relatively less variability 
for stem straightness compared to height, which can be 
attributed to differences in the initial h2 and s2

e between 
these traits in the founder population. As a result, better 
precision was achieved for both h2 and 􏽢h2 for stem 
straightness compared to height. In summary, the results 
suggest that while the number of selected plus trees 
appears to have no discernible effect on the accuracy of 
h2, the sample size nr plays a more influential role. Increas
ing the number of replications for the same strategy 
revealed no evidence of bias, as indicated in suppl. 
Figure 1(a,b). This suggests that the precision, and conse
quently the accuracy, of 􏽢h2 can be enhanced by adjusting 
nr primarily.

Scenario 2: dominance variance

Both the true h2 and observed 􏽢h2 values closely aligned 
with the initial input values, as expected (Figure 2(a,b)). 
The precision of 􏽢h2 improved significantly, with CIs 
decreasing by 26% for np = 40 and 70% for np = 320 in 
both traits, as the sample sizes nr increased from 500 to 
3000. This reduction followed a similar pattern to S1. Inter
estingly, the CIs were wider in stem straightness than for 
height, which is contrary to the trend observed in S1, par
ticularly for smaller nr sizes (500, 1000). These results 
suggest that np sizes lower than 80, combined with 
larger nr sizes, are relatively optimal for achieving accuracy 
in estimating h2 under both additive and dominant effects. 
We emphasize the importance of attaining precision in h2 

estimates by optimizing nr sizes, preferably aiming for 
3000 alongside appropriate np sizes. However, we must 
highlight a bias identified with 100 replications (Suppl. 
Figure 2(a,b)). Pairing smaller sample sizes (nr , 3000) 
with a higher number of plus trees (np . 60), which effec
tively creates a larger number of smaller families, systema
tically underestimates h2.

In Suppl. Figure 3(a), we present true and estimated 
s2

d values. As expected, we found 􏽢s2
d (4􏽢s2

f ) was biased 
upwards, with the bias proportional to family size. To 
obtain unbiased estimates of 􏽢s2

d, the average family 
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size must reach approximately one offspring per family 
(assuming random mating), ideally close to four, as 
observed with nr = 3000 and np = 40. Conversely, the 
maximum observed bias occurred with the smallest 
family sizes, specifically when nr = 500 and np = 320, 
resulting in an average family size close to 0.01. In this 
extreme scenario, the ASReml model failed to converge.

To further investigate this phenomenon, we amplified 
the dominance variance by setting variance ratios s2

d/s
2
a 

to 0.5 and 1.0. As shown in Suppl. Figures 7 and 8, we 
observed a more pronounced downward bias under 
conditions of higher dominance variance, consistent 
with previously reported trends. Specifically, a combi
nation of higher np and lower nr values amplifies this 
bias.

Scenario 3: phenotypic selection of plus trees

The results of S3, involving phenotypic selection of plus- 
trees, are illustrated in Figure 3(a,b). In comparison to the 
S1, here we revealed a noticeable reduction in the true 
h2 due to the phenotypic selection of plus trees.

Suppl. Figure 4(a,b) reveal a significant bias resulting 
from the omission of phenotypic selection of plus trees 
in the genetic evaluation model. This leads to an under
estimation of h2, regardless of the values for nr and np. 
This issue is particularly concerning because it appears 
there is no solution to mitigate this bias when phenoty
pic selection is present, a common practice in the early 
stages of tree breeding programs.

The precision of the 􏽢h2 estimate could be improved 
by increasing the values of nr regardless of the np 

sizes. Conversely, estimates are more precise with 
higher h2 values and smaller nr sizes (500, 1000), particu
larly when the size of np falls within the range of 60 to 80, 
similar to S1.

Scenario 4: negative additive genetic correlation

The results of this scenario (Figure 4(a,b)) revealed sig
nificant variation in both h2 and 􏽢h2, with simulated 
height displaying wider CIs than stem straightness, con
sistent with the reference scenario. Notably, CIs were 
substantially narrower with higher nr (3000) compared 

Figure 1. Scenario 1 “Reference”. The X-axis indicates the number of plus trees (np), and the Y-axis displays the true narrow-sense 
heritability h2 (black triangles with 95% CIs calculated across 30 replications) alongside its respective estimate (green and pink 
dots for height and stem straightness traits). The red dashed line indicates the initial h2 values employed to generate the founder 
population (simulation input). The upper set of three graphs (a) illustrates height, while the lower set (b) depicts the stem straightness 
trait. The leftmost graphs correspond to a sample size of 500 (nr), the center graphs to nr = 1000, and the rightmost graphs to 
nr = 3000. (a) Scenario 1: Height and (b) Scenario 1: Stem straightness.
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to smaller values (500 and 1000). Moreover, larger sizes 
of np . 80 resulted in closer CIs than smaller np sizes. 
Specifically, the width of the CIs for np = 40 with 
nr = 3000 reduced by 42% in height and 38% in stem 
straightness compared to smaller nr sizes of 500. Simi
larly, for np = 320 with nr = 3000, reductions of 76% 
and 65% were observed in height and stem straightness, 
respectively. Compared to S1, the current scenario 
reveals an average reduction of 5% for height and 4% 
for stem straightness in CIs, suggesting that differences 
between S4 and S1 are not significant but possibly inter
esting. The findings of S4 suggest that additive genetic 
correlation has no adverse effect on the accuracy of h2 

estimation. Plus tree selection, such as np ranging from 
60 to 80 combined with higher nr , could lead to 
greater precision when considering negatively corre
lated traits in genetic evaluation, thereby enhancing 
the accuracy of 􏽢h2. Increasing the number of stochastic 
iterations within the same strategy revealed no evidence 
of bias, as shown in Suppl. Figure 5(a,b). This indicates 
that the precision, and thus the accuracy, of 􏽢h2 can pri
marily be improved by adjusting nr .

Scenario 5: combined model

The approach in S5 involves all the studied factors, 
resembling operational tree breeding programs in esti
mating h2 (Figure 5(a,b)). Both h2 and 􏽢h2 show high vari
ation across different np and nr sizes. In line with S1, the 
CIs for height were reduced by 49% and for stem 
straightness by 32% when np = 40, while for np = 320, 
reductions of 71% for height and 75% for stem straight
ness were observed. As np values increased alongside nr , 
the CIs narrowed, and the mean values approached the 
simulation input values, akin to S1.

The combined model exhibits two main sources of 
bias, as previously identified: dominance and phenoty
pic selection. Both factors consistently lower the esti
mates of h2 beneath the actual h2 value. This effect 
becomes more apparent when the number of stochastic 
iterations increases from 30 to 100, as demonstrated in 
Suppl. Figure 6(a,b). On average, across the studied par
ameters, the estimates are 7% lower than the true value 
for both traits. The most significant observed bias, a 20% 
reduction, was noted in stem straightness at nr = 500 

Figure 2. Scenario 2 “Dominance variance”. The X-axis indicates the number of plus trees (np), and the Y-axis displays the true narrow- 
sense heritability h2 (black triangles with 95% CIs across 30 replications) alongside its respective estimate (green and pink dots for 
height and stem straightness traits). The red dashed line indicates the initial h2 values employed to generate the founder population 
(simulation input). The upper set of three graphs (a) illustrates height, while the lower set (b) depicts the stem straightness trait. The 
leftmost graphs correspond to a sample size of 500 (nr), the center graphs to nr = 1000, and the rightmost graphs to nr = 3000. (a) 
Scenario 2: Height and (b) Scenario 2: Stem straightness.
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and np = 320. The trends in s2
d estimation bias observed 

previously (Suppl. Figure 3(b)), specifically the depen
dence on family size and the challenges with small 
families, remain fully applicable to the analyses pre
sented here. This suggests that although breeders 
might address dominance by manipulating the sample 
size nr , the issue of phenotypic selection will continue 
to pose challenges. Means and confidence intervals for 
all scenarios assuming the 30 simulation iterations are 
provided in Supplementary Tables 1 and 2.

Discussion

Novel tree breeding strategies that combine random 
mating with subsequent pedigree reconstruction are 
proving to be effective alternatives in various species. 
By concentrating phenotyping and genotyping efforts 
on a relatively smaller subset of the candidate population, 
and fully abandoning full-sib artificial mating, significant 
time savings are achieved in operational breeding pro
grams. Lstibůrek et al. (2015) estimated that evaluating 
approx. 1800 trees comprising 1200 random and 600 
top phenotypes could yield 85 to 95% of the genetic 

gains comparable to those from large-scale full-sib 
testing programs. In a subsequent study, Lstibůrek et al. 
(2017) suggested that for Norway spruce in Norway, 
these 1800 trees should be selected from commercial 
forest plantations. With six such plantations, each con
taining a random mix of 6000 trees from open-pollinated 
seed orchard parents, there seems to be a sufficient can
didate base to achieve genetic gains comparable to those 
from traditional breeding programs utilizing full-sib 
progeny trials.

In this study, we did not focus on directly estimating 
genetic gains (which would require evaluating the top- 
phenotypic segment of the candidate population). 
Instead, we concentrated on analyzing the accuracy of 
h2, a reliable indicator of potential genetic gain. Theoreti
cally, the standard error of h2 from parent-offspring 
regression scales with the square root of twice the recipro
cal of the sample size under ideal conditions (Falconer and 
Mackay 1996). Our simulations, incorporating complex 
genetic architecture and additional population character
istics, indicate that a genetic variance decomposition 
based on approx. 1000 offspring is adequate, regardless 
of the number of selected parental “plus” trees (40 to 320).

Figure 3. Scenario 3 “Phenotypic selection”. The X-axis indicates the number of plus trees (np), and the Y-axis displays the true narrow- 
sense heritability h2 (black triangles with 95% CIs across 30 replications) alongside its respective estimate (green and pink dots for 
height and stem straightness traits). The red dashed line indicates the initial h2 values employed to generate the founder population 
(simulation input). The upper set of three graphs (a) illustrates height, while the lower set (b) depicts the stem straightness trait. The 
leftmost graphs correspond to a sample size of 500 (nr), the center graphs to nr = 1000, and the rightmost graphs to nr = 3000. (a) 
Scenario 3: Height and (b) Scenario 3: Stem straightness.
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However, using only 500 random offspring may com
promise the precision of h2 estimates, particularly when 
the ratio s2

d/s
2
a exceeds 0.2. If the dominance variance 

of certain traits is significant, larger sample sizes 
(around 3000 offspring) combined with fewer parents 
(less than 80) are necessary. Adequate family sizes are 
crucial for accurately capturing this component; other
wise, the h2 estimate is likely biased downwards. Under
standing the inherent variation in family sizes during 
natural random mating is crucial. A large number of 
parental combinations combined with variable family 
sizes affect genetic evaluation in forest tree breeding 
under open-pollination schemes, particularly when dom
inance variance is involved. For example, with 160 
parents, there are 160

2

( 􏼁
= 12,720 unique mating pairs. 

Assuming 1000 offspring, the mean family size is 
1000× 1

12,720 ≈ 0.079, and the variance of family size is 
1000× 1

12,720× (1 − 1
12,720 ) ≈ 0.079, meaning the var

iance is roughly equal to the mean.
We did not observe any complications arising from 

the negative additive genetic correlation between the 
two traits. However, the bias introduced by phenotypic 

selection of plus trees, as identified in our study, is sig
nificant and warrants discussion within the tree breed
ing community. Typically, recurrent tree breeding 
programs begin by selecting plus trees, i.e. superior phe
notypes, from even-aged unimproved stands. Breeders 
initially rely solely on individual phenotypic measure
ments, followed by systematic progeny testing to 
predict breeding values. They assume the selection is 
absent due to the lack of phenotypic and genotypic 
data from the broader founder population, i.e. natural 
stands (White et al. 2007). Hence during the genetic 
evaluation, the plus-trees are erroneously considered a 
random sample from the founder population. Our 
findings are relevant to all forest tree breeding pro
grams, not limited to those utilizing random mating. It 
is important to highlight that bias introduced by the 
initial sampling of parents (plus trees) persists in the sub
sequent breeding cycles, which involves genetic evalu
ations across multiple generations. The extend to 
which this bias is amplified or mitigated through 
additional rounds of selection warrants further 
investigation.

Figure 4. Scenario 4 “Genetic correlation”. The X-axis indicates the number of plus trees (np), and the Y-axis displays the true narrow- 
sense heritability h2 (black triangles with 95% CIs calculated across 30 replications) alongside its respective estimate (green and pink 
dots for height and stem straightness traits). The red dashed line indicates the initial h2 values employed to generate the founder 
population (simulation input). The upper set of three graphs (a) illustrates height, while the lower set (b) depicts the stem straightness 
trait. The leftmost graphs correspond to a sample size of 500 (nr), the center graphs to nr = 1000, and the rightmost graphs to 
nr = 3000. (a) Scenario 4: Height and (b) Scenario 4: Stem straightness.
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The rationale for the reduction of h2 following the 
phenotypic selection of parents is outlined by Falconer 
and Mackay (1996, p. 201–202); the effect of selection 
on additive genetic variance is proportional to the h2 

and the selection intensity. While this relationship is gen
erally known and not in itself a concern, the problem 
arises in real tree breeding scenarios where this initial 
selection is overlooked due to lack of data on the 
wider founder population.

A potential remedy could involve genotyping and 
phenotyping a larger segment of the founder popu
lation, using the G matrix in genetic evaluations, which 
can effectively capture non-additive genetic variance 
(Muñoz et al. 2014; Gamal El-Dien et al. 2016). Alterna
tively, one could address the issue by altering the distri
butional assumptions of the genetic evaluation model 
(Tempelman 1998). A third strategy, as proposed by Lsti
bůrek et al. (2018), involves comparing the parentage of 
a truncated subset of the offspring with that of the cor
responding truncated subset of the parental population. 
Unless such measures were implemented, the inherent 
bias will persist, and breeders will only be able to 

ascertain its negative direction, without a clear under
standing of its magnitude.

The bias identified in this study has significant practi
cal implications for forest tree breeding, with parallels to 
issues reported in other forest tree breeding contexts (Lu 
et al. 1999). When plus trees are selected solely on phe
notype without incorporating broader information from 
the founder population, additive genetic variance tends 
to be underestimated, impairing the accuracy of breed
ing value predictions. This negatively impacts selection 
decisions and slows the rate of genetic gain. As the 
bias accumulates over successive generations, the 
overall effectiveness of breeding programs is compro
mised. Furthermore, overlooking the effects of domi
nance variance, exacerbated by the variability in family 
sizes under open-pollination systems, further impairs 
genetic evaluations, potentially resulting in suboptimal 
selection.

The findings of this study are particularly significant 
for tree breeding in Nordic countries, where the regener
ation of commercial forests depends on open-pollinated 
seed pools from existing seed orchards comparable in 

Figure 5. Scenario 5 “Combined”. The X-axis indicates the number of plus trees (np), and the Y-axis displays the true narrow-sense 
heritability h2 (black triangles with 95% CIs calculated across 30 replications) alongside its respective estimate (green and pink dots for 
height and stem straightness traits). The red dashed line indicates the initial h2 values employed to generate the founder population 
(simulation input). The upper set of three graphs (a) illustrates height, while the lower set (b) depicts the stem straightness trait. The 
leftmost graphs correspond to a sample size of 500 (nr), the center graphs to nr = 1000, and the rightmost graphs to nr = 3000. (a) 
Scenario 5: Height and (b) Scenario 5: Stem straightness.
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size to those examined here. However, since many 
breeding programs in other countries focus on conifer
ous tree species, where BwB could be effectively incor
porated, the results of our study may have broader 
relevance within conifer breeding. The consistency of 
results across a wide range of parameters indicates 
that the implementation of BwB methods is likely to 
be robust, effective, and feasible within the region. The 
BwB approach enables the selection of superior trees 
directly from existing commercial plantations, while 
also managing the genetic diversity, enhancing the 
quality of the seed orchard as a source of genetic 
material, and assessing the extent of pollen and seed 
contamination. This comprehensive method holds 
promise for improving tree breeding outcomes.

Conclusion

In conclusion, considering forest tree breeding programs 
dependent on random mating schemes, we confirmed 
that the current operational sizes of parental and 
offspring populations align with previous recommen
dations and should yield reasonably precise estimates 
of h2. However, we observed a significant bias in h2 

due to dominance, which can be addressed by increas
ing the offspring sample size and reducing the number 
of parents. More concerning is the observation that phe
notypic selection introduces a significant downward bias 
in h2, necessitating further investigation due to its broad 
implications for the majority of tree breeding schemes.

In our future research, we plan to focus on the effects 
of epistasis and genotype-by-environment interactions 
on the accuracy of h2. Additionally, we will explore 
alternative methods to utilizing genetic relationships. 
Further research is necessary to address the bias associ
ated with phenotypic plus tree selection. The MoBPS 
software can handle real genomic data as input, 
enabling more accurate characterization of the genetic 
architecture of the studied traits (Pook et al. 2020). In 
forest trees, such approach is currently limited by huge 
genome sizes and still relatively sparse DNA marker 
coverage.
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