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Improving the Yield and Nutritional
Quality of Forage Crops
Nicola M. Capstaff* and Anthony J. Miller*

John Innes Centre, Norwich, United Kingdom

Despite being some of the most important crops globally, there has been limited
research on forages when compared with cereals, fruits, and vegetables. This review
summarizes the literature highlighting the significance of forage crops, the current
improvements and some of future directions for improving yield and nutritional quality.
We make the point that the knowledge obtained from model plant and grain crops can
be applied to forage crops. The timely development of genomics and bioinformatics
together with genome editing techniques offer great scope to improve forage crops.
Given the social, environmental and economic importance of forage across the globe
and especially in poorer countries, this opportunity has enormous potential to improve
food security and political stability.
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INTRODUCTION

Forage grasslands are used to feed livestock and globally it has been estimated that they represent
26% of the land area, and 70% of agricultural area (FAO, 2010). Such crops are significant
economically, as the European example shows (see Figure 1). Forage crops are usually grasses
(Poaceae) or herbaceous legumes (Fabaceae). Some tree legumes such as mulga (Acacia aneura)
and leadtree (Leucaena leucocephala) are also grown in desert and tropical grasslands (Muir et al.,
2011). In the tropics, popular grasses include Napier grass (Pennisetum purpureum), Brachiaria,
and Panicum species. In the poorest parts of the world livestock production is critically important
for smallholders’ livelihoods. Sub-Saharan Africa is an example and frequently women maintain
the livestock production systems (Njuki and Sanginga, 2013). In temperate climates, the main
grasses include bentgrass (Agrostis spp.), fescue (Festuca spp.), ryegrass (Lolium spp.) and orchard
grass (Dactylis spp.) or hybrids of these. For example, Festuca and Lolium hybrids has been
developed from 1970s (Ghesquière et al., 2010) giving rise to crops such as Festulolium pabulare
which combines the superior forage quality of Lolium multiflorum with the persistence and stress
tolerance of Festuca arundinacea. Some maize (Zea mays) cultivars have been specifically bred
for forage. The commonly cultivated herbaceous legumes are trefoil (Lotus corniculatus), medics
(Medicago spp.), clover (Trifolium spp.) and vetches (Vicia spp.). Brassica forage species include
cultivars of oilseed rape (Brassica napus) and kale (Brassica oleracea). Fodder beet (Beta vulgaris) is
another temperate forage. The combination of forage crops grown in any country varies depending
on climate and livestock needs, however, the perennial legume lucerne or alfalfa (Medicago sativa)
is the most widely cultivated as it can be grown with both temperate and tropical grasses, or as
a standalone crop. This is a huge topic to review as there are so many species grown across the
world, therefore we have chosen to focus on a few examples, the tropical grasses Pennisetum and
Brachiaria, and more prominently the temperate crops Lolium and alfalfa.
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FIGURE 1 | Total European Union output for all crops in 2016 from Eurostat
data (Helminger et al., 2016). This includes a substantial portion for forage
crops, comparable to the production of fruits and wine.

In an ideal world, we would all eat pulses rather than the
animal products generated from them, as grain legumes are the
food that offers the most sustainable future (Foyer et al., 2016).
There is continued pressure from many groups to lower human
consumption of animal products due to livestock efficiency issues
and for human health (Cramer et al., 2017). There is a lack
of reliable statistics for the proportion of adults adopting a
plant-based diet, but it is estimated to be between 1 and 10% of
the population in developed western countries such as within the
European and United States (Mcevoy and Woodside, 2010) and
studies support these diets as healthy and nutritionally adequate
(American Dietetic Association and Dietitians of Canada, 2003).
However, the consumption of livestock products can be regarded
as important to a healthy diet due to their high nutrient
density (CAST, 2013) regardless of the numerous efficiency and
environment concerns (Di Paola et al., 2017), particularly true
in developing countries where undernourishment incidences are
estimated as ∼4–22% of the population (Alexandratos et al.,
2006). Livestock production can convert non-edible crops such
as the forages into human food, with sustainable intensification
possible when inputs and outputs of the system are balanced
(Derner et al., 2017).

Moreover, the cultural and social significance of livestock
cannot be underestimated and the trend of increased global
production is set to continue (Thornton, 2010). Livestock feature
prominently across all cultures both in cuisine, but also music
and literature. Additionally, in many developing countries the
rearing of livestock such as cattle and goats are vital in times
of hardship; many view animals as living ‘piggy-banks,’ that can
for example pay the family school fees (Herrero et al., 2013).
Therefore, in practice livestock production is set to continue
throughout the world and forage crops will be grown for coming
decades. Plant research has chiefly focussed on grain crops, but
here we argue that there is enormous potential for improving
forages. Improving the yield and nutritional quality of forage
crops can help mitigate the unsustainable negative impacts of
livestock production.

FORAGE CROPS IN LIVESTOCK DIETS

Forage crops can be feed directly to livestock or can be
processed by partial drying or pre-digestion. Because of this
processing, animal feeds can be categorized as either bulky
feeds or concentrates. Bulky feeds are also termed forage
and are produced from grass, cereal and legume cropping as
described above, such as alfalfa, Lolium or a mixture of the
two. This forage can be provided to animals directly through
grazing pasture land or in a processed form, such as hay
(where water content is >15%) or dried (pelleted) biomass.
Concentrates are generally cereal, oilseed and legumes seeds, or
bi-products of their preparation for human food, biofuel and
textile. They can also include high energy feedstuffs such as
sugar-rich crop molasses and fats of animal origin, for example
fish by-catch discards. In industrialized countries, production of
both these categories of feed can surpass the amount produced
for plant-based food for human consumption; in United States
over double dry matter per-capita per year (DM cap/yr.) is
produced for animal feed than for foodstuffs (Krausmann et al.,
2008).

Livestock diet can therefore be exclusively forage or
largely forage with concentrate supplementation. Concentrate
supplementation is used to compensate nutritional deficiencies
in the forage supply, increase animal performance such as milk
production or at particularly challenging periods of development,
for example calving. Due to most livestock diet being of
forage this review focuses on the main crops used worldwide
and will not discuss concentrates. The amount plant science
has contributed to improvements in concentrates has been
underappreciated and undervalued in literature, however, the
role these crops have on livestock production has been reviewed
previously (Erb et al., 2012).

Forage crops can be grown in mixed species cultivation
to provide nutritional and environmental benefits. By
offering livestock mixed grazing pastures or blending feeds,
nutritional quality can be enhanced. For example, alfalfa is the
highest-yielding perennial forage legume and produces more
protein per unit area than other forage legumes and so can be
grown alone or in combination with a range of different grass
species. Well-managed alfalfa is normally grown successively for
3 or more years, but if harvested too late in the season the crop
cannot survive the winter (Bélanger et al., 2006).

FORAGE NUTRITIONAL CONTENT

Digestibility
The nutritional status of a forage crop depends upon the
concentration (and ratios) of carbohydrates, proteins, and lipids.
The composition of these organic nutrients determines the
digestibility (D-value) of each crop which along with mineral and
vitamins provides the amount of energy which can be derived
by the animal (ME measured in MJ/kg DM) (Osbourn, 1980).
Such calculations are becoming increasingly prevalent when
growers are deciding which crop to grow based and particularly
dependent on if the animal is non-ruminant or ruminant.

Frontiers in Plant Science | www.frontiersin.org 2 April 2018 | Volume 9 | Article 535

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00535 April 23, 2018 Time: 18:3 # 3

Capstaff and Miller Yield and Nutritional Quality of Forage Crops

In forage crops 50–80% of DM is carbohydrate; if this
percentage is too low then supplements of grains can be added.
The primary types of carbohydrate are the insoluble structural
saccharides cellulose and hemicellulose, or the storage forms
such as starch and water-soluble polymers (e.g., fructans). These
are degraded into simple sugars through cleavage of glycosidic
bonds, either by the animal itself (non-ruminant and ruminants)
or via microbial digestion and subsequent animal absorption
(ruminants only). Different ratios of carbohydrates within the
forage crop will have altered downstream digestibility for the
animal, especially if the cell-wall structure constrains digestion
by the microbial population or limits plant cell wall penetration
(Weimer, 1996). Although lignin, a polyphenolic compound
within forage, is not a carbohydrate, it has a dramatic impact
on the digestibility of cellulose hemicellulose; lignin binds with
structural carbohydrates and cell wall proteins and reduces
nutrient availability. For forages increased lignin concentration in
the growing crop will increase the percentage of indigestible DM.
Of the major forage crops grown globally grasses, particularly
Lolium perenne, have high digestibility due to high soluble sugar
content alongside low lignin content (Ruckle et al., 2017).

Animal digestion of simple carbohydrates produces
monosaccharides which can be readily metabolized. In
ruminants, only microbial digestion of structural carbohydrates
produces simple sugars which are subsequently metabolized to
pyruvate. Pyruvate is absorbed by the animal and is metabolized
further into volatile fatty acids (VFAs) which are a major energy
source, (Bergman, 1990). Ruminants absorb VFAs in their
rumen, and the rate of this is dependent on the concentration
of individual VFAs, rumen pH and the absorptive area in the
ruminal lining.

Protein
Nitrogen (N) availability to animals is predominantly from forage
proteins and are estimated using crude total protein Kjeldahl
measurements. Protein is usually abundant in the major form
of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO),
although relative amounts vary between species (Wallace et al.,
1997). This is especially true when comparing content in grasses
with herbaceous legumes, with red clover (Trifolium pratense),
white clover (Trifolium repens) and lucerne (Medicago sativa)
grown widely due to their high protein value (Ruckle et al., 2017).
Again, lignin will severely affect the digestibility of protein. Some
micronutrients like proanthocyanidins or condensed tannins
also change the digestibility of protein, but they inhibit protein
degradation through binding. This can be advantageous as rapid
protein degradation is causative of bloat, however, too high a
tannin content will mean protein passing through the digestive
track is unabsorbed and therefore a loss in nutrition value (Lees,
1992; Piluzza et al., 2014). This means there is a balance between
reduced bloat and animal productivity (Mueller-Harvey, 2006).
All grasses contain little or no proanthocyanidins, whereas many
legumes especially big trefoil (Lotus pedunculatus) and Sericea
lespedeza (Lespedeza cuneata) can have levels as high as 18%
DM (Barry and Manley, 1984; Mueller-Harvey, 2006). Other
N-containing compounds can be found in forage such as nucleic
acids, nitrate and ammonia (Wallace et al., 1997).

Lipids
Lipids in forage crops are mostly found as polyunsaturated
fatty acids (PUFAs) in the range of 10 – 30 g kg−1 (Hatfield
et al., 2007) of which the most abundant is α-linolenic acid
[62% total lipids (Clapham et al., 2005)], with linolenic and
palmitic acid also being present (Harfoot and Hazlewood, 1988).
These dietary lipids are important in final animal product
quality; forage diets with lower PUFA levels than cereal diets
can produce leaner meat (Wood et al., 2004; Van Elswyk and
McNeill, 2014). Moreover, fresh forage has been shown through
numerous studies to produce milk with lowered PUFA content
and increased trans-fatty acids (Elgersma et al., 2006; Chilliard
et al., 2007). Studies have been used to profile PUFAs across forage
species, with grasses tending to have more α-linolenic acid when
compared to legumes and legumes in turn having higher linolenic
acid content (Boufaïed et al., 2003). Striking differences in PUFA
content can be seen within species through profiling cultivars,
and moreover the harvest period and its environment (Elgersma
et al., 2003; Clapham et al., 2005). For example Lolium perenne,
Festuca pratensis (meadow fescue), and Festulolium hybrids of
the two have been shown to vary not only between species at the
beginning of their growth season, but more prominently between
individual cutting regimes (Dewhurst et al., 2001).

Trace Elements
Minerals and trace elements from forages are important for
maintaining livestock health. As there is a move toward using
fewer antibiotics in animal production the nutritional balance
of feed takes on additional importance. Zinc is particularly
important for the immune system and supplements can be
added to animal feed, but addition of too much results in
wasteful excretion, reviewed in Brugger and Windisch (2015).
Contrastingly, avoiding accumulation of toxic minerals can also
be important for forage crops. Getting the balance right is crucial
as low levels of selenium can be beneficial for livestock, but
high concentrations are toxic (Zhu et al., 2009). Some elements
accumulated in plants can make them unpalatable for livestock,
but the ability of forage crops to grow fast and quickly recover
from cutting makes them ideal crops for phytoremediation [e.g.,
Napier grass, (Ishii et al., 2015)].

Biomass Production
Probably the most important trait of any forage crop is rapid
biomass production, as crops are either cut or grazed directly, and
nutritional quality depends on the rate of biomass production.
Intensive production with faster growth often decreases this
nutritional, but this depends on the species grown and some
cultivars have better recovery from defoliation. Plant height
correlates well with biomass for most crops (e.g., maize) and
this factor together with ground area cover are the criteria
underpinning methods to assess yields (Freeman et al., 2007).

Many plant species can be grown for forage production, but
the ability of the shoot meristem to respond with increased
growth after cutting is essential. In some forage species,
aboveground grazing or cutting has been correlated with
increased root exudation (Paterson and Sim, 1999). This flush of
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carbon release by roots can stimulate rhizosphere microbes that
in turn help to mobilize soil nutrients to sustain aboveground
regrowth. Maintaining an optimal nutrient and water supply is
very important for forage biomass production. For example, the
importance of N supply for re-growth after cutting grass has been
demonstrated (Dawson et al., 2004). Furthermore, the previous
N status of alfalfa influences its regrowth ability (Meuriot et al.,
2004, 2005).

IMPROVING FORAGE CROPS

Cultivar Breeding
Due to the relatively recent cultivation of forage crops compared
to other agricultural plant species, there were few improvements
before 1900. Recently, agricultural trends and the global
economic importance of forages, mean new cultivars have been
bred. These improvements are helped by many closely related
wild populations which can be used in development of new
lines (Boller and Green, 2010). The most desirable improvements
are increasing dry matter yield (DMY), crop durability and
resistance to diseases particularly by pathogenic fungus and
pests particularly nematodes, digestibility of DM, and nutritional
content of this tissue. Arguably the greatest improvements have
been made in breeding of Medicago spp., Trifolium spp., Lolium,
and Festuca. Large scale breeding programs include testing of
these crops, such as NE1010, a multistate cooperative effort of
15 institutes across 12 North-eastern states of United States
and Canada (NIMSS, 2017). Similar tropical grass breeding
programs include the Brachiaria partnership between the
International Centre for Tropical Agriculture based in Colombia
(C.I.A.T.), the Ugandan National Livestock Resources Research
Institute (NaLIRI), the Tanzania Livestock Research Institute
(TALIRI), the Institute of Agricultural Research of Mozambique
(IIAM) and the Brazilian Agricultural Research Corporation
(E.M.B.R.A.P.A.) (CIAT and CGIAR, 2015) which is being
conducted across Eastern and Southern Africa.

Breeding programs for forage crops are fraught with
difficulties. Individual plants have high genotypic and phenotypic
heterogeneity with many species being polyploid, a problem
which is exacerbated by in-breeding across many grasses, and
few agronomic traits being linked to distinct genes (Poehlman,
1987; Vogel and Pedersen, 1993). Studies have focussed on
this problem in specific legumes (Jahufer et al., 2002; Riday
and Brummer, 2007; Collins et al., 2012; Luo et al., 2016) and
grasses (de Araüjo et al., 2002; Piano et al., 2007; Blackmore
et al., 2016). Regardless of these problems there have been some
major developments in breeding lines for forages, especially
in Medicago and Lolium. Figure 2 shows a brief historical
timeline of Lolium cultivation, and includes the current breeding
regimes for grasses; future breeding possibilities are also included
and discussed in later sections. One of the most interesting
breeding developments is the exploitation of closely related
species of Lolium and Festuca (Thomas and Humphreys, 1991;
Humphreys et al., 2003) to create hybrid Festulolium cultivars.
These cultivars have the high quality characteristics of Lolium
combined with the stress tolerance and persistence found in

Festuca (Ghesquière et al., 2010). Backcrossing of Festulolium
have generated novel hybrids with more stable protein content
when compared to parental lines (Humphreys et al., 2014).
Advances in phenotyping are making it easier to include the
quantification of characteristics in the field; such as high level
imaging of growing crops to accurately determine later traits like
biomass (Walter et al., 2012).

New cultivars are being helped by advances in sequencing
methods that can provide more transcriptomic data (Barrett
et al., 2009; Pfeifer et al., 2013; Yates et al., 2014), including the
identification of SNPs which may be investigated to improve
Lolium (Blackmore et al., 2016) and Trifolium (Nagy et al.,
2013). Draft genomes for such crops and cultivars are becoming
increasingly common (Byrne et al., 2015; De Vega et al.,
2015; VanBuren et al., 2015) as well as more evidence that
model species like Brachypodium can direct research (Brkljacic
et al., 2011; Rancour et al., 2012). Such research is providing
clues to candidate genes which could be used for nutritional
enhancement.

Candidate Genes for Nutritional
Enhancement
Identification of potential candidate genes is usually through
quantitative trait loci (QTL) analysis or marker-assisted
selection (MAS) provided from the above completed genomes.
Those identified are studied in relation to biomass and
growth traits; in M. sativa QTL has been used for lodging
resistance and vigor (McCord et al., 2014), plant height
and regrowth following harvests in association with MsaciB
(Robins et al., 2007), candidate gene analysis for flowering
and stem height through CONSTANS-LIKE (Herrmann et al.,
2010) and biochemical markers of ROS resistance genes for
drought tolerance correlated to DM (Maghsoodi et al., 2017).
The expression of other ROS associated genes of the Iron-
Superoxide Dismutase family (Myouga et al., 2008) have also
been linked to increases in DM in both the legume M. sativa
(McKersie et al., 2000) and grass Lolium cultivars (Warnke et al.,
2002).

In Lolium, transcriptomics showing differentially expressed
genes between wild-type and a dwarf mutant enabled
identification of three key genes associated with dwarfism
(Li W. et al., 2017), which were subsequently used for forward
screens. Markers are used to infer both phenotypic traits and
to track inheritance to aid breeding. For instance chloroplast
SSRs have been investigated in Lolium through a similar
technique as above (Diekmann et al., 2012). A thorough
re-annotation of the model forage M. truncatula genome has
also identified hundreds of small, secreted peptides coded by
both macronutrient-responsive and nodulation-responsive
genes, which could aid reverse genetics for improving many
forage crops, especially M. sativa (de Bang et al., 2017). Iterative
mapping software such as BioMercator (Sosnowski et al.,
2012) has been used in Lolium to perform meta-QTL analysis
using readily available published data (Shinozuka et al., 2012),
consequently providing new candidate genes from previous work
including orthologs of rice amino acid biosynthesis genes and
a marker for reproductive traits, showing how new algorithms
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FIGURE 2 | Cultivation timeline of Lolium perenne (perennial ryegrass), including current typical breeding regime and future possibilities for breeding programs. The
historical timeline is described in brown boxes (Haber, 2002; Hirata, 2011), and general trends in green areas, including modern grass breeding regime as used
across Europe (Bruins, 2016).

can exploit old data. Moreover, BioMercator used to decipher
flowering time and height in M. truncatula (Julier et al., 2007)
directly implicated the above research into CONSTANS-LIKE
in M. sativa (Herrmann et al., 2010; Julier et al., 2010). Such
potential ease for transferring model plant knowledge to forage
crop research is further discussed below.

Despite the need to ensure optimal nutritional content
especially in the end-product feed, rapid vegetative biomass
accumulation is the most desirable trait of a good forage crop,
especially those which undergo extensive cutting throughout the
growing season. Due to this phenomenon, candidate genes for
improving the crops are associated with either photosynthesis or
nitrogen use efficiency (NUE). More generally for resistance to
biotic and abiotic stresses there is also a huge opportunity for
improving traits in forage crops using our genetic knowledge
from model plants (see Figure 3). Figure 3 summarizes some of
the traits that can be considered for all forage crops.

Such improvements in traits could be aided by achievements
in transformation and genetic marker techniques. Reproducible
and high efficiency transformation has been developed for
temperate cultivars of Festuca (Wang and Ge, 2005; Zhang et al.,
2006) and Lolium (Bajaj et al., 2006; Badenhorst et al., 2016);
and more recently for some of the tropical grasses such as
Pennisetum (Gondo et al., 2017) and Brachiaria (Cabral et al.,
2015). Some examples of gene editing forage crops to confer stress
tolerances have been successful in aiding both biomass increases

but also nutritional quality. Transformation of M. sativa with
the Arabidopsis Enhanced Drought Tolerance1 gene produced
plants with not only increases in root length, shoot height and
vegetative biomass, but also increases in proline, soluble sugar
and chlorophyll content under drought stress when compared to
wild-type (Zheng et al., 2017). Importantly these increases were
shown both in the laboratory but also in field conditions. This
study also identified the increased expression of many interesting
genes, including M. sativa Heat Shock Protein23 (HSP23), a
gene already shown to enhance abiotic stress tolerance in both
Nicotiana tabacum and Festuca (Lee et al., 2012a,b) along with
other members of the MsHSP family (Li et al., 2016; Li Z. et al.,
2017). Similarly, for the Ethylene Response Factor (ERF) family
studies have been shown that introducing the M. sativa gene into
other plants can confer enhanced resistance to salinity; MsERF9
and MsERF11 in Nicotiana and Arabidopsis, respectively (Chen
et al., 2012a,b).

Protein and N Budget
Forage NUE is a target for breeding, particularly as protein
content of crops is so valuable. Protein accumulation is linked
to N status and when the supply is supra-optimal greater storage
occurs. When compared with grain crops that have been bred for
high seed starch, forage crops often require N in greater amounts
due to their increased growth, storage capacity and higher fiber
content (Parsons et al., 1991). For forage crops, it is the leaf
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FIGURE 3 | Targets for improved forage crops.

tissue biomass that is harvested rather than grains/roots/tubers.
Principally NUE for forage crops can be based on N utilization
efficiency (NUtE) as we are interested in the highest achievable
biomass of the shoot which will form the content to be dried
for feed production (Xu et al., 2012). Not only does this include
biomass, but also the relative N levels in this tissue; it is not
enough to only have a high yield of biomass in the shoots, it

must also yield optimal amounts of N. Moreover, when looking
at the effect of fertilizer use we are also interested in how both
the biomass and N status change on application and thus also
N uptake efficiency (NUpE). Forage crops offer challenges for
NUE as there is a requirement for optimal yield of shoot biomass
with a high N content (NUtE) while also optimizing N fertilizer
acquisition (NUpE) throughout the growth season.
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FIGURE 4 | Phylogeny of temperate legumes and grasses for Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS), also including Arabidopsis
thaliana and Marchantia polymorpha as outliers. Both known and predicted coding sequences for all species of interest were gathered from GenBank, PLAZA 3.0
Dicots and PLAZA 4.0 Monocots. Multiple sequence alignments (MSA) were performed using MAFFT v7 (Katoh and Standley, 2013) with a E-INS-I iterative
refinement method and bootstrapping = 100. The phylogeny was built using Newick format in iTOL v3.4.3 (Letunic and Bork, 2007) and a radial phylogenetic tree
produced. The tree was color coded to show model species, human food crops and forage crops for both legumes and grasses, although it should be noted that
many can overlap in their uses.

As NUE is an important criterion for biomass improvements,
many genes relating to N acquisition or metabolism have been the
subject of study in model systems. Additionally, genes important
in carbon metabolism have also been the focus, due to the
links between C:N ratios for plant growth (Jaradat et al., 2009).
Despite the long evolutionary divergence between grasses and
legumes, many key candidate genes have high genetic similarity,
meaning one can use known genes which effect a trait in a
forage crop from one species and investigate it within another.
For example, a range of vegetative N storage proteins have
been identified and the reviewed for leaves (Muntz, 1998) and

roots (Bewley, 2002). To illustrate this further, the phylogeny
in Figure 4 is the known and predicted coding sequences for
rbcS including the model species Arabidopsis thaliana, many
significant grass and legume crops. Many of the forage crops have
high similarity in their coding sequence to more well-studied
crop species. For example, Medicago and Trifolium rbcS sit closely
to the legume species which have their genomes sequenced
[Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus,
Medicago truncatula, and Phaseolus vulgaris (Jacob et al., 2016)].
Such sequences can provide a wealth of potential genes of interest
for breeding programs (Araújo et al., 2015; Rauf et al., 2016). For
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example, investigation of Heat Shock Protein in M. truncatula,
found a homologous HSP70 in M. sativa and had a substantial
role in stress tolerance when conferred to A. thaliana (Li Z. et al.,
2017).

In forage crop vegetative biomass, the most important
nutrients for livestock are proteins and water-soluble
carbohydrates (WSCs), and ideally the post-harvest quality
of these should be maintained. There has been considerable
interest in developing organ specific proteome reference maps
for stems and leaves. The dominant proteins in these tissues are
photosynthetic enzymes such as RuBisCO and RuBiCO small
unit (rbsS), which for M. truncatula make up ∼28.9% of leaf
tissue, or other carbon-fixation genes for example glyceraldehyde
3-phosphate dehydrogenase and triose phosphate isomerase,
with structural protein such as lignin biosynthesis being more
concentrated in stems (Watson et al., 2003). As the D-value of
forage is mostly linked to cell wall concentration and a reduction
of this can aid digestibility (Jung and Allen, 1995; Jung et al.,
2012), some proteomes have looked even more specifically at
such tissues (Gokulakannan and Niehaus, 2010).

Some research has focussed on transgenic approaches to
increase and enhance amino acids and proteins. As many forages
have low concentrations of the sulfur-containing amino acids of
methionine and cysteine, both important in animal and human
nutrition (Ball et al., 2006), some studies have specifically aimed
at increasing these levels by over-expression. These have included
using lupins (Lupinus albus) (Molvig et al., 1997; Tabe et al., 2010)
and soybean (Dinkins et al., 2001; Tabe and Droux, 2002), used as
forage sources.

Apart from cultivar differences which can be improved with
breeding programs or specific transgenic approaches, the most
significant changes in nutritional content is due to stresses
(Araújo et al., 2015). Consequently, stress proteomes have also
been used for vegetative tissue; lupin stem proteins have been
analyzed under water stress to show increases in serine protease
and cysteine protease required for remobilization of proteins
(Pinheiro et al., 2005); in grasspea (Lathyrus sativus) seedlings
under either salinity, low temperature or ABA stress gave rise to
the identification of 48 stress-responsive proteins (SRPs) which
include those important dominant proteins discussed above
(Chattopadhyay et al., 2011); in M. sativa drought conditions
showed remobilization of RuBisCO-derived N could compensate
for the decreases in N assimilation (Aranjuelo et al., 2011).
Moreover, through harvesting regimes, forage crops undergo
extreme stress which has shown to cause the remobilization of
vegetative storage proteins (VSPs) to boost new shoot regrowth
in both Medicago and Trifolium as well as being important
for cultivars with better cold tolerance (Avice et al., 2003),
whereas Lolium has shown how defoliation increases the relative
proportions of certain proteins, particularly asparagine and
glutamine (Bigot et al., 1991).

Finally, the N consumed by livestock is recycled and increasing
ruminant productivity is a major target for as the conversion
of plant to microbial protein is inefficient. It was estimated
that as much as 70% of the plant N eaten by animals for
milk or meat production is excreted as ammonia or urea to
the environment (MacRae and Ulyatt, 1974; Kingston-Smith

et al., 2008; Kingston-Smith et al., 2010). Furthermore, the
process of rumen fermentation is important for the generation
of greenhouse gasses like methane (Bannink et al., 2008; Dijkstra
et al., 2011).

Rhizosphere Microbiome
The impact of genomics extends beyond the crop plants to
their environmental interface. For example, the rhizosphere
microbiome is likely to be a future target for improving the
nutritional quality of crops. Epiphytic bacteria living on and
in the plant, may be important for crop health and nutrition,
and some microorganisms can fix atmospheric N within legume
root systems. Bacteria living with plants may be able to assist
in digestion and absorption of forage eaten by livestock. These
bacteria may improve the uptake of trace elements in the
animal gut by the production of specific binding molecules
and/or siderophores. In the soil, the rhizosphere microbiome
is important for nutrient cycling and uptake, particularly
in low input systems like those grown in the tropics. The
inoculation of new forage crops with beneficial microorganisms
is likely to be a target for research and use in future crops,
coupled with rhizosphere microbiome research of root exudate
composition.

The root is known to directly modify the rhizosphere
population by altering the chemical constituents of root exudates.
For example, the roots of the tropical grass Brachiaria specifically
produce a chemical shown to inhibit nitrifying bacteria and to
specifically block ammonia-oxidizing pathways in soil bacteria,
the first step in the process of converting ammonium to nitrate
(Byrnes et al., 2017). Soil ammonia-oxidizing bacteria quickly
convert urea or NH4

+ fertilizer to NO3
−. Soil N form is

fundamental for crop acquisition, as NO3
− is mobile and

readily leached while NH4
+ binds. Nitrification inhibitors have

been identified in root exudates from several legumes and
grasses including sorghum and rice, but by far the largest
activity was detected in the tropical grass Brachiaria humidicola
(Subbarao et al., 2009). In rice, the ability of root exudates
to inhibit nitrification varied between cultivars from 5 to
50%, but was not significantly higher in three ancestral lines
(Tanaka et al., 2010). The biological nitrification inhibitor
(BNI) activity of root exudates has been assayed using a
recombinant luminescent reporter ammonia-oxidizing bacteria
Nitrosomonas europaea (Subbarao et al., 2006). In Brachiaria,
roots exudate the cyclic diterpene “brachialactone,” (Subbarao
et al., 2009); brachialactone has a 5-8-5-membered ring system
and a γ-lactone ring and contributed to 60–90% of the BNI
activity released from the roots of this tropical grass. This
exciting example offers the potential for transferring this trait
to other forage crops to improve NUE. In the future synthetic
pathways to produce plant nitrification inhibitors will be fully
elucidated, providing the opportunity to capture this trait in
forages and transfer to other crops to improve yield and nitrogen
acquisition.

Digestibility
As protein digestion and uptake in livestock is directly related
to energy availability (ME) (Nocek and Russell, 1988; McCarthy
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et al., 1989) it is important to increase WSC in many forage crops,
especially grasses (Miller et al., 2001). In Lolium WSCs include
fructans which are the most important storage polysaccharide
and thus improved metabolism of fructan from sucrose can help
improve the D-value (Chalmers et al., 2005). Use of distinct
Fructan:Fructan 6G-fructosyltransferase sequence variants has
shown to increase fructan levels at warmer temperatures in
Lolium, thus hoping to aid development of high sugar-content
grasses even at changing climates (Rasmussen et al., 2014). The
amounts of WSCs are strongly associated with the N availability
to the root (Roche et al., 2017) highlighting the importance of C:N
balance in vegetative tissue (Louahlia et al., 2008). Furthermore,
the amounts of WSCs varies between varieties as well as within
the environment; Lolium cultivars AberMagic, AberDart, and
AberElite all had highest growth rates correlated to highest WSC
concentration during spring/summer, corresponding to high
N availability from the roots alongside optimal photosynthesis
conditions (Winters et al., 2010). Recent advances in the
identification and manipulation of photosynthesis promoters for
both Lolium perenne RBCS and Chlorophyll a/b Binding (CAB)
(Panter et al., 2017) has provided transgenic lines for assessing
increases in yield, fiber and, more importantly for digestibility,
the fructan concentrations in both pseudostem and leaf blades
in field trials (Badenhorst et al., 2018). Such work provides a
platform for future studies to identify promotors important in
other nutritional traits.

The amounts of resistant starch are important for the
digestibility and nutritional content of forage crops. Resistant
starch (RS) generally has lower digestibility until it reaches the
large intestine (Englyst et al., 1999), where in ruminants more
digestion can occur (Raigond et al., 2015). Research studies
have shown that M. sativa has advantages as a feed source over
cereals for enhanced D-value (Giuberti et al., 2018). One major
difference between dietary RS is that it is seen to have advantages
in the human diet by providing more fiber, but disadvantages
in livestock feed for non-ruminants as it remains undigested.
In general, lower RS will improve the digestibility of forage
crops for both ruminant and non-ruminant livestock. As a crops
D-value is closely linked with its starch, protein and lignin
content, genomic studies have begun large-scale genome-wide
association studies (GWAS) to confirm correlations across a
range of traits, such as using three distinct alfalfa cultivars with
a high-throughput genotyping-by-sequencing approach (Biazzi
et al., 2017). However, this study did highlight that differences in
SNPs associated in different tissue types (shoots and leaves) can
vary in correlation with traits such as protein content, and so care
must be taken when using GWAS to aid crop improvements.

Another substantial nutrient in forage crops is that of
proanthocyanidins or condensed tannins (CTs). CTs bind to
protein making it unavailable to digestion for ruminants until it
reaches the rumen, and thusly an important trait in increasing
the D-value of a crop (Min et al., 2003), although too high a CT
content can be harmful restricting fermentation, especially in low
leaf protein content species. A compromise is therefore desirable,
with the moderate CT of 2–4% of the forage biomass giving
the optimal D-value (Dixon et al., 2005). Whilst some species of
legumes have optimum levels of CTs such as Lotus corniculatus,

others such as Onobrychis viciifolia and Trifolium ambiguum are
often poor choices for forage in many climates (Min et al., 2003;
Baker, 2012); which means there is more scope to increase CTs
concentrations in high yielding species where they are low such
as M. sativa and Trifolium repens rather than increase growth
traits aforementioned (Burggraaf et al., 2006; Salunkhe et al.,
2017).

As the CT synthesis pathway has been well-characterized
in Arabidopsis with the transcriptional regulators R2R3 MYB,
bHLH, and WD40 protein identified as having a central role
in final CT content (Lepiniec et al., 2006). Such knowledge can
be used to manipulate forage crops. The R2R3 MYB homolog
MtPAR in the M. truncatula seed coat has been characterized and
hairy root transformation in alfalfa resulted in the accumulation
of CTs to the level of ∼20 mg/g shoot biomass (Verdier et al.,
2012), although this is still below the desirable concentration.
A similar study showed that expression of the TaMYB14
transcription factor from a low-yielding forage activates CT
biosynthesis in both Trifolium and Medicago (Hancock et al.,
2012). Other approaches have involved characterizing early
steps of CT biosynthesis in M. truncatula in the hope to later
target crop relatives (Pang et al., 2007), whilst others have
looked at how relative amounts of CT differ between leaves
and higher concentration containing flowers to see if changing
flowering in Trifolium could improve its D-value (Burggraaf
et al., 2008). There has been an effort to engineer better
digestibility in some forage cultivars (Wang and Brummer, 2012)
and microbial pre-digestion after cutting and before feeding,
including microbial supplements (Boyd et al., 2011; West and
Bernard, 2011; Elghandour et al., 2015), can be used to enhance
this.

Biomass Production
As biomass yield is the main target for forage crop improvement,
more rapidly growing cultivars can be targeted for breeding.
Studies have consequently focussed on heading date (Fe et al.,
2015) and flowering time regulation (Skøt et al., 2011; Shinozuka
et al., 2012) in Lolium by developing Genomic Prediction
models and QTL mapping as described previously (Nuñez
and Yamada, 2017). Manipulating genes involved in delayed
senescence has been targeted for increasing biomass yields.
The introduction of the 5′ flanking region of the Zea mays
cysteine protease gene SEE1 in Lolium multiflorum has shown
this promoter region to increase leaf lifespan by approximately
8–16 days (Li et al., 2004). A similar study using the Arabidopsis
Senescence-Associated Gene12 (SAG12) promotor also delayed
senescence in M. sativa with notable chlorophyll and yield
increases even after 3 months of growth (Calderini et al., 2007).
A final example is the expression of the Panicum virgatum
NAC1 and NAC2 transcription factors in Arabidopsis atnap
lines (mutants with defective senescence) to restore wild-type
phenotype, predominantly measured using total chlorophyll
concentrations (Yang et al., 2015).

However, fast growth must also be coupled with the ability
of the plants to respond to cutting by providing rapid regrowth.
Growth rates and recovery from cutting are traits that are
relatively easy to select for in breeding trials, and have been
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of regular interest to researchers for many decades in both
Lolium and Medicago (Wilman et al., 1977; Vance et al., 1979).
In addition, cutting experiments using 13C and 15N in both
Lolium and Medicago have shown how the soil is affected
both for dissolved organic C and N, and microbial biomass,
demonstrating that management schemes can be critical to
subsequent soil health (Schmitt et al., 2013). An ability to rapidly
regrow may increase the susceptibility of the plant to insect
and pathogens and this is worthy of further investigation. The
relationship between tissue wounding and plant immunity is a
topic that is quickly developing and there is now good evidence
that tissue growth rate is closely linked with immunity (Huot
et al., 2014).

Thusly, management schemes for forage crops are very
important for yield. For example, choosing when to cut or graze
a crop is crucial for subsequent regrowth of the plant (Karn et al.,
2006; Asaadi and Yazdi, 2011; Bumb et al., 2016). To assist in
this choice there is scope for the use of molecular markers, with
the future possibility of a PCR test for the optimal time harvest
based on the expression of candidate genes like storage proteins.
Such tissue testing of crops can also be used for decisions on the
timing of fertilizer applications as the two evaluations are made at
around the same time. There is scope to identify a suite of marker
genes that can be used to help decide when these key decisions
are made.

Mixed cropping schemes are already widely used for forage
crops and there are clear advantages in growing legumes and
grasses together. Legumes increase soil N through their N
fixation symbiosis with Rhizobium, with their biological nitrogen
fixation ranging from 32 to 115 kg ha−1 (Iannetta et al., 2016).
This can in turn decrease subsequent fertilizer use for crops
grown thereafter, a reduction between 23 and 31 kg N ha−1

(Preissel et al., 2015). Numerous intercropping regimes have been
tested including modeling of various climatic and soil texture
parameters (Bachinger and Reining, 2009). Transfer of N from
legume to crop, including in grasslands, has been investigated
(Pirhofer-Walzl et al., 2012). However, it is still unknown how
this interaction affects N movement and leaching through the
soil profile. Such an investigation is required to give evidence of
environment changes as well as crop productivity. Mixed species
cultivation also has advantages for disease and extreme weather
resistance as the susceptibility of the plants to these stresses varies
between cultivars and species. Forage breeding has focussed on
monoculture selection regimes and there is scope for better mixed
species crops that could be included in trials for new varieties.
Some advantages and disadvantages of mixed forage crops are
summarized below in Table 1.

Growing forage crops for improved nutritional quality has not
been a target for breeding programs, rather yield and climate
tolerance have been the drivers. Future crops must be tolerant
of climate changes and weather extremes. Unlike many crops
where monocropping is most productive, forage crops have
the advantage that they can be easily grown in combination
without lowering productivity. Such a trend has been shown
across multiple trials as well as increasing biodiversity (Tilman
et al., 2001, 2006; Weigelt et al., 2009). As with any system
that promotes biodiversity whilst still being productive, this can

TABLE 1 | The advantages and disadvantages of growing forage crops in mixed
systems.

Mixed cropping

Advantages Disadvantages

Soil nutrient availability-each species
may have different strategies to
mobilize nutrients

Grow rates and optimal harvest
date can differ

Pathogen and pest susceptibility is
different

Specialist equipment may be
needed

Legume can supply N Competition for resources

Stem support in canopy One species may host pathogens

Root depth for water access and
improved soil structure

Monitoring more than one species
at a time to keep up with needs

mean not only lowered costs to manage but also help cultural
agriculture acceptability, with consumers becoming more aware
of the effect the production of their food has environmentally
(Scherr and McNeely, 2008).

Trace Elements
Plant research has focussed on the goal of biofortifying cereals,
but there is also potential to improve the nutritional quality of
forage crops. The economic importance of livestock production
in the poorest parts of the world offers the opportunity
to biofortify animal crops thereby improving the health of
these animals and both directly and indirectly their owners.
The knowledge base developed for grain biofortification (e.g.,
candidate plant metal transporters) has yet to be applied to forage
crops. For example, transporter proteins for iron and zinc storage
have been identified in cereals (Connorton et al., 2017; Menguer
et al., 2017) and their equivalents in forages have yet to be
identified.

Although very abundant in most soils, silicon is particularly
required by grasses (Tubana et al., 2016) and is therefore likely
to be important for the optimal growth of many forage crops.
Silicon is important for cell wall structure and therefore resistance
to pathogens and pests, however, it may have a negative impact
on digestibility. The supply of this nutrient may become limiting
for forage crops, particularly as the plant biomass is regularly
removed from the field and silicon is not yet a routine addition
to fertilizer.

Most species of forage crops can form mycorrhizal
associations and this type of symbiosis is important for
acquisition of trace elements. For natural grazing, these
symbiotic associations are particularly important, but when
fertilizer is added to cultivated forage crops mycorrhiza are
suppressed (MacLean et al., 2017). Enhancing this symbiosis
by inoculation of forage crops with mycorrhizal fungi has the
potential to improve the mineral element composition of the
feed. The fungal symbiosis has additional benefits for the plant
by increasing the soil area mined for nutrients and water; this
can be crucial during extreme weather events such as drought.
Furthermore, a balanced and optimized root rhizosphere
microbiome is essential for optimal root function and this applies
to all crops including forage (Mommer et al., 2016).
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Environmental Footprint of Forage Crops
As in all agriculture, improving water and nutrient use efficiency
is a target for forage crops. The general fertilizer requirement
of maize grown for forage and for grain are the same as that
for a biomass crop. N requirements differ greatly for forage
crops, and legumes and rhizome crops like Miscanthus have low
N requirements (Dierking et al., 2017). Improving NUE using
transporter marker genes as indicators of the crop status in the
field could be valuable (Fan et al., 2017). Targeting particularly
the NUpE component of NUE is important for minimizing
the wasteful and environmentally damaging losses of excess N
fertilizer additions.

As discussed above for protein content, biomass production
and cutting/grazing decisions there is the potential to develop
gene markers that can indicate the N status of each type of
forage crop. Mixed plant communities tend to have better NUE,
probably because each species has a different temporal pattern
of N uptake, resulting from different growth rates and root
architecture (Tilman et al., 2001; Weigelt et al., 2009). In more
affluent countries the relatively low chemical fertilizer prices
do not encourage more judicious use of fertilizer for forage
crops, but the threat of legislation for overuse has provided a
new incentive for better fertilizer use efficiency. There is plenty
of scope for improving the NUE of forage crops particularly
as breeding programs have not focussed on this trail. For
water acquisition, the long tap roots of Medicago are ideal for
penetrating deep for water and nutrients. Varietal differences in
this important trait have long been known (McIntosh and Miller,
1980) and the choice of cultivar depends on the soil type, climate
and cropping regime that is required.

CONCLUSIONS AND FUTURE
DIRECTIONS

Future Performance Improvements
Using Genomics
The availability of genomics and bioinformatics has
revolutionized all biology and as databases expand to include
more species and cultivars this information can assist forage
breeders to improve crop performance. The future possibilities
for breeding of forage crops using Lolium as an example are
shown in Figure 2. By comparing cultivar sequence information
and using GWAS for traits such as high vegetative tissue
concentrations of protein, NUpE or specific trace elements the
nutritional quality and yield of forage crops can be improved.
Some SNPs in key genes that have been identified in model
plants can be the targets for gene editing techniques (Bonhomme
et al., 2014; Slavov et al., 2014; Thorogood et al., 2017). TILLING
lines are also being used in many forage crops to study gene
function (Carelli et al., 2013; Dalmais et al., 2013; Manzanares
et al., 2016). Furthermore, as shown with the rbcS example in
Figure 4, sequence information can be used for the design of
PCR primers which can be used for tissue testing. These tests can
be used to rapidly identify general health and nutritional status
of crops as well as specific pathogens. One bottleneck is likely to

be the transfer of the new genetic information into forage crops.
For example, GM forage crops may be more acceptable to the
public, as if fed to animals their entry into the human food chain
is indirect. The use of CRISPR/Cas9 technology may provide an
acceptable route for such manipulations, and as with many crops
such feasibility studies have begun in forage crops; the mutation
of the Medicago sativa Squamosa Promoter Binding Protein Like9
(SPL9) has been attempted and validated (Gao et al., 2018),
although poor genome editing efficiency is limiting advances
at present. Many candidate genes have been identified which
may be quickly transferred into forage crops, but the technology
for transformation is limiting development of these improved
plants. In the future genome editing may become more accepted,
particularly perhaps for animal feed crops.

Focusing on Roots
As discussed above high-yield, low-input vegetative biomass
is desired for forage crop production. This has meant
aboveground phenotyping strategies are being widely developed
using predominantly imaging and spectral data (Walter et al.,
2012), although more research is needed to see how vegetative
phenotyping will work across different species, especially in
mixed-cropping systems. However, although the need for well-
developed, established root systems is clearly important (Kell,
2011; Nacry et al., 2013), breeding for belowground traits has
been largely disregarded. This is unsurprising as with all crops,
root phenotyping is difficult, being hidden in the soil and
therefore labor intensive and difficult to sample. Any current root
system improvements have been the consequence of vegetative
drought and salinity assays discussed previously.

Consequently, there has been a shift of focus toward breeding
for underground traits in forage crops; across plant science this
has been termed the next green revolution step (Lynch, 2007;
Den Herder et al., 2010). Before phenotyping can even begin
it is necessary to determine which kind of improvements are
necessary, of which 2 main categories are found. The first is
to improve root systems for the plant itself. This could include
increasing fine root biomass, lateral root initiation, or in the case
of legumes nodulation by Sinorhizobium, for increased nutrient
uptake (Jackson et al., 1997; Ariel et al., 2010; Downie, 2010;
Wang et al., 2010), or instead increasing root density or taproot
length for either nutrient and/or water uptake, or resilience to
stress such as defoliation (Dawson et al., 2004; Erice et al., 2007;
Ghesquière et al., 2010; Kell, 2011).

The second category is the improvement of root systems to aid
the environment. This target is to improve agricultural land not
just for production but also in terms of the ecosystem services,
and this is especially true in the case of forage crops (Marshall
et al., 2016). Forages and grasslands can provide ecosystem
services that are wide-ranging and highly linked to root function
including soil C-sequestration important for climate change
(Kell, 2011, 2012), or lowering run-off of land thus helping to
lessen flooding and soil erosion (Macleod et al., 2013). The idea
of using both non-leguminous and leguminous forage crops as
cover crops to mitigate climate change is gaining appreciation,
(Kaye and Quemada, 2017). Another point to note is that many
perennial grasses including Miscanthus and Panicum can be used
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for biofuel production but the characteristics required for a forage
crop do not always match with those of a biofuel (Yang and
Udvardi, 2018), although efficient root function and structure is
likely to be a characteristic desirable for both agricultural sectors.

Whether to improve plant performance or that of the
environment, advances in phenotyping root systems will be
crucial, including characterizing the plasticity of the system
whilst the plant is growing. At present there are a plethora
of root analysis software available (Paez-Garcia et al., 2015),
but these require imaging roots either grown artificially such
as on plates or already taken from the field and therefore
evasive. There is therefore an increased interest in developing
imaging techniques of plants grown in clear media to chart
phenotypic changes throughout growth, or more promisingly the
use of X-ray computed tomography (CT) scanning to give high
resolution 3D models of the growing root system (Zhu et al.,
2011).

Developing Management Systems
At present forage growers cannot easily and reliably determine
the N status of their crops. For maximum biomass production,
it is important to maintain the N status of the crop throughout
the growing season and this requires an optimized soil N
supply (Hofer et al., 2017). Application of too much N fertilizer
results in wasteful run-off and sub-optimal supply results in
decreased biomass production. Studies have already shown,
through 15N labeling of Lolium, how deficiency caused by low N
fertilizer application causes an increase in the protein substrate
pool whereas the store pool decreased in size and turnover
rate (Lehmeier et al., 2013). This highlights the importance of
fertilizer studies for N composition of forage crop vegetative
tissue. Maintaining N supply for maximal yield is limited by two
factors: (1) unreliable and unreproducible tests for soil N levels
(Knight, 2006) and (2) an easy reliable measure of the crop’s
status.

Presently farmers take limited samples across their growing
area in the hope that this is representative of the N in the whole
plot through the growing season. Nevertheless, this does not
indicate a plant’s N status or provide a measure of NUE. Some
research has focused on the use of spectral data to evaluate crop
efficiency (Foster et al., 2017), but such techniques require further
investigation and can give false readings caused by pathogen
attack. Sensors for N contents of soil are also being developed,
however, these can be a costly solution (Shaw et al., 2016). Due to
these problems, it may be better if the farmer could determine the
crop N status directly and then make a more informed decision
as to how they should subsequently fertilize the plot. This would
enable more efficient fertilizer use, thus increasing forage biomass
with lowered costs. Furthermore, for forage that includes legumes

these N budget problems are complicated by the additional input
of gaseous N-fixation. Other strategies of crop testing should be
developed to reliably inform the grower of NUE efficiency.

Final Animal Product Studies
As forages are grown to rear livestock which in turn becomes food
products for humans it is also important to view research in plant
science from a livestock study prospective, of which has been
touched upon above when discussing nutritional composition of
crops. At present many countries adopt large-scale, concentrate-
feeding led livestock production like that of the United States,
with many potential human health risks due to bacteria,
antibiotic-resistant bacteria, prion, and dioxin presence in end
products (Sapkota et al., 2007). Despite a rise in concentrate-
feeding, forage crops are still used widely as the main source
of feed due to its high-yields of DM and energy for low
costs (Reynolds, 2000), although usually studies focus on
investigating a combination of both especially at various stages
of development. For example, studies comparing growth of cattle
fed a grass-diet instead of a linseed diet found the end product
meat had a healthier fatty acid profile high in beneficial n-3
PUFAs, but the cattle were more slow-growing and thus the meat
quality was poorer (Nuernberg et al., 2005). Similar outcomes
have also been found for milk production from dairy cows in
high-forage systems (Dewhurst et al., 2006). If improvements
could be made in forage quality, especially more high-sugar
varieties as outlined above, then potentially huge improvements
in the animal production can be made.

In conclusion, utilizing the information obtained from the
research effort to improve grain crops and the knowledge
gathered from model systems like Arabidopsis, offers an excellent
future perspective for improving the nutritional quality and yield
for forage crops.
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