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Introduction 
 
Statistical modelling in agricultural sciences often involves analysing complex relationships between 
various factors such as soil characteristics, weather conditions, crop types, and agricultural practices.  
When analysing herbicide resistance data in R, researchers may employ various statistical techniques 
and models to characterize monotone functions, assess symmetry or asymmetry in resistance 
patterns, and evaluate the efficacy of different management approaches. Functions for fitting 
monotone models, such as generalized additive models (GAMs) or nonlinear regression models, can 
be utilized to explore the relationship between herbicide exposure and resistance development. 
Additionally, statistical tests and visualization tools in R facilitate the comparison of resistance levels 
across herbicides and the identification of symmetric or asymmetric resistance patterns within weed 
populations. 
Nonlinear models are commonly used in agricultural sciences to capture these intricate relationships. 
Here's a guide on how to perform statistical modelling using R with a focus on nonlinear models in 
agricultural sciences. Nonlinear modelling approaches are widely used in herbicide resistance studies 
to characterize dose-response relationships, understand the mechanisms underlying resistance, and 
optimize herbicide management strategies. Their flexibility, interpretability, and ability to capture 
complex dose-response relationships make them valuable tools for researchers and practitioners in 
the field of herbicide resistance management. 
Herbicide resistance poses significant challenges in agriculture, and modelling approaches play a 
crucial role in understanding its dynamics, predicting its spread, and designing effective management 
strategies. Modelling provides insights into the underlying biological mechanisms driving herbicide 
resistance, such as target-site mutations, metabolic detoxification, or reduced herbicide uptake. By 
elucidating these mechanisms, models can help identify genetic and physiological factors 
contributing to resistance and guide research efforts to develop novel control methods. Models can 
simulate the dynamics of herbicide resistance evolution over time, considering factors such as 
selection pressure, mutation rates, gene flow, and population genetics. Predictive models allow 
researchers to anticipate the emergence and spread of resistant weed biotypes and assess the 
efficacy of different management strategies in mitigating resistance. Modelling enables the 
evaluation of various herbicide resistance management strategies, such as herbicide rotation, 
mixtures, and spatial diversification. By simulating different scenarios and management 
interventions, models help optimize decision-making to delay or prevent the onset of herbicide 
resistance while minimizing economic and environmental costs. Herbicide resistance management is 
a long-term endeavour, and models provide a framework for assessing the long-term impacts of 
management decisions on resistance dynamics, weed populations, crop yields, and agroecosystem 
sustainability. Long-term projections help stakeholders prioritize investments and adopt proactive 
management approaches. Models contribute to evidence-based policymaking by quantifying the 
economic, social, and environmental impacts of herbicide resistance and management interventions. 
Policy-relevant models inform regulatory decisions, such as herbicide registration, usage restrictions, 
and incentive programs aimed at promoting sustainable weed management practices. Models 
integrate diverse sources of data, including field experiments, genetic studies, agronomic 
observations, and expert knowledge. By synthesizing multidisciplinary information, models provide a 
holistic understanding of herbicide resistance dynamics and facilitate interdisciplinary collaboration 
among researchers, practitioners, and policymakers. Herbicide resistance is a dynamic and evolving 
problem influenced by factors such as climate change, agricultural practices, and technological 
innovations. Modelling frameworks can be adapted and updated to incorporate new data, emerging 
technologies, and evolving research findings, ensuring their relevance and applicability in a changing 
agricultural landscape. 
In summary, modelling approaches are indispensable tools for addressing the complex challenges 
posed by herbicide resistance in agriculture. By combining biological insights with mathematical and 
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computational techniques, models contribute to our understanding of resistance dynamics, inform 
decision-making, and support sustainable weed management practices. 
 

Approach and models 

 Data 
In agricultural sciences, as in many other fields, data can be classified into different types based 
on their characteristics. In the realm of herbicide resistance research within agricultural sciences, 
data often fall into distinct categories: binomial, nominal, and ordinal (gradual). Figure 1 shows a 
decision that has to be made when analysing data.  

 
Fig. 1: Decision making for non-linear modelling of biological data 
 
Three types of data: 

• Binominal:  
Binomial data are characterized by two possible outcomes, often represented as success or failure, 
yes or no, 1 or 0.  Examples in agricultural sciences could include the presence or absence of a 
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disease in plants, the survival or death of livestock after treatment, or the success or failure of a crop 
yield. Statistical techniques for analysing binomial data include logistic regression, binomial tests, and 
contingency tables. 

• Examples of binominal data: dead/alive, abnormal/normal... 
• Size of response/effect depends on n 
• No true replication 
• Fixed upper and lower limit 

 
• Nominal:  

Nominal data consist of categories without any inherent order or ranking. Examples in agricultural 
sciences could include different varieties of crops, types of soil, or breeds of livestock. Statistical 
techniques for analysing nominal data include chi-square tests, multinomial logistic regression, and 
correspondence analysis. 

Examples of nominal data: number of seeds per plant…  
• Only whole numbers possible 
• True replications 
• Fixed lower limit 
• Sometimes recalculated to % inhibition or % of total response 

 
• Ordinal (Gradual) data:  

Ordinal data represent categories with a natural order or ranking but with unequal intervals between 
them. Examples in agricultural sciences might include subjective ratings such as crop quality ratings 
(e.g., poor, fair, good, excellent), severity rankings of pest infestations, or Likert scale responses 
measuring attitudes of farmers. Statistical techniques for analysing ordinal data include ordinal 
logistic regression (fig. 2), Wilcoxon rank-sum tests, and Kendall's tau correlation coefficient. 

Examples of gradual data: 
• biomass, growth rates, concentrations… 

 
For gradual data statistical model is: 
 

 
 where dose i is the dose value for observation i 
 the assumptions are:  

 1) variance homogeneity  
 (constant variance of the errors) 
 2) correct mean (the right choice of function f) 
 3) normally distributed errors 
 4) independent measurements 
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Fig. 2: Dose-response of Stellaria media treated with increasing doses of florasulam. Picture was 
taken 30 days after the treatment (30 DAT) 
 
You have to decide:  

 Which is the best model to describe our data? 
 How do you choose among competing models? 
 Which is the best statistical index to judge the goodness of fit? 

 
When conducting statistical modelling in R for agricultural sciences with these types of data, you 
would typically choose appropriate statistical techniques and models that are suitable for the specific 
data type. R provides a wide range of packages and functions for conducting analyses on all these 
types of data. For instance, glm() function in base R can be used for fitting logistic regression models 
for binomial data, while packages like MASS, nnet, or brms may provide more advanced 
functionalities for fitting nonlinear models to such data. Similarly, packages like car, ordinal, or rms 
offer tools for modelling ordinal data using regression techniques. Additionally, visualization tools in 
R, such as ggplot2, can be utilized to explore and communicate patterns in the data effectively.+ 
 
 

 Graphs 

Choice of mean function 

 
Monotone functions:   
In herbicide resistance studies, monotone functions may represent the relationship between the 
dosage of a herbicide and the probability of resistance development within a weed population. 
Analysing monotone functions can help researchers identify the threshold levels of herbicide 
exposure that lead to resistance emergence and assess the effectiveness of different management 
strategies. Symmetric herbicide resistance refers to situations where weed populations exhibit 
similar levels of resistance across different herbicide types or modes of action. This symmetry 
suggests that the mechanisms conferring resistance are equally effective against multiple herbicides, 
potentially indicating widespread resistance development within the population. Understanding 
symmetric herbicide resistance patterns is essential for devising integrated weed management 
strategies that target multiple resistance mechanisms simultaneously. Asymmetric herbicide 
resistance occurs when weed populations demonstrate varying degrees of resistance to different 
herbicides or herbicide groups. In asymmetric resistance scenarios, certain herbicides may be more 
effective at controlling resistant weed biotypes than others. Identifying asymmetric resistance 



5 
 

patterns is crucial for optimizing herbicide selection and rotation strategies to manage resistant 
weed populations effectively while minimizing the risk of further resistance evolution (fig. 3). 
 

 Symmetric (logistic) 
 Asymmetric (Gompertz/Weibull) 

 
Non-monotone function:  

 Initial inhibition/stimulation (Brain-Cousens´model, hormesis) 
 
 

 
Fig. 3: Examples of mean function 
 

Violation of model assumptions 

When analysing data, especially in the context of statistical modelling, it's important to consider 
potential violations of model assumptions, such as heteroscedasticity (variance heterogeneity), 
systematic deviations from the mean, and non-normal errors. These violations can impact the validity 
of statistical inferences and the reliability of model predictions. 
 

a) Variance inhomogeneity  
Heteroscedasticity refers to the situation where the variability of the response variable (dependent 
variable) differs across levels of the independent variables. In agricultural sciences, this might occur 
when the variability of crop yields or herbicide efficacy varies across different conditions or 
treatments. Heteroscedasticity violates the assumption of homogeneity of variance, which is typically 
assumed in many statistical models, including linear regression. Detection and correction of 
heteroscedasticity might involve transforming the response variable or using robust regression 
techniques that are less sensitive to variance heterogeneity. 

 influence on standard errors (eg. may be too small) 
b) Isolated or systematic deviation from the mean  

Systematic deviations from the mean refer to patterns in the residuals (the differences between 
observed and predicted values) that are not random but exhibit a systematic trend. In agricultural 
research, this could manifest as consistent overestimation or underestimation of crop yields or other 
measured outcomes across different experimental conditions. Systematic deviations violate the 
assumption of independent and identically distributed (i.i.d.) residuals, which is often assumed in 
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statistical modelling. Identifying the source of systematic deviations and adjusting the model or 
experimental design accordingly is essential to ensure the validity of statistical inferences. 

 imprecise estimates and/or large standard errors 
c) Non-normal errors 

Non-normal errors indicate that the distribution of residuals deviates from a normal (Gaussian) 
distribution. In agricultural studies, this might arise due to non-normality in the distribution of crop 
yields, pesticide concentrations, or other measured variables. Non-normal errors violate the 
assumption of normally distributed residuals, which is often assumed for conducting hypothesis tests 
and constructing confidence intervals. Techniques such as transformation of the response variable or 
using generalized linear models (GLMs) can be employed to accommodate non-normal errors and 
maintain the validity of statistical analyses. 

 influence on standard errors 
d) Independence is usually implied by design of experiment 
e) DEPARTURES FROM THE ASSUMPTIONS NEED TO BE REMEDIED 

 

Detection and remedy 

In R, various diagnostic tools and techniques are available to detect and address violations of model 
assumptions. These include residual plots, tests for normality (e.g., Shapiro-Wilk test), and methods 
for transforming variables. Additionally, robust statistical methods and alternative models (e.g., 
generalized linear models) can be employed to handle violations of traditional assumptions and 
ensure robust statistical inference in agricultural research. 
 

 Deviations detected by 
 lack-of fit-test (comparing to a more general model) 
 plotting data together with fitted dose-response curves 
 inspecting the residual plot 

 Non-normal errors and/or variance inhomogeneity 
 data transformation (only response, or both response and mean) 
 extension of the model (extrapolation methods) 

 

Lack of fit test 

A lack of fit test is a statistical test used to assess whether a statistical model adequately fits the 
observed data. It helps to determine whether the model captures the underlying relationships 
between the independent and dependent variables effectively, or if there is a significant discrepancy 
between the model predictions and the observed data. In the context of agricultural sciences, a lack 
of fit test could be applied to various types of models, such as regression models predicting crop 
yields based on different factors like fertilizer application, soil nutrients, and environmental 
conditions. 
In R, lack of fit tests can be conducted using appropriate functions depending on the type of model 
being evaluated. For linear regression models, the anova() function can be used to perform an F-
test for lack of fit. For categorical data models, packages such as car or MASS offer functions to 
perform lack of fit chi-square tests. Additionally, graphical tools such as residual plots can help 
visually assess lack of fit in regression models. 
 

 Comparing a dose-response model to a more general ANOVA model (fig. 4) 
 F-test 

 Non-significant: there is no evidence against the dose-response model 
 Significant: our model may not be appropriate 
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Fig. 4: Comparing a dose-response model using anova function (R – output) 
 

 The test is weak  
 Supply the test by using a graphical assessment  

 

Box-Cox transformation 

The Box-Cox transformation is a statistical technique used to stabilize the variance and make data 
more normally distributed (fig. 5). It's particularly useful when dealing with data that violates the 
assumption of homoscedasticity (constant variance) or normality, which are common issues in 
regression analysis and other statistical modelling techniques. 
 

 to remedy non-normal errors and/or variance heterogeneity 
 both-side transformation (transforming response and mean)  

 
 
 

 
Fig. 5: Transforming a data for a proper analysis 
 

 both the response and the nonlinear model function are shifted by a constant c and then 
transformed by a suitable function 

 exponent lambda λ =-5 to 5 
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 λєR, λ=1 – no transformation, λ=0 – logarithm transformation 
  may alleviate variance heterogeneity and some skewness and thus recover a normal 

distribution 
 optimal λ is estimated from a more general linear model and not from the specified 

dose-response model 
  

In R, the Box-Cox transformation can be implemented using the boxcox() function available in 
various packages. This function automatically selects the optimal value of λ and applies the 
transformation to the data. Alternatively, you can manually specify different values of λ and apply 
the transformation using the formula described above. Additionally, graphical methods, such as the 
Box-Cox plot, can be used to visually assess the effectiveness of the transformation in stabilizing 
variance and normalizing the data distribution. 

 steps to be followed  
 selecting lambda 
 transforming the data 
 model fitting 
 back-transformation 

 

Choose candidate models 

Choosing candidate models for dose-response relationships is crucial in agricultural sciences, 
particularly in areas such as herbicide efficacy, fertilizer response, and pesticide toxicity. Here's a 
systematic approach to selecting candidate models: 

a) Understanding the Biological Mechanism: Begin by understanding the underlying biological 
mechanisms governing the dose-response relationship. For example, if you're studying the 
effect of a herbicide on weed growth inhibition, consider whether a linear or nonlinear 
relationship is more biologically plausible based on how the herbicide interacts with the 
weed's physiological processes. 

b) Exploratory Data Analysis (EDA): Conduct exploratory data analysis to visualize the dose-
response relationship. Plot the response variable (e.g., plant biomass, weed mortality) 
against the dose levels (e.g., herbicide concentration, fertilizer rate) to identify potential 
patterns. Scatter plots, dose-response curves, and smoothers (e.g., LOESS curves) can aid in 
this process. 

c) Consider Candidate Models: 
a.  Linear Model: Start with a simple linear model if there's no prior knowledge 

suggesting a nonlinear relationship. A linear model assumes a constant slope across 
all dose levels 

b. Nonlinear Models: Consider various nonlinear models that may better capture 
complex dose-response patterns. Common choices include: 

i. Logistic Model: Suitable for sigmoidal dose-response curves, where the 
response increases rapidly at low doses and levels off at high doses. 

ii. Exponential Model: Appropriate for situations where the response increases 
or decreases exponentially with dose. 

iii. And others… 
d) Model Comparison: Compare the candidate models using statistical criteria such as 

goodness-of-fit measures (e.g., R-squared, AIC, BIC) and diagnostic plots (e.g., residual plots). 
Assess the models' ability to capture the observed dose-response pattern while avoiding 
overfitting. 

e) Cross-Validation: If possible, perform cross-validation to evaluate the predictive performance 
of the candidate models on independent datasets. This helps assess how well the models 
generalize to new data and can aid in model selection. 
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f) Biological Interpretation: Finally, consider the biological relevance of the selected model. A 
model that not only fits the data well but also aligns with existing biological knowledge and 
hypotheses is often preferred. 

 
In R, you can fit various candidate models for dose-response relationships using functions from 
packages such as drc (dose-response analysis), nlme (nonlinear mixed-effects models), nls (nonlinear 
least squares), or glm (generalized linear models). Additionally, tools for model selection and 
validation, such as AIC() and BIC() functions, are available to aid in the decision-making process. 
 

Dose response model 

 
y=f(x, Θ)+ε 
y- response/dependent variable 
f- function or model 
x- inputs/independent variable/dose 
Θ - parameters to be estimated 
ε – error 
 

 Types of responses (tab. 1) 
 dose (metameter)  

 any pre-specified amount of biological, chemical, radiation stress eliciting a 
certain, well-define response 

 non-negative value 
 often (not always) assumed to be measured without error 

 response 
 quantification of a biologically relevant effect 
 subject of random variation 
 continuous response: biomass, enzyme activity… (normal distribution) 
 binary (aggregated binomial) response: dead/alive, present/absent (binomial 

distribution) 
 discrete: number of juveniles, offsprings, roots… 

 
Tab. 1: Models and model functions 
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 Built-in-models in R 
 
Why non-linear model? 
Each parameter can be evaluated for whether it is linear or not 

 if the second derivative of the function with respect to a parameter is not equal to 
zero, then the parameter is nonlinear 

 given function can have a mix of linear and nonlinear parameters 
 

Advantages of non-linear models 

Non-linear models offer several advantages when modelling dose-response relationships in herbicide 
resistance studies: 

1) Flexibility: Non-linear models can capture complex relationships between dose levels and 
response variables, allowing for more flexible modelling of dose-response curves. In 
herbicide resistance research, where responses may not necessarily follow linear patterns, 
non-linear models can better accommodate various biological mechanisms underlying 
resistance development. 

2) Better Fit: Non-linear models often provide better fit to the data compared to linear models 
when the relationship between dose and response is non-linear. By allowing for curved or 
sigmoidal dose-response curves, non-linear models can more accurately describe the true 
underlying relationship, leading to improved predictive accuracy and more reliable inference. 

3) Interpretability: Non-linear models can offer more interpretable parameter estimates 
compared to linear models, especially when modelling complex biological processes. 
Parameters in non-linear models often correspond to biologically meaningful parameters 
such as EC50 (half-maximal effective concentration) or Hill slope, making it easier to interpret 
the estimated effects of dose levels on the response variable. 

4) Extrapolation: Non-linear models can be more suitable for extrapolating dose-response 
relationships beyond the observed dose range. This is particularly valuable in herbicide 
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resistance research, where predicting the response to novel herbicide doses or combinations 
is important for informing weed management strategies. 

5) Accommodation of Plateau and Saturation Effects: Non-linear models can effectively capture 
plateau and saturation effects commonly observed in dose-response relationships. These 
models allow for asymptotic behaviour where the response variable reaches a maximum or 
minimum value as dose levels increase, which may be critical for understanding herbicide 
efficacy and resistance mechanisms. 

6) Robustness: Non-linear models can be robust to violations of assumptions such as 
homoscedasticity and normality of errors, which are often challenging to meet in dose-
response studies due to inherent variability in biological systems. 

 
Overall, the advantages of non-linear models in dose-response herbicide resistance studies lie in 
their ability to capture the complex, non-linear relationships between herbicide dose and response 
variables, leading to more accurate predictions and improved understanding of resistance 
mechanisms. 
 

 Parsimony  
 models should have as few parameters as possible 
 linear models should be preferred to non-linear models 
 experiments relying on few assumptions should be preferred to those relying on 

many 
 models should be pared down until they are minimal adequate 
 simple explanations should be preferred to complex explanations 

 Interpretability 
 Prediction – tend to be more robust that competing polynomials, especially outside the 

range of observed data (i.e. extrapolation) 
 

Disadvantages of non-linear models 

While non-linear models offer various advantages in modelling dose-response relationships in 
herbicide resistance studies, they also come with some disadvantages: 

1) Model Complexity: Non-linear models can be more complex than linear models, often 
involving more parameters and requiring more computational resources for estimation. This 
complexity may make the model more challenging to interpret and may increase the risk of 
overfitting, especially with limited data. 

2) Parameter Estimation Challenges: Estimating parameters in non-linear models can be 
computationally intensive and may require specialized optimization techniques. Convergence 
issues or local minima can arise, particularly with complex model structures, leading to 
difficulties in obtaining reliable parameter estimates. 

3) Model Selection Difficulty: Selecting an appropriate non-linear model structure can be 
challenging, as there are numerous candidate models with different functional forms. 
Identifying the most suitable model for a specific dose-response relationship may require 
extensive model comparison and evaluation, which can be time-consuming and subjective. 

4) Extrapolation Uncertainty: While non-linear models may provide good fit within the 
observed dose range, extrapolating beyond this range can be uncertain and may lead to 
unreliable predictions. Extrapolation in non-linear models is particularly risky when the 
underlying biological mechanisms are poorly understood or when extrapolating to novel 
conditions. 

5) Interpretability Issues: Non-linear models may lack the straightforward interpretability of 
linear models, especially for models with complex functional forms. Parameter estimates 
may not always have direct biological meaning, making it challenging to interpret the 
estimated effects of dose levels on the response variable. 
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6) Assumption Sensitivity: Non-linear models may still rely on assumptions such as 
independence of observations, homogeneity of variance, and normality of errors, which may 
not always be met in practice. Violations of these assumptions can lead to biased parameter 
estimates and unreliable inference, similar to linear models. 

7) Data Requirement: Non-linear models may require larger sample sizes compared to linear 
models to achieve stable parameter estimates and reliable inference, especially when fitting 
complex model structures. Obtaining sufficient data points across the dose range of interest 
can be challenging in herbicide resistance studies, particularly for rare or newly emerging 
resistance mechanisms. 

 
In summary, while non-linear models offer significant advantages in capturing complex dose-
response relationships in herbicide resistance studies, they also present challenges related to model 
complexity, parameter estimation, model selection, extrapolation, interpretability, assumption 
sensitivity, and data requirement. Careful consideration of these disadvantages is essential when 
choosing and applying non-linear models in herbicide resistance research. 
 
In a brief, the disadvantages are as following:  

 less flexible than linear models 
 generally there is no analytical solution for estimating the parameters 
 choice of model is crucial 

 try a large library of functions and choose the model with the lowest error  
 choose a model based on whether it has been used successfully in similar 

applications 
 numerical method needs to be used to find estimates for the parameters 

 convergence of the algorithm needs to be checked  
 a lack of convergence often results from the consideration that these 

numerical methods require starting values 
 in some cases also linear or generalized linear models (glm) can be successfully used 

 

Model parameters 

The log-logistic model is commonly used to describe dose-response relationships, particularly in 
toxicology and pharmacology, but it can also be applied in herbicide resistance studies. In the log-
logistic model, the response variable is typically transformed using logarithms to achieve linearity in 
the parameters. The general form of the log-logistic model for a dose-response relationship can be 
expressed as: 
 
Y=c1+(dX)bY=1+(Xd)bc 
 
where: 
 
    Y is the response variable (e.g., herbicide efficacy, resistance level). 
    X is the dose or concentration of the herbicide. 
    c is the upper asymptote of the dose-response curve, representing the maximum response 
achievable. 
    d is the dose at which the response is halfway between the minimum and maximum asymptotes 
(EC50 or ED50). 
    b is the slope parameter, which determines the steepness of the dose-response curve. 
 
The parameters of the log-logistic model have specific interpretations in the context of dose-
response relationships: 
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Upper Asymptote (c): This parameter represents the maximum achievable response level. In the 
context of herbicide resistance, it may indicate the maximum possible reduction in weed control or 
mortality achievable with the herbicide under study. EC50 (or ED50) (d): The EC50 (effective 
concentration 50%) or ED50 (effective dose 50%) is the dose at which the response is halfway 
between the minimum and maximum asymptotes. It serves as a measure of potency or effectiveness 
of the herbicide in inhibiting or controlling the target organism. In herbicide resistance studies, EC50 
may indicate the concentration of herbicide required to achieve a certain level of inhibition or 
mortality in resistant weed populations. Slope (b): The slope parameter determines the steepness of 
the dose-response curve. A higher value of bb indicates a steeper curve, suggesting a more rapid 
change in the response with changes in dose. In herbicide resistance studies, the slope parameter 
may provide insights into the sensitivity of resistant weed populations to varying doses of herbicides. 
 
Estimating these parameters involves fitting the log-logistic model (fig. 6) to experimental or 
observational data using statistical software. Once estimated, the parameters can be used to 
describe the shape of the dose-response curve, make predictions about response levels at different 
doses, and compare the efficacy of different herbicides or herbicide treatments. 

 
Fig. 6: Example od log-logistic model parameters 
 
 

 
 
Four parameters:  
b - relative slope around e – decreasing function of the dose, corresponding to positive b, increasing 
with dose corresponds to negative b 
c - lower limit  
d - upper limit 
e – also ED50 dose producing a response half-way between the upper limit d and lower limit c 
Function is symmetric around e 
 
 



14 
 

Comparison of parameters 

When comparing parameters in nonlinear models for herbicide resistance studies, it's essential to 
consider the specific model being used and the context of the study. Here are some key 
considerations for comparing parameters in different nonlinear models: 

1) model Structure: Different nonlinear models may have distinct functional forms and 
parameterizations. For example, the log-logistic model and the logistic model are commonly 
used in dose-response studies, but they have different parameter interpretations and may fit 
the data differently. 

2) interpretability of Parameters: Parameters in nonlinear models should have clear biological 
interpretations. For example, in dose-response models, parameters such as EC50 (effective 
concentration 50%) or LD50 (lethal dose 50%) represent biologically meaningful points on 
the dose-response curve and can be compared across models to assess differences in 
potency or efficacy. 

3) goodness of Fit: When comparing parameters across models, it's important to consider the 
goodness of fit of each model to the observed data. Models with better fit to the data may 
provide more reliable parameter estimates and predictions. 

4) statistical Inference: Statistical tests and confidence intervals can be used to compare 
parameter estimates across models and assess whether differences are statistically 
significant. Hypothesis tests can be conducted to determine whether parameters are 
significantly different between models. 

5) practical Implications: Ultimately, the choice of model and interpretation of parameters 
should be guided by the practical implications for herbicide resistance management. For 
example, differences in EC50 values between herbicides or resistance mechanisms may 
indicate variations in potency or effectiveness, which could inform herbicide selection or 
resistance management strategies. 

6) robustness: Consider the robustness of parameter estimates to variations in data and model 
assumptions. Models that produce stable parameter estimates across different datasets or 
model specifications may be more reliable for practical applications. 

7) model Complexity: Take into account the complexity of each model and the trade-off 
between model complexity and interpretability. More complex models may provide better fit 
to the data but may also be more difficult to interpret and prone to overfitting. 

 
Overall, comparing parameters in nonlinear models for herbicide resistance studies involves 
evaluating model fit (fig. 7), interpreting parameter estimates in a biological context, conducting 
statistical tests for differences, and considering the practical implications for herbicide resistance 
management. It's essential to carefully consider these factors when selecting and interpreting 
nonlinear models for dose-response analysis in herbicide resistance research. 
 

 Common approach  
 re-parameterize and re-fit the model for each function of interest – difficult 

 Single-model approach was implemented 
 single model is fit and the delta method (van der Vaart, 1998) is used to calculate 

approximate standard errors for function of the parameters 
 
Way to compare parameters 

 t-test  
 based on a single fitted dose-response model 
 based on particular components in the model fit 

 confidence interval 
 parameter estimate lie in the confidence interval of another parameter 

 F-test 
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 based on two fitted models, one being more general than the other 
 utilise the entire model fit 

 
 

 
Fig. 7: Output of the function “summary” with estimated parameters 
 
Comparison of parameters 

 Comparison of different herbicides 
 Effective dose (ED) and selectivity index (SI)/resistance factor (R) 

 both are functions of the parameters 
 ED: dose that yields a response which is (100-y)% of the maximal response d (a 

reduction of y%) 
   EDy=e(y/(100-y))1/b 

 SI: ratio between EDx for one curve and EDy for another curves 
   SI(x,y)=EDx/EDy 

 

 

 Fit of models 

In agriculture, various nonlinear models are used to describe relationships between input factors 
(e.g., dose, time, environmental conditions) and agricultural outcomes (e.g., crop yield, pest 
population growth, herbicide efficacy). Here are some typical nonlinear models along with 
application examples: 

 Group I – exponential 
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 Group II – sigmoid functions 
 Group III – photosynthesis 
 Group IV – temperature dependencies 
 Group V – peak or bell-shaped curves 
 Group VI – other nonlinear equations 

These are just a few examples of nonlinear models commonly used in agriculture. Each model has its 
own set of assumptions, parameter interpretations, and applications, and the choice of model 
depends on the specific research question, available data, and biological context of the agricultural 
system being studied. 
 
 

Group I – exponential 

 
In herbicide resistance studies, the exponential model is not typically used as a primary modeling 
approach for dose-response relationships. However, it can be relevant in certain contexts, 
particularly when describing the dynamics of resistance evolution within weed populations over 
time. The exponential model assumes constant proportional growth over time, which may not 
directly apply to dose-response relationships in herbicide resistance studies. However, it can be 
employed to describe the exponential increase in the frequency of herbicide-resistant individuals 
within weed populations under certain conditions. Here's how the exponential model could be 
applied in the context of herbicide resistance: 

1) Frequency of Resistant Individuals: The exponential model could be used to describe the 
increase in the frequency of herbicide-resistant individuals within weed populations over 
successive generations of herbicide exposure. This could be relevant for studying the long-
term dynamics of resistance evolution in response to herbicide selection pressure. 

2) Population Dynamics: The exponential model may also be relevant for modeling population 
growth dynamics of herbicide-resistant weed biotypes within agricultural fields or 
landscapes. This could involve describing the exponential increase in the abundance of 
resistant weeds over time in response to repeated herbicide applications. 

3) Modeling Resistance Spread: In some cases, the exponential model could be used to model 
the spatial spread of herbicide resistance within agricultural landscapes. This might involve 
describing the exponential increase in the area infested with resistant weed populations over 
time due to dispersal and expansion of resistant biotypes. 

 
It's important to note that while the exponential model can provide insights into the rapid increase of 
herbicide resistance within weed populations, it may oversimplify the complex dynamics of 
resistance evolution. Other models, such as logistic models or more mechanistic models based on 
evolutionary principles, may be more suitable for capturing the nuanced interactions between 
herbicide selection pressure, genetic mechanisms of resistance, and ecological factors influencing 
resistance evolution. Overall, while the exponential model may not be the primary choice for dose-
response modeling in herbicide resistance studies, it can still be relevant for understanding certain 
aspects of resistance dynamics, particularly in the context of population growth and spread of 
herbicide-resistant weed biotypes over time. 
 
Exponential model:  
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Fig. 8: Exponential model – an example 
Equation of exponential model (fig. 8) 
y=y0exp(-kt) 
y=y0[l-exp(-kt)] 
 
where y is the response variable (e.g. soil organic matter) 
t is the explanatory variable (e.g. time) 
y0 is the initial or the maximum y value 
k is a rate constant that determines the steepness of the curve 
 

 Commonly used to describe light and N vertical distribution within plant canopies 
 N2O emission response to N fertilizer 
 Cumulative soil respiration 
 Photoperiodic sensitivity 
 Temperature or moisture responses to nitrification 
 Water infiltration rate 

 
 

Group II – sigmoid functions 

In herbicide resistance studies, sigmoid functions are commonly used to model dose-response 
relationships (fig. 9), particularly in the context of assessing herbicide efficacy and characterizing the 
response of weed populations to varying herbicide concentrations. Sigmoid functions are preferred 
because they can capture the typical S-shaped or sigmoidal curves often observed in dose-response 
relationships, where the response increases gradually at low doses, reaches a maximum level of 
response, and then levels off at higher doses. These sigmoid functions can be fitted to experimental 
or observational data using nonlinear regression techniques, and the parameters of the models can 
be estimated to describe the shape of the dose-response curve and assess herbicide efficacy. By 
fitting sigmoid functions to dose-response data, researchers can quantify important parameters such 
as EC50 (or ED50), slope, and maximum efficacy, providing valuable insights into herbicide 
performance and resistance levels in weed populations. 
 

 Logistic 
 Richards 
 Gompertz 
 Weibull 

… 
 
y=yasym/{l+exp[-k(t-tm)]} 
y=yasym/{l+v exp [-k(t-tm)]}l/v 
y=yasym exp{-exp[-k(t-tm)]} 
y=yasym[l-exp(atb)] 
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where y is the response variable  
t is the explanatory variable  
yasym is the asymptotic or the maximum y value 
tm is the inflection point at which the growth rate is maximized 
k controls the steepness of the curve 
v deals with the asymmetric growth  
a and b are parameters that determine the shape of the curve 

 
Fig. 9: Log-logistic model – an example 
 

 mathematical functions having S shape 
 described plant height, weight, leaf area index or seed germination as a function of time 
 N application rate 
 herbicide dose 
 used as 0-1 modifiers in process-based models to incorporate moisture availability or soil pH 

 
Important: all sigmoid equations assume an initial y value close to zero at time zero (planting, 
biomass weight…) 

 logistic equation  
 describes symmetric growth  
 having inflection point at half the final size/maximum/upper limit 

 Gompertz equation 
 inflection point that is controlled by its asymptotic value and is at about one-third 

 Richards, Weibull or beta  
 have more flexibility in dealing with asymmetric growth  
 the inflection point can be at any x value 
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 having a flexible inflection point is another important feature of sigmoid curve (in cases if you 
did not reach 100% efficacy) 

 Birch (1999) modified the logistic equation to deal with asymmetric growth by 
adding an extra shape parameter 

 when growth is known to decrease after a certain period of time, then the beta 
function is a better option 

 in cases when the initial phase is very important, different versions of beta function 
should be used 

 
 

Example of a non-linear model modification 

In herbicide resistance studies, modifying nonlinear models by changing parameters can be a useful 
approach to improve the model fit, address specific research questions, or account for additional 
factors influencing the dose-response relationship. Here are several ways parameters can be 
modified in nonlinear models: 

1) Parameter Constraints: Adjusting parameter constraints can ensure that parameter 
estimates remain within biologically plausible ranges. For example, constraining the EC50 
parameter in a dose-response model to be greater than zero may prevent unrealistic 
estimates. 

2) Parameter Interactions: Introducing interactions between parameters can capture complex 
relationships between variables. For instance, introducing interactions between herbicide 
type and weed species in a dose-response model can account for differential responses 
among weed species to different herbicides. 

3) Parameter Linkages: Linking parameters across multiple dose-response curves or 
experimental conditions can improve parameter estimation efficiency and reduce model 
complexity. This approach is particularly useful when fitting dose-response models to data 
from multiple experiments or treatments. 

4) Parameter Transformation: Transforming model parameters using mathematical functions 
can improve model convergence or interpretability. For example, exponentiating or taking 
the logarithm of a parameter may ensure that it remains positive or interpretable on a 
different scale. 

5) Model Selection: Selecting a subset of parameters or simplifying the model structure can 
reduce overfitting and improve model generalization. Conducting model selection 
procedures such as Akaike Information Criterion (AIC) or cross-validation can help identify 
the most parsimonious model while maintaining good fit to the data. 

6) Model Ensemble Approaches: Combining multiple nonlinear models or model variants into 
an ensemble can improve prediction accuracy and robustness. Ensemble approaches, such as 
model averaging or stacking, integrate information from different model parameterizations 
to provide more reliable predictions. 

7) Bayesian Methods: Using Bayesian estimation techniques allows for incorporating prior 
knowledge or beliefs about parameter values into the modeling process. Bayesian methods 
provide a framework for quantifying uncertainty in parameter estimates and making 
probabilistic predictions. 

8) Model Calibration: Calibrating model parameters to observed data through optimization or 
Bayesian inference can improve model accuracy and reliability. Calibration involves adjusting 
model parameters iteratively until the model predictions closely match the observed data. 

 
Overall, modifying parameters in nonlinear models offers flexibility in capturing complex dose-
response relationships in herbicide resistance studies. By adjusting model parameters appropriately, 
researchers can develop more accurate and robust models that better reflect the underlying 
biological processes and improve the understanding of herbicide resistance mechanisms. 
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Example of a nonlinear model modification is given in a table 2 and figure 10. Starting with Eq 7.1 the 
parameters a, b, c and d were aded step by step to Eg. 7.1 resulting in four new equations. Horizontal 
and vertical arrows in the figure panel indicate how the additional parameters affected the model.  
 
 
 
 
 
 
 
Tab. 2: Examples of a non-linear model modification 

# Equation Parameters 

7.1 y=(x/(1+x)) - 

7.2 y=(bx/(1+bx)) b=0.5 

7.3 y=a*(bx/(1+bx)) b=0.5 
a=0.8 

7.4 y=a*(b(x-c)/(1+b(x-c))) b=0.5 
a=0.8 
c=0.5 

7.5 y=(a*(b(x-c)/(1+b(x-c))))+d b=0.5 
a=0.8 
c=0.5 
d=0.5 

 

 
Fig. 10: Example of a nonlinear model modification 
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Fitting nonlinear models 

 
Several statistical software packages offer tools for nonlinear modeling in herbicide resistance 
studies. These software packages provide a range of tools and capabilities for fitting nonlinear 
models to dose-response data in herbicide resistance studies. The choice of software depends on 
factors such as familiarity with the software, specific modeling requirements, and availability of 
desired features for data analysis and visualization. 
 

 Many statistical software packages available:  
 SAS - SAS (Statistical Analysis System) is a widely used commercial statistical software 

suite that includes procedures for nonlinear modeling. The PROC NLIN procedure in 
SAS can be used for fitting nonlinear models to dose-response data. 

 R - R is a free and open-source statistical computing and graphics software that 
offers numerous packages for nonlinear modeling. Packages like nlme, nls, 
minpack.lm, and drc are commonly used for fitting nonlinear models to dose-
response data in herbicide resistance studies. 

 JMP - JMP is a graphical statistical software package that offers interactive tools for 
data exploration and modeling. It provides functions for fitting nonlinear models to 
data, including dose-response curves in herbicide resistance studies. 

 GEnStat 
 MatLab - MATLAB provides a comprehensive environment for nonlinear modeling 

and optimization. The Curve Fitting Toolbox in MATLAB offers functions for fitting 
nonlinear models to data, including custom models for dose-response relationships 
in herbicide resistance studies. 

 Origin - Origin is a data analysis and graphing software package that offers extensive 
capabilities for fitting nonlinear models. It includes built-in functions for fitting 
custom models to data and visualizing the results. 

 SPSS - (Statistical Package for the Social Sciences) is another popular commercial 
statistical software package that offers capabilities for nonlinear modeling. Although 
SPSS may not have dedicated procedures for nonlinear modeling, custom scripts or 
plugins can be used to fit nonlinear models to data. 

 
 Nonlinear parameter estimates obtained using different methods, most common:  

 ordinary least squares (LSQ):   
 minimizes the sum of squared error between observation and prediction 
 x1, …xn – dose 
 y1, …yn – observed response 
 wi – user-specified weights  

 often left unspecified, equal 1 
 argument weights, eg. expressed as standard deviations of response 
 transform-both-sides approach should be preferred over using 

weights 
 maximum likelihood method (ML): 

 seeks the probability distribution that makes the observed data most likely 
 Choice of estimation methods affect the parameter estimates 

 
 Most problems encountered during the use of standard nonlinear regression software 

functions are due to:  
 poor choice of competing modes 
 incorrect equation 
 incorrect starting values 
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Starting values 

 
Choosing appropriate starting values for parameters in nonlinear modeling, particularly in herbicide 
resistance studies, is crucial for ensuring the convergence of optimization algorithms and obtaining 
reliable parameter estimates. Here are some strategies for selecting starting values: 
all the procedures for NL parameter estimation require initial value 

 all the procedures for NL parameter estimation require initial value 
 choice of values influence the convergence of the estimation algorithm  

 Convergence = sequence of essentially random or unpredictable events 
can sometimes be expected to settle into a pattern 

 worst case yielding in no convergence  
 there is no standard procedure for getting initial estimates 
 

 Choosing starting values - 5 practical methods: 
1) parameters with biological meaning  

• similar experiments or in a data-driven way using the dose-response data 
themselves to elicit relevant information 

2) use graphical exploration 
3) transform the NL model into a linear one 

• eg. logarithmic transformation in which rough estimates can be obtained by 
linear regression 

4) in case of no clear guidance use grid search 
• generate an extensive coverage of possible parameter values and then 

evaluate the model at each one of these parameter combinations 
5) use pre-specified algorithms 

 
These algorithms are specific to a given equation and given data set: 

 choice of starting values crucially affects whether convergence is achieved 
 availability of good starting values facilitate parameter estimation in nonlinear models 
 obtained by using parameter estimates previously reported for self starter functions return 

data-driven starting values for the model parameters 
 R self starter functions available for the function nls 
 supplying starting values manually, use argument start 
 function getInitial () – obtain starting values that were used for obtaining a particular model 

fit 
 

Convergence 

Convergence issues in nonlinear regression, particularly in the context of herbicide resistance 
studies, can arise when optimization algorithms fail to find a satisfactory solution within a reasonable 
number of iterations. Here are some common strategies for addressing convergence problems in 
nonlinear regression: 
 

 Checking algorithm convergence 
 convergence is achieved when a measure is below a certain threshold value 

(measure = such as the relative offset or maximum change among parameter 
estimates) 

 if convergence is not achieved 
 poor choice of starting values  
 the selected model is not well suited to describe the data 
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 if convergence is achieved 
next step – evaluate whether the parameter estimates are within a reasonable range 

 Evaluation whether the parameter estimates are within a reasonable range 
 requires evaluating the point estimates and also their standard errors 
 usually large standard errors are a sign of convergence problems (even if 

convergence was apparently achieved in previous step) 
 if no problems were encountered – continue by assessing model assumptions and 

simplifying model 
 Evaluating model assumptions 

 One model 
 normally distributed errors 
 independent errors 
 homogeneous variance for the errors 
 can be both - linear and non-linear models 
 Substantial deviations from the assumptions result in inaccurate estimates, 

distorted standard errors or both 
 Violation of these assumptions can be detected from an analysis of the 

residuals by means of graphical procedures and formal statistical tests 
 

 Evaluating model assumptions 
 One model 

 whether the distribution of measurement errors follows normality – use 
standardized residual plot  

 heterogeneity of variance can be detected by looking at the plot of the fitted 
values over residuals 

 residual errors show a trend, this can be addressed by modelling the 
variance as a function of the independent variable or the fitted 
values 

 if variance heterogeneity is ignored, the parameter estimates might 
not be influenced much, but confidence and prediction intervals are 

 residuals are assumed to be independent – this assumption is 
violated – it is visually evident in a plot of correlations of residuals 
against lag  

 typically, variables measure with time on the same subject tend to 
result in autocorrelated residuals that need to be accounted for by 
modelling the variance – covariance matrix 

 Multiple models – model selection criteria 
 How to find the best model among competing models? 

 depends on the structure of the models 
 different statistical criteria can be used:  

 F test, Akaike information criterion (AIC), Bayesian information 
criterion (BIC), likelihood ratio test 

 when the models are nested (=one model is a special case of another), any of 
these criteria can be used 

 when the models are non-nested  (=models having different structure), use 
AIC and BIC 

 

Goodness of fit 

Assessing the goodness of fit for nonlinear models in herbicide resistance studies is crucial for 
evaluating the adequacy of the model in capturing the underlying dose-response relationship. Here 
are several approaches:  
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 no single method or index to best assess the goodness of fit 
 many different methods – graphical and numerical 
 graphical comparison – quick visual assessment 
 numerical statistical indices: R2, adjusted R2, bias, mean squared error, RMSE, 

modelling efficiency (ME), concordance correlation …  
 some indices measure the absolute error (includes units), some the relative error 

(excludes units) 
 depending on the data – combination of the indices is possible 
 some simple and very common indices like r2 and bias do not account for the number 

of parameters 
 R2 does not represent a good metric of model performance for NL modes  
 does not account for the number of parameters 
 full model does not necessarily include the simpler model with one single parameter 

as is the case with linear models 
 numerical statistical descriptors 
 indicate the average performance of the model across the sample 
 when the variability is not constant throughout the sample, then statistical indices do 

not capture the fact that the uncertainty is not the same at different magnitudes of 
the response variables 

 predictive ability of the model  
 cross-validation techniques can be used  
 mean squared error of prediction is more appropriate 
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I. Nonsimilar dose-response curves model fit and 
hormesis 
 

Dose-response curves are almost never perfectly similar due to various factors, including biological 
variability, environmental conditions, genetic diversity, and experimental variability. Given these 
sources of variability, it's important to recognize that dose-response curves are rarely identical and 
may exhibit differences even under controlled experimental conditions. Understanding the factors 
contributing to variability in dose-response curves is essential for interpreting experimental results 
and designing effective herbicide resistance management strategies. 

Reasons why dose-response may exhibit differences:  
 differences in formulation 
 differences in uptake and translocation 
 environmental factors 
 differences at the molecular level affecting the affinity of the target site 
 Models should always be tested statistically for similarity (lack of fit F-test, 

likelihood-ratio test) 
 

Differences in upper and lower limit  
Ignoring differences in upper and lower limits in nonlinear models, particularly in the context of 
dose-response relationships in herbicide resistance studies, can lead to incorrect conclusions and 
misinterpretation of results. To address these issues, it's essential to select appropriate model 
structures that explicitly account for differences in upper and lower limits in dose-response 
relationships. For example, using sigmoidal models like the logistic or log-logistic models allows for 
flexible parameterization of upper and lower limits, ensuring that the model accurately captures the 
entire dose-response curve. Additionally, thorough model validation procedures, such as cross-
validation or independent dataset validation, can help assess the predictive performance of the 
model and identify potential limitations or biases. Overall, by considering differences in upper and 
lower limits in nonlinear modelling, researchers can obtain more accurate and reliable insights into 
herbicide efficacy and resistance mechanisms. Models with different upper and lower limits are 
shown in a picture below (fig. 11):  

 
a) similar upper and lower limits  

(b = 1.5, D = 1, C = 0) 

b) similar slopes but different lower limits  

(b = 1.5, D = 1, C = 0 and 0.3) 

c) different slopes and similar upper and lower limits (b = 1 and 2, D = 1, C =0),  



26 
 

d) different slopes and different upper and lower limits 

(b = 1 and 2, D = 0.8 and 1, C = 0 and 0.3) 

 

 
 
Fig. 11: Different upper and lower limits and similar and/or different slopes 
 
 
Relative potencies as a function of response between the curves a and c, b and d 
 
If B is reference herbicide, A is an unknown one, dose xA of herbicide A gives the same response as 
dose xB of herbicide B, then the relative potency rA of herbicide A is 
  rA=xB/xA     (fig. 12). 
 
 

 
Fig. 12: Relative potencies as a function of response between the curves a and c, b and d 
 
 

 transform data to calculate relative potencies with different upper and lower limits 
 estimation of D and C for two herbicides to the same scale 
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 artificial conclusions – transformed responses directly comparable at all response levels, 
while original responses only at the intersection  

 
 

 Procedure (data output of the transformation is shown in the fig. 13) 
 fit the curves simultaneously 
 apply Box-Cox transformation if necessary  
 check the quality of each set of dose-response models 

 analysis of variance by lack-of-fit F test 
 test for similarity of parameters 

 compare the fit of multiple dose-response models with and without similar 
parameters by F-test based on residual sum of squares of the two models 

 
 
Fig. 13: Transformation of the data to a common scale 
 

 slight differences in slope of the dose-response curves cause large deviations at 
agronomically relevant control levels 

 it is necessary to show the whole story 

Original data 

Transformed data 

 to a common 

response scale 



28 
 

 actual response is recommended 
 display the entire range of relative potency from low to high levels 
 scaling removes some of the biological information – can lead to wrong conclusions 

 
 
 
 

Hormesis 
Hormesis is a phenomenon in which exposure to a low dose of a stressor (such as a herbicide) results 
in a beneficial response or stimulation of growth or other physiological processes, while higher doses 
of the stressor have detrimental effects. In the context of herbicide resistance studies, hormesis can 
manifest as increased plant growth or tolerance to herbicides at low doses, followed by inhibition or 
toxicity at higher doses. Modelling hormesis in herbicide resistance studies using nonlinear models 
involves capturing non-monotonic dose-response relationship. By incorporating hormesis into 
nonlinear modelling approaches for herbicide resistance studies, researchers can better understand 
the complex dynamics of herbicide-plant interactions and their implications for weed management 
and herbicide efficacy (fig. 14). 
 

 Stimulatory effect of low dosase of a toxic compound  

 
Fig. 14: Root growth of Lactuca sativa after the glyphosate treatment, black curve – Cedergreen et 
al., grey curve – Brain- Cousens model, error bars – standard deviation (Belz et al. 2012)   
 
 

 Brain-Cousens model 
 a specific type of nonlinear model used in herbicide resistance studies, particularly 

for describing hormetic dose-response relationships 
 developed by Brain and Cousens in 1989 
 based on the assumption that the effects of a herbicide on plant growth can vary 

nonlinearly with dose 
 exhibiting both stimulatory and inhibitory effects across different concentration 

ranges 
 problems when fitting data displaying an early increase in responses at low doses, a 

broad hormetic dose range and/or gently sloping curves 
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 Cedergreen model 
 problems in case of pre-hormetic toxicity 
 developed by Line Cedergreen in 2008 
 based on the assumption that the effect of a herbicide on plant growth or response 

varies nonlinearly with dose 
 exhibiting both stimulatory and inhibitory effects across different concentration 

ranges 
 Both models have limitations in case of extremely steep sloping data sets 

 
 
“Which model best fits observed responses must be statistically and graphically reassessed for every 
set of empirical data. An uncritical application of a particular model can cause serious 
misinterpretation …. (Belz et al., 2012).“ 
 
 
 

Package drc 
The "drc" package in R is a l tool for dose-response modeling, which is commonly used in various 
fields including toxicology, pharmacology, and agriculture, including herbicide resistance studies. The 
"drc" package provides functions for fitting a wide range of dose-response models to experimental 
data and conducting model selection and evaluation. It provides a comprehensive set of tools for 
fitting, comparing, and evaluating dose-response models, allowing for robust analysis and 
interpretation of experimental data. 
 
The package drc: 

 bioassays – experiments with biologically active compounds 
 dose response studies for different plant species and/or different herbicides 
 potencies of compounds compared at some a priori response levels – 50% reduction of 

biomass or other response 
 add-on package for the language and environment R 
 open source 
 freely available http://www.R-project.org 
 consists entirely of interpreted R lines 
 current version at http://www.bioassay.dk 
 number of other R packages related to dose-response analysis: DoseFinding, drfit, grofit, 

MCPMod, nlstools 
 originally developed to provide nonlinear model fitting for specialized analysis routinely 

carried out in weed science 
 main function multdrc – carries out the estimation of parameters and returns a model fit 
 default function – four-parameter logistic model with built-in self starter functions 

 
Drc package 

 Once a model fit is obtained, following methods for extracting information are available: 
 anova: lack-of fit test or test for reduction between two models 
 coef: parameter estimates 
 fitted: fitted values 
 logLik: log likelihood value 
 plot: plot of the fitted curves 
 residuals: raw residuals 
 summary: summary of the model fit 

http://www.r-project.org/
http://www.bioassay.dk/
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 Vcov: estimated variance-covariance matrix 
 compParm, ED and SI: comparisons of parameters, ED vaules and SI values 

 
Limitation of using drc package 

 assumed that responses are independent 
 certain correlation structures may readily be implemented within the framework of drc, eg. 

correlation that is a function of the dose-response model function 
 for continuous responses the package medrc extends many of the capabilities of drc to 

correlated dose-response data fitted through nonlinear mixed-effects regression models 
 medrc utilizes the capabilities of the package nlme, but allows estimation of conditional and 

population-based ED levels 
 

Fitting a single dose response curve 
 main function multdrc/drm – can be used to fit data from one or more dose response curves 
 default – four parameter logistic model is fitted to the data 

 >model <-multdrc(NAME) 
 argument to function multdrc is a data frame which is a collection of columns of the same 

length 
 call multidrc produces no output – all relevant information is stored in the object model 
 to see the outputs, use extractors 

 
Extractors 
1) anova (model) – can be used to obtain a lack-of fit test, comparing the four-parameter logistic 
model to a one-way ANOVA model (fig. 15) 

 
 
Fig. 15: Lack-of-fit test using anova (model) 
 
Not significant = four-parameter logistic model provides as good a fit as the one-way ANOVA 

 t-statistics and corresponding p-values are for testing the null hypotheses that the 
parameters are equal to 0 (not necessarily relevant hypotheses to consider) 

 Estimate of common variance parameter σ2 is 0.27 
 the variance of any residual; in particular, the variance σ2 (y - Y) of the difference 

between any variate y and its regression function Y 
 the higher the value, the worse the fit 

Hierarchical model structure 
 provides a convenient way to specify special cases obtained by fixing one or more 

parameters at certain given value 
 these parameters will not be estimated from the data, will be kept fixed at the specified 

value – quite frequent case in practice (fixed) 
 examples:  
 fixing f=1: LL.4(fixed=c(NA, NA, NA, 1))),  
 fixing c=0, d=1: LL.4(fixed=c(NA, 0, 1, NA)) 
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 NA=parameters have to be estimated from the data, the order of model parameters 
is b, c, d, e, f 

 

Fitting a multiple dose response 
 We assume:  

1) each curve follows a four-parameter logistic curve 
2) parameters differ among curves 
>model2<-multdrc(response to dose~independent variable, grouping variable, data=NAME) 
>anova(model2) 
We have to check an assumption that regression provides an acceptable description of the data (fig. 
16).  
 

 
Fig. 16: Not significant nonlinear regression provides an acceptable description of the data 
 
>summary(model2) – output is shown in fig. 17 
c limit in sample 1 and 5 – negative, not meaningful but not significantly different from 0 – use the 
three parameters model 

 
Fig. 17: Fitting of the logistic model with function “summary” 



32 
 

 
 
>ED50(model2, c(10, 50,90)) – output shown in fig. 18 

 
Fig. 18: Estimated of ED10, ED50 a ED90  
 
 
Output provides standard errors and p-values for testing the null hypothesis that the indices are 
equal to 1. 
 

Simultaneous fitting – model reduction 
In herbicide resistance studies, simultaneous fitting and model reduction techniques are often 
employed to efficiently analyze dose-response data and identify the most parsimonious model that 
adequately describes the underlying biological processes. 

 Reduce a model using significance tests 
 Data: TM (Cedergreen, 2004)  
 Variables: dose, ptc = curve number, rgr = response (growth rates of duckweed and 

the treatments are mixtures of two herbicides with different modes of action), 180 
observations 

 Simultaneous model using four-parameter Gompertz model with different 
parameters for different assays – fig. 19 and 20 
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Fig. 19: Simultaneous fitting of several responses (Cedergreen, 2004) 
 

 
Fig. 20: Simultaneous model using four-parameter Gompertz model with different parameters for 
different assays 
 

 By default – parameter d is estimated for the control group, d:999 
 Individual curves does not produce a fit that agree with the control group – single parameter 

d to all curves 
 Use „collapse“ argument – may be specified using a data frame or a list as argument 
 Difference between data frame and collapse as an argument: 

 Overlapping in their functionality 
 Data frame:  
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 Better for collapsing parameters for arbitrary curves 
 No requirement for the corresponding grouping variable to be defined 

 List specification  
 More general structures involving more than one variable per parameter 
 Follows the same syntax as is used for lm and glm 

 
 

Simultaneous fitting – model reduction: an example 
 General model, based on the assumption and dataset plot: modelex3.1 <- multdrc(rgr ~ dose, 

pct, data = TM, fct = g4()) 
 Model with common upper limit: modelex3.2<-multdrc(TM[,c(3,1)], TM[,2], 

collapse=data.frame(TM[,2], TM[,2], colFct(TM[,2],1:8), TM[,2]), fct=g4()) 
 Model with common lower limit: modelex3.3 <- multdrc(rgr ~ dose, pct, data.frame(pct, 1, 

pct, pct), data = TM, fct = g4()) 
 Comparing two models: 

 anova(modelex3.1, modelex3.2) p=2.869e-06 (NS-model with a common 
upper limit rejected) 

 anova(modelex3.3, modelex3.1) p=0.5006 (S- modelex3.1 is as good as 
modelex3.3 -> fit a model with the common lower limit equal to 0) 

 Model with the lower limit equal to 0: modelex3.4 <- multdrc(rgr ~ dose, pct, data.frame(pct, 
pct,pct), data = TM, fct = g3()) 

 anova(modelex3.4, modelex3.3), p=0.256 (S – we can reduce the initial 
model to a model with common lower limit equal to 0) 

 
 

Practical training 
 

 Experimental design:  
 2 populations of Stellaria media  

 S – sensitive standard (fig. 21) 
 Putatively R – survival of application of sulfonylureas in field 

 Small pot experiment (fig. 22) 
 9 doses of florasulam + untreated control 
 4 replications per dose 

 Expected output – calculation of resistance factor (fig. 23) 
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Fig. 21: Examples of dose-response of Stellaria media treated with florasulam. On the picture, there 
are two populations, one susceptible to that active ingredient, the other is resistant to florasulam.  
 

 
 
Fig. 22: Stellaria media resistant to ALS inhibitors – recently presented in Rothamsted, Resistance ´19 
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Fig. 23: Statistical modelling and calculations of resistance factor 
 

About R 
R is a powerful programming language and environment specifically designed for statistical 
computing and graphics. It offers a wide variety of statistical and graphical techniques, making it a 
popular choice among statisticians, data analysts, and researchers. Here are some basics of statistical 
analysis in R: 

1) Installing R and RStudio: R can be downloaded from the Comprehensive R Archive 
Network (CRAN) website (https://cran.r-project.org/). RStudio is a popular integrated 
development environment (IDE) for R, providing a more user-friendly interface for 
coding in R. 

2) Loading Data: Before conducting any statistical analysis, you'll need to load your data 
into R. Commonly used functions for loading data include read.csv(), read.table(), 
read_excel() from the readxl package, and readr::read_csv() from the readr package. 

3) Exploratory Data Analysis (EDA): EDA is the process of exploring your data to 
understand its characteristics. Functions such as summary(), str(), head(), and tail() 
are useful for getting an overview of the data structure, summary statistics, and first 
few or last few observations. 

4) Data Manipulation: R offers powerful tools for data manipulation. The dplyr package 
provides functions like filter(), select(), mutate(), summarize(), and arrange() for data 
manipulation tasks such as subsetting, filtering, creating new variables, and 
summarizing data. 

5) Statistical Tests and Models: R has a vast array of packages for conducting statistical 
tests and fitting models. Some commonly used packages include stats, MASS, lme4, 
nlme, survival, caret, glmnet, and many others. Depending on the analysis you need 
to perform, you can find specific functions for hypothesis testing, regression analysis, 
time series analysis, survival analysis, machine learning, and more. 

6) Visualization: Visualization is a crucial aspect of data analysis. R provides various 
packages for creating plots and graphs, including ggplot2, lattice, and base graphics. 
These packages allow you to create static and interactive visualizations for exploring 
data patterns and communicating results effectively. 

7) Reporting: RMarkdown is a powerful tool for integrating R code, output, and 
narrative text into a single document. It allows you to create reports, presentations, 
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and even websites directly from R. By combining R code with Markdown syntax, you 
can generate dynamic and reproducible documents.  

8) Packages and Libraries: R's functionality can be extended through packages, which 
are collections of R functions, data, and documentation. You can install packages 
using the install.packages() function and load them into your R session using the 
library() function. 

 

Download R project 
https://cran.r-project.org/bin/windows/base/ 
Download R (latest version)  
 
Follow installation instructions 
Once the R is installed: go to Packages – Set CRAN mirror, choose DENMARK 

 
Fig. 24: Installing packages for statistical analysis 
 
Again go to Packages – Install packages choose „drc“ (fig. 24) 
  
During the installation process you might be asked: Would you like to use a personal library instead? 
Confirm Yes 
Would you like to create a personal library C:// to install packages into? Confirm Yes 
Caution: Extraction process takes some time! 
 

R Studio download 
Installation of the RStudio gives a user an access to a much-improved environment to work in your R 
scripts. It includes a console that supports direct code execution and tools for plotting and keeping 
track of your variables in the workspace, among other features (fig. 25). 
https://cran.rstudio.com/  
 

https://cran.r-project.org/bin/windows/base/
https://cran.rstudio.com/
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Fig. 25: Installation of R-Studio 
 

R basics 
If you're a beginner interested in learning R, here's a step-by-step guide to get you started with basic 
functions: 
1+2 
2^2 
sqrt(9) 
 
4/(3*4 - 2^3) 
 
# logical operations 
1 == 2 
1 != 2 
1  < 2 
1  > 2 
1 >= 2 
 
4/(3*4 - 2^3) == 1 
 
# values storing - object creation 
x <- 1 
y <- c(1, 2, 3) 
 
is(x) 
is(y) 
# vectors and their types 
# logical 
a  <- c(TRUE, TRUE, FALSE, TRUE, FALSE) 
 
is(a) 
 
1:5 == 1:5 
1:10 > 5 
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# integer 
b  <- 1:5 
b2 <- c(1L, 2L, 3L) 
is(b) 
 
# numeric 
c  <- c(1, 2, 3, 4, 5) 
c2 <- rep(10,10) 
c3 <- seq(from = 0, to = 1, by = 0.1) 
is(c) 
 
# character 
d  <- c("a", "b", "2") 
is(d) 
 
# vectors are converted to most general type (logical -> integer -> numeric -> character) 
abc <- c(TRUE) 
abc 
is(abc) 
 
abc <- c(TRUE, 1L) 
abc 
is(abc) 
 
abc <- c(TRUE, 1L, 1/3) 
abc 
is(abc) 
 
abc <- c(TRUE, 1L, 1/3, "a") 
abc 
is(abc) 
 
# other types of vectors - complex 
abc <- c(1+1i,2+1i) 
abc 
is(abc) 
 
# special type of vector - factors, good format for categorical data 
e <- factor(d) 
e 
is(e) 
 
# matrices and arrays 
mat1 <- matrix(1:9, nrow = 3, ncol = 3) 
mat1 
 
mat2 <- matrix(1:9, nrow = 3, ncol = 3, byrow = T) 
mat2 
is(mat1) 
dim(mat1) 
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arr1 <- array(1:27, c(3, 3, 3)) 
arr1 
is(arr1) 
dim(arr1) 
 
mat3 <- matrix(c(1:8, "i"), 3, 3) 
mat3 
 
# operations with vectors and matrices 
vec1 <- 1:10 
 
# operations are element-wise 
vec1 + 1 
vec1^2 
vec1 * vec1 
vec2 <- vec1 * vec1 
 
# vectors are "recycled" 
vec1 + 1:5*100 
 
# cross product (vektorovĂ˝ souÄŤin) 
vec1 %*% vec1 
 
# matrix algebra 
matrix(1, nrow = 3, ncol = 2) * matrix(1, nrow = 2, ncol = 3) 
matrix(1, nrow = 3, ncol = 2) %*% matrix(1, nrow = 2, ncol = 3) 
 
# lists 
list1 <- list(first = TRUE, second = 1:100, third = "long description of something") 
list1 
 
# data frames combine features of matrices and lists 
# ideal for storing data 
df1 <- data.frame(a = c(T,T,F,F,T), b = 1:5 , c = c("a", "b", "c", "d", "e")) 
df1 
 
df2 <- data.frame(a = c(T,T,F,F,T), b = 1:5 , c = c("a", "b", "c", "d", "e"), stringsAsFactors = F) 
df2  
 
# and operator &  
TRUE  & TRUE 
FALSE & TRUE 
FALSE & FALSE 
 
# or operator | 
TRUE  | TRUE 
FALSE | TRUE 
FALSE | FALSE 
 
# xor operator 
xor(TRUE, TRUE) 
xor(FALSE, TRUE) 
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xor(FALSE, FALSE) 
 
 

Statistical modelling of non-linear curves in R or R-Studio 
# loading libraries 
> library(drc) 
> library(sandwich) 
> library(lmtest) 
 
# loading florasulam data  
> florasulam <-read.table (file.choose(), sep=";", dec=".", header=TRUE) 
> florasulam 
    herbicide     dose biotype response fresh.matter dry.matter 
1  florasulam   0.0010       R        0        8.433      1.277 
2  florasulam   0.0010       R        0        6.537      1.000 
3  florasulam   0.0010       R        0        5.586      0.783 
4  florasulam   0.0010       R        0        4.576      0.737 
5  florasulam   0.0158       R        5        2.626      0.481 
6  florasulam   0.0158       R        5        4.003      0.725 
7  florasulam   0.0158       R        5        4.686      0.877 
8  florasulam   0.0158       R       10        3.755      0.738 
9  florasulam   0.0500       R       10        3.501      0.595 
10 florasulam   0.0500       R        5        5.788      0.879 
11 florasulam   0.0500       R        5        4.546      0.881 
12 florasulam   0.0500       R       10        5.007      0.807 
13 florasulam   0.1580       R       10        3.804      0.611 
14 florasulam   0.1580       R       15        3.545      0.655 
15 florasulam   0.1580       R       10        3.703      0.612 
16 florasulam   0.1580       R       10        4.867      0.771 
17 florasulam   0.5000       R       15        4.423      0.595 
18 florasulam   0.5000       R       15        3.347      0.447 
19 florasulam   0.5000       R       15        3.938      0.521 
20 florasulam   0.5000       R        5        5.836      0.763 
21 florasulam   1.5800       R       10        5.498      0.573 
22 florasulam   1.5800       R       20        1.634      0.322 
23 florasulam   1.5800       R       15        4.071      0.626 
24 florasulam   1.5800       R       15        4.571      0.671 
25 florasulam   5.0000       R       35        1.966      0.303 
26 florasulam   5.0000       R       40        1.649      0.262 
27 florasulam   5.0000       R       35        2.021      0.227 
28 florasulam   5.0000       R       35        1.675      0.244 
29 florasulam  15.8000       R       55        1.275      0.159 
30 florasulam  15.8000       R       55        1.698      0.177 
31 florasulam  15.8000       R       55        1.379      0.139 
32 florasulam  15.8000       R       60        0.830      0.130 
33 florasulam  50.0000       R       80        0.505      0.076 
34 florasulam  50.0000       R       80        0.186      0.062 
35 florasulam  50.0000       R       80        0.588      0.090 
36 florasulam  50.0000       R       80        0.728      0.101 
37 florasulam 158.0000       R       85        0.240      0.079 
38 florasulam 158.0000       R       85        0.133      0.055 
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39 florasulam 158.0000       R       85        0.262      0.072 
40 florasulam 158.0000       R       85        0.407      0.036 
41 florasulam   0.0010       S        0        1.301      0.329 
42 florasulam   0.0010       S        0        3.631      0.491 
43 florasulam   0.0010       S        0        3.627      0.567 
44 florasulam   0.0010       S        0        4.632      0.746 
45 florasulam   0.0158       S       65        0.314      0.061 
46 florasulam   0.0158       S       70        0.362      0.076 
47 florasulam   0.0158       S       68        0.248      0.061 
48 florasulam   0.0158       S       70        0.268      0.070 
49 florasulam   0.0500       S       70        0.181      0.062 
50 florasulam   0.0500       S       75        0.156      0.044 
51 florasulam   0.0500       S       75        0.100      0.044 
52 florasulam   0.0500       S       75        0.210      0.071 
53 florasulam   0.1580       S       85        0.078      0.038 
54 florasulam   0.1580       S       85        0.063      0.029 
55 florasulam   0.1580       S       85        0.067      0.032 
56 florasulam   0.1580       S       85        0.068      0.027 
57 florasulam   0.5000       S       90        0.048      0.019 
58 florasulam   0.5000       S       90        0.052      0.025 
59 florasulam   0.5000       S       90        0.043      0.025 
60 florasulam   0.5000       S       90        0.111      0.034 
61 florasulam   1.5800       S       95        0.047      0.025 
62 florasulam   1.5800       S       95        0.069      0.023 
63 florasulam   1.5800       S       95        0.039      0.023 
64 florasulam   1.5800       S       95        0.045      0.031 
65 florasulam   5.0000       S       95        0.054      0.026 
66 florasulam   5.0000       S       95        0.042      0.022 
67 florasulam   5.0000       S       95        0.054      0.036 
68 florasulam   5.0000       S       95        0.046      0.023 
69 florasulam  15.8000       S       95        0.048      0.026 
70 florasulam  15.8000       S       95        0.052      0.028 
71 florasulam  15.8000       S       95        0.049      0.026 
72 florasulam  15.8000       S       95        0.038      0.026 
73 florasulam  50.0000       S       95        0.036      0.024 
74 florasulam  50.0000       S       95        0.052      0.034 
75 florasulam  50.0000       S       95        0.049      0.026 
76 florasulam  50.0000       S       95        0.041      0.026 
77 florasulam 158.0000       S       95        0.041      0.029 
78 florasulam 158.0000       S       98        0.038      0.025 
79 florasulam 158.0000       S       98        0.045      0.027 
80 florasulam 158.0000       S       98        0.039      0.025 
 
# display dose vs response data 
> plot(florasulam$dose, florasulam$response) 



43 
 

 
Fig. 26 
# with differently colored biotypes 
> plot(florasulam$dose, florasulam$response, col = ifelse(florasulam$biotype == "R", "darkred", 
"black"),  pch = ifelse(florasulam$biotype == "R", 0, 5)) 
 

 
Fig. 27 
# on logarithmic scale 
> plot(florasulam$dose, florasulam$response, log = "x", col = ifelse(florasulam$biotype == "R", 
"darkred", "black"),  pch = ifelse(florasulam$biotype == "R", 0, 5)) 
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Fig. 28 
# fitting both biotypes simultaneously 
 
> m<-drm(response~dose, biotype, data=florasulam, fct=LL.4(fixed = c(NA, NA, NA, NA))) 
> plot(m) 

 
Fig. 29 
# summary of models with estimated parameters 
> summary (m) 
Model fitted: Log-logistic (ED50 as parameter) (4 parms) 
 
Parameter estimates: 
 
       Estimate  Std. Error     t-value p-value 
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b:R  -0.9314994   0.1064109  -8.7537942  0.0000 
b:S  -0.9693657   0.0902818 -10.7371061  0.0000 
c:R   5.0138499   1.1952688   4.1947469  0.0001 
c:S  -8.8159397   4.3744323  -2.0153335  0.0476 
d:R  93.0604593   3.9158563  23.7650343  0.0000 
d:S  94.0131606   0.9221261 101.9526106  0.0000 
e:R  10.1112981   1.3621863   7.4228453  0.0000 
e:S   0.0071609   0.0010014   7.1510506  0.0000 
 
Residual standard error: 
 
 4.091408 (72 degrees of freedom) 
 
# creating dataframes for resistant and susceptible biotypes for separate models fitting 
> florasulam_R <- florasulam[florasulam$biotype=="R",] 
> florasulam_S <- florasulam[florasulam$biotype=="S",] 
 
#### LL4 model fitting for resistant biotype 
> florasulam_R_LL4 <- drm(response ~ dose, data = florasulam_R, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> summary (florasulam_R_LL4) 
Model fitted: Log-logistic (ED50 as parameter) (4 parms) 
 
Parameter estimates: 
 
              Estimate Std. Error  t-value p-value 
b:(Intercept) -0.96735    0.10189 -9.49415       0 
c:(Intercept)  5.70023    1.09852  5.18900       0 
d:(Intercept) 92.23628    3.49624 26.38156       0 
e:(Intercept) 10.09029    1.24072  8.13261       0 
 
Residual standard error: 
 
 3.923603 (36 degrees of freedom) 
 
# lack-of-fit test 
> modelFit(florasulam_R_LL4) 
Lack-of-fit test 
 
          ModelDf    RSS Df F value p value 
ANOVA          30 225.00                    
DRC model      36 554.21  6  7.3157  0.0001 
 
# plot fitted curve 
> plot(florasulam_R_LL4, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkred", pch = 0, 
col.main = "darkred", xlab = expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]", type 
="all", main ="florasulam_R_LL4") 
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Fig. 30 
 
# add 95 % confidence interval 
> pm <- predict(florasulam_R_LL4, newdata = data.frame(dose=exp(seq(log(0.0005), log(200), 
length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 

 
Fig. 31 
# add ED10, ED50 and ED90 
> abline(v = ED(florasulam_R_LL4, c(10,50,90))[,1], col = "darkred") 
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Fig. 32 
 
# see four estimated parameters  
> summary(florasulam_R_LL4) 
Model fitted: Log-logistic (ED50 as parameter) (4 parms) 
 
Parameter estimates: 
 
              Estimate Std. Error  t-value p-value 
b:(Intercept) -0.96735    0.10189 -9.49415       0 
c:(Intercept)  5.70023    1.09852  5.18900       0 
d:(Intercept) 92.23628    3.49624 26.38156       0 
e:(Intercept) 10.09029    1.24072  8.13261       0 
 
Residual standard error: 
3.923603 (36 degrees of freedom) 
 
coeftest(florasulam_R_LL4, vcov = sandwich) 
 
> abline(v = 10.0903 + 1.96*0.813) 
> abline(v = 10.0903 - 1.96*0.813) 
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Fig. 33 
 
 
#### LL4 model with fixed boundaries at 0 and 100 
> florasulam_R_LL4.0_100fixed <- drm(response ~ dose, data = florasulam_R, fct = LL.4(fixed = c(NA, 
0, 100, NA))) 
> summary (florasulam_R_LL4.0_100fixed) 
 
Model fitted: Log-logistic (ED50 as parameter) (2 parms) 
 
Parameter estimates: 
 
                Estimate Std. Error    t-value p-value 
b:(Intercept)  -0.702917   0.039974 -17.584333       0 
e:(Intercept)  10.543756   0.797897  13.214427       0 
 
Residual standard error: 
 
 4.81359 (38 degrees of freedom) 
 
# plot fitted curve, add it to previous one by setting parameter new = T  
> par(new=T) 
> plot(florasulam_R_LL4.0_100fixed, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkblue", 
pch = 0, cex = 0.4, xlab = expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]", type 
="all", main =""), title("florasulam_R_LL4 with fixed boudaries", line = 0.5, col.main = "darkblue") 
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Fig. 34 
# add 95 % confidence interval 
> pm <- predict(florasulam_R_LL4.0_100fixed , newdata = data.frame(dose=exp(seq(log(0.0005), 
log(200), length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 

 
Fig. 35 
# add ED10, ED50 and ED90 
> abline(v = ED(florasulam_R_LL4.0_100fixed, c(10,50,90))[,1], col = "darkblue") 
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Fig. 36 
# see estimated parameters  
> summary(florasulam_R_LL4.0_100fixed) 
Model fitted: Log-logistic (ED50 as parameter) (2 parms) 
 
Parameter estimates: 
 
                Estimate Std. Error    t-value p-value 
b:(Intercept)  -0.702917   0.039974 -17.584333       0 
e:(Intercept)  10.543756   0.797897  13.214427       0 
 
Residual standard error: 
 
 4.81359 (38 degrees of freedom) 
 
# check both models for Lack of fit 
> modelFit(florasulam_R_LL4) 
Lack-of-fit test 
 
          ModelDf    RSS Df F value p value 
ANOVA          30 225.00                    
DRC model      36 554.21  6  7.3157  0.0001 
> modelFit(florasulam_R_LL4.0_100fixed) 
Lack-of-fit test 
 
          ModelDf    RSS Df F value p value 
ANOVA          30 225.00                    
DRC model      38 880.48  8  10.925   0.000 
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# sum of squares model 
> sum((florasulam_R$response - predict(florasulam_R_LL4))^2) 
[1] 554.2078 
 
# sum of squares ANOVA 
> anova_flu <- 0 
> for(i in 1:10){anova_flu <- anova_flu + sum((florasulam_R$response[(4*i-3):(4*i)] - 
mean(florasulam_R$response[(4*i-3):(4*i)]))^2)} 
> anova_flu 
[1] 225 
# or: 
> aov(response ~ as.factor(dose), data = florasulam_R) 
Call: 
> aov(formula = response ~ as.factor(dose), data = florasulam_R) 
 
Terms: 
                as.factor(dose) Residuals 
Sum of Squares            36385       225 
Deg. of Freedom               9        30 
 
Residual standard error: 2.738613 
Estimated effects may be unbalanced 
# see how other models/curve types perform 
> mselect(florasulam_R_LL4, list(LL.2(), LL.3(), LL.4(fixed = c(NA, 0, 100, NA)), LL.5(), LL.5(fixed = c(NA, 
0, 100, NA, NA)), W1.3(), W1.4(), W2.4(), baro5())) 
         logLik       IC  Lack of fit  Res var 
LL.5  -105.6413 223.2826 4.204130e-04 13.16709 
W2.4  -106.6765 223.3529 4.279719e-04 13.48134 
baro5 -106.3067 224.6135 2.658502e-04 13.61253 
LL.4  -109.3307 228.6615 7.010636e-05 15.39466 
W1.4  -113.5434 237.0867 3.708455e-06 19.00405 
LL.5  -114.6327 237.2654 3.664165e-06 19.52544 
LL.4  -118.5894 243.1788 4.648271e-07 23.17065 
LL.3  -118.2652 244.5303 2.834733e-07 23.41420 
W1.3  -125.4626 258.9253 1.617078e-09 33.55604 
LL.2         NA       NA           NA       NA 
 
 
###### 
###### try LL5 models 
> florasulam_R_LL5 <- drm(response ~ dose, data = florasulam_R, fct = LL.5(fixed = c(NA, NA, NA, NA, 
NA))) 
 
# plot fitted curve 
> plot(florasulam_R_LL5, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkred", pch = 0, xlab 
= expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]", type ="all") 
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Fig. 37 
 
# add 95 % confidence interval 
> pm <- predict(florasulam_R_LL5 , newdata = data.frame(dose=exp(seq(log(0.0005), log(200), 
length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 

 
Fig. 38 
 
# add ED10, ED50 and ED90 
> abline(v = ED(florasulam_R_LL5, c(10,50,90))[,1], col = "darkred") 
Estimated effective doses 
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     Estimate Std. Error 
1:10  0.33027     0.1473 
1:50  8.85766     0.8050 
1:90 40.45144     8.0495 
 
# see estimated parameters  
> summary(florasulam_R_LL5) 
Model fitted: Generalized log-logistic (ED50 as parameter) (5 parms) 
 
Parameter estimates: 
 
               Estimate Std. Error   t-value p-value 
b:(Intercept) -2.579198   0.995637 -2.590501  0.0139 
c:(Intercept)  2.333519   1.569251  1.487027  0.1460 
d:(Intercept) 85.347408   2.157195 39.564067  0.0000 
e:(Intercept) 35.985451   6.792509  5.297814  0.0000 
f:(Intercept)  0.190313   0.090166  2.110682  0.0420 
 
Residual standard error: 
 
 3.628648 (35 degrees of freedom) 
 
#### LL5 model with fixed boundaries at 0 and 100 
> florasulam_R_LL5.0_100fixed <- drm(response ~ dose, data = florasulam_R, fct = LL.5(fixed = c(NA, 
0, 100, NA, NA))) 
 
# plot fitted curve, add it to previous one by setting parameter new = T  
> par(new=T) 
> plot(florasulam_R_LL5.0_100fixed, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkblue", 
pch = 0, xlab = expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]", type ="all") 

 
Fig. 39 
 
# add 95 % confidence interval 

Florasulam rate [g Al ha
1
]

e
ff
ic

a
c
y
 [
%

]

0 0.01 1 100

0

20

40

60

80

100

Florasulam rate [g Al ha
1
]

e
ff
ic

a
c
y
 [
%

]

0 0.01 1 100

0

20

40

60

80

100



54 
 

> pm <- predict(florasulam_R_LL5.0_100fixed , newdata = data.frame(dose=exp(seq(log(0.0005), 
log(200), length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 

 
Fig. 40 
 
# add ED10, ED50 and ED90 
> abline(v = ED(florasulam_R_LL5.0_100fixed, c(10,50,90))[,1], col = "darkblue") 

 
Fig. 41 
# see estimated parameters 
> summary(florasulam_R_LL5.0_100fixed) 
fitted: Generalized log-logistic (ED50 as parameter) (3 parms) 
 
Parameter estimates: 
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              Estimate Std. Error  t-value p-value 
b:(Intercept) -0.98460    0.14098 -6.98411  0.0000 
e:(Intercept) 38.62160   12.87850  2.99892  0.0048 
f:(Intercept)  0.47976    0.11076  4.33149  0.0001 
 
Residual standard error: 
 
 4.41876 (37 degrees of freedom) 
 
# are there significant difference between models? 
> anova(florasulam_R_LL4, florasulam_R_LL4.0_100fixed) 
1st model 
 fct:      LL.4(fixed = c(NA, 0, 100, NA)) 
2nd model 
 fct:      LL.4(fixed = c(NA, NA, NA, NA)) 
 
ANOVA table 
 
          ModelDf    RSS Df F value p value 
2nd model      38 880.48                    
1st model      36 554.21  2 10.5971  0.0002 
 
> anova(florasulam_R_LL4, florasulam_R_LL5) 
1st model 
 fct:      LL.4(fixed = c(NA, NA, NA, NA)) 
2nd model 
 fct:      LL.5(fixed = c(NA, NA, NA, NA, NA)) 
 
ANOVA table 
 
          ModelDf    RSS Df F value p value 
1st model      36 554.21                    
2nd model      35 460.85  1  7.0904  0.0116 
 
> anova(florasulam_R_LL4.0_100fixed, florasulam_R_LL5.0_100fixed) 
1st model 
 fct:      LL.4(fixed = c(NA, 0, 100, NA)) 
2nd model 
 fct:      LL.5(fixed = c(NA, 0, 100, NA, NA)) 
 
ANOVA table 
 
          ModelDf    RSS Df F value p value 
1st model      38 880.48                    
2nd model      37 722.44  1  8.0942  0.0072 
 
> anova(florasulam_R_LL5, florasulam_R_LL5.0_100fixed) 
1st model 
 fct:      LL.5(fixed = c(NA, 0, 100, NA, NA)) 
2nd model 
 fct:      LL.5(fixed = c(NA, NA, NA, NA, NA)) 
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ANOVA table 
 
          ModelDf    RSS Df F value p value 
2nd model      37 722.44                    
1st model      35 460.85  2  9.9336  0.0004 
 
##################################################### 
##################################################### 
#   THE SAME FOR SUCEPTIBLE BIOTYPE #################  
##################################################### 
 
# fit and plot model and see summary: 
> florasulam_S_LL4 <- drm(response ~ dose, data = florasulam_S, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> plot(florasulam_S_LL4, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkred", pch = 0, xlab 
= expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]") 
abline(v = ED(florasulam_S_LL4, c(10,50,90))[,1], col = "darkred") 

 
Fig. 42 
Estimated effective doses 
 
      Estimate Std. Error 
1:10 0.0012522     0.0004 
1:50 0.0089419     0.0012 
1:90 0.0638515     0.0139 
 
# add 95 % confidence interval 
> pm <- predict(florasulam_S_LL4 , newdata = data.frame(dose=exp(seq(log(0.0005), log(200), 
length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 
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Fig. 43 
 
 
> summary(florasulam_S_LL4) 
Model fitted: Log-logistic (ED50 as parameter) (4 parms) 
 
Parameter estimates: 
 
                Estimate Std. Error    t-value p-value 
b:(Intercept) -1.1177190  0.1320106 -8.4668883  0.0000 
c:(Intercept) -0.1199149  3.8222678 -0.0313727  0.9751 
d:(Intercept) 93.5341073  1.1143033 83.9395373  0.0000 
e:(Intercept)  0.0089419  0.0011795  7.5813841  0.0000 
 
Residual standard error: 
 
 5.062525 (36 degrees of freedom) 
 
# check for lack of fit and compare to other models 
> modelFit(florasulam_S_LL4) 
Lack-of-fit test 
 
          ModelDf    RSS Df F value p value 
ANOVA          30  42.25                    
DRC model      36 922.65  6  104.19    0.00 
 
> mselect(florasulam_S_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4(), baro5())) 
logLik       IC  Lack of fit   Res var 
baro5  -77.26231 166.5246 1.214809e-05  3.186011 
W1.3  -104.81574 217.6315 1.376271e-13 11.951673 
W2.4  -110.90242 231.8048 6.231031e-16 16.653238 
LL.3  -119.63947 247.2789 2.316334e-18 25.079683 
LL.4  -119.52495 249.0499 1.016897e-18 25.629161 
LL.2          NA       NA           NA        NA 
LL.5          NA       NA           NA        NA 
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W1.4          NA       NA           NA        NA 
 
# try baro5 model 
> florasulam_S_baro5 <- drm(response ~ dose, data = florasulam_S, fct = baro5()) 
> plot(florasulam_S_baro5, broken = T, bp = 0.02, ylim = c(0, 100), xlim = c(0, 1000), lty = 2, pch = 5,  
xlab = "", ylab = "") 

 
Fig. 44 
 
> abline(v = ED(florasulam_S_baro5, c(10,50,90))[,1], col = "darkred") 
 
> summary(florasulam_S_baro5) 
 
Model fitted: Baroflex (5 parms) 
 
Parameter estimates: 
 
                  Estimate  Std. Error     t-value p-value 
b1:(Intercept)  -0.2132061   0.0132989 -16.0318865  0.0000 
b2:(Intercept) -39.0452628  68.5721934  -0.5694037  0.5727 
c:(Intercept)    0.1258881   0.8906347   0.1413465  0.8884 
d:(Intercept)   96.8300102   0.5555880 174.2838302  0.0000 
e:(Intercept)    0.0124812   0.0012095  10.3191830  0.0000 
 
Residual standard error: 
 
 1.78494 (35 degrees of freedom) 
 
# try W1.3 model 
> florasulam_S_W1.3 <- drm(response ~ dose, data = florasulam_S, fct = W1.3()) 
> plot(florasulam_S_W1.3, broken = T, ylim = c(0, 100), xlim = c(0, 1000), col = "darkred", pch = 0, 
     xlab = expression("Florasulam rate [g Al ha"^-1*"]"), ylab = "efficacy [%]") 
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Fig. 45 
 
> abline(v = ED(florasulam_S_W1.3, c(10,50,90))[,1], col = "darkred") 

 
Fig. 46 
 
effective doses 
 
      Estimate Std. Error 
1:10 0.0015441     0.0002 
1:50 0.0079242     0.0006 
1:90 0.1031545     0.0172 
 

Florasulam rate [g Al ha
1
]

e
ff
ic

a
c
y
 [
%

]

0 0.01 1 100

0

20

40

60

80

100

Florasulam rate [g Al ha
1
]

e
ff
ic

a
c
y
 [
%

]

0 0.01 1 100

0

20

40

60

80

100



60 
 

# add 95 % confidence interval 
> pm <- predict(florasulam_S_W1.3 , newdata = data.frame(dose=exp(seq(log(0.0005), log(200), 
length=100))), interval="confidence") 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
> lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 
 

 
Fig. 47 
 
> summary(florasulam_S_W1.3) 
Model fitted: Weibull (type 1) with lower limit at 0 (3 parms) 
 
Parameter estimates: 
 
                 Estimate  Std. Error     t-value p-value 
b:(Intercept) -7.3407e-01  4.1508e-02 -1.7685e+01       0 
d:(Intercept)  9.4849e+01  7.9943e-01  1.1865e+02       0 
e:(Intercept)  4.8097e-03  3.5891e-04  1.3401e+01       0 
 
Residual standard error: 
 3.457119 (37 degrees of freedom) 
 
 
##################################################################################
################################## 
# plots in ggplot2: 
> expand_dose <- exp(seq(log(0.001), log(200), length=100)) 
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Fig. 48 
 
# # predictions and confidence intervals 
> pm_R <- as.data.frame(predict(florasulam_R_LL4, newdata= data.frame(dose=expand_dose), 
interval="confidence")) 
>  pm_S <- as.data.frame(predict(florasulam_S_LL4, newdata= data.frame(dose=expand_dose), 
interval="confidence")) 
#  
# # new data with predictions 
> pm_R$dose <- expand_dose 
> pm_S$dose <- expand_dose 
#  
# # plotting the curve 
>  ggplot() + geom_point(data = florasulam_R,aes(x = dose, y = response), color = "red", shape = 18, 
size = 2) + geom_point(data = florasulam_S,aes(x = dose, y = response), color = "black", shape = 16, 
size = 2) + geom_ribbon(data = pm_R, aes(x = dose, ymin = Lower, ymax = Upper), alpha=0.2, fill = 
"red") + geom_ribbon(data = pm_S, aes(x = dose, ymin = Lower, ymax = Upper), alpha=0.2) + 
geom_line(data=pm_R, aes(x=dose, y=Prediction)) + geom_line(data=pm_S, aes(x=dose, 
y=Prediction)) + coord_trans(x="log") +  xlab(expression("Florasulam rate [g Al ha"^-1*"]")) + 
ylab("efficacy [%]") 
# Fresh and dry matter 
 
> plot(florasulam$dose, florasulam$fresh.matter, log = "x", col = ifalse(florasulam$biotype == "R", 
"darkred", "black"), pch = ifalse(florasulam$biotype == "R", 0, 5)) 
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Fig. 49 
 
> plot(florasulam$dose, florasulam$dry.matter, log = "x", col = ifelse(florasulam$biotype == "R", 
"darkred", "black"), pch = ifelse(florasulam$biotype == "R", 0, 5)) 

 
Fig. 50 
 
> florasulam_FM_R_LL4 <- drm(fresh.matter ~ dose, data = florasulam_R, fct = LL.4(fixed = c(NA, NA, 
NA, NA))) 
> summary(florasulam_FM_R_LL4) 
 
Parameter estimates: 
 
              Estimate Std. Error  t-value p-value 
b:(Intercept)  0.43690    0.42445  1.02932  0.3102 
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c:(Intercept) -1.14120    2.63193 -0.43360  0.6672 
d:(Intercept)  5.53323    1.46148  3.78603  0.0006 
e:(Intercept)  5.47024    6.35799  0.86037  0.3953 
 
Residual standard error: 
 
 1.083403 (36 degrees of freedom) 
 
 
plot(florasulam_FM_R_LL4)  

 
Fig. 51 
 
> modelFit(florasulam_FM_R_LL4) 
Lack-of-fit test 
 
          ModelDf    RSS Df F value p value 
ANOVA          30 26.350                    
DRC model      36 42.255  6  3.0181  0.0198 
 
mselect(florasulam_FM_R_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
       logLik       IC  Lack of fit  Res var 
W1.3  -57.50425 123.0085 3.990483e-02 1.122207 
LL.3  -57.97717 123.9543 3.039950e-02 1.149058 
W1.4  -57.50036 125.0007 2.459666e-02 1.153155 
LL.4  -57.85462 125.7092 1.982947e-02 1.173763 
W2.4  -58.61769 127.2354 1.238264e-02 1.219411 
LL.5  -57.70770 127.4154 1.219109e-02 1.198463 
LL.2 -100.16534 206.3307 9.089043e-15 9.222844 
 
> florasulam_DM_R_LL4 <- drm(dry.matter ~ dose, data = florasulam_R, fct = LL.4(fixed = c(NA, NA, 
NA, NA))) 
> summary(florasulam_DM_R_LL4) 
Model fitted: Log-logistic (ED50 as parameter) (4 parms) 
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Parameter estimates: 
 
               Estimate Std. Error   t-value p-value 
b:(Intercept)  0.465944   0.216698  2.150203  0.0383 
c:(Intercept) -0.094946   0.188348 -0.504101  0.6173 
d:(Intercept)  0.909282   0.112035  8.116057  0.0000 
e:(Intercept)  2.205335   1.673274  1.317976  0.1958 
 
Residual standard error: 
 
 0.1300009 (36 degrees of freedom) 
 
> plot(florasulam_DM_R_LL4) 
 

 
Fig. 52 
 
> modelFit(florasulam_DM_R_LL4) 
 
Lack-of-fit test 
 
          ModelDf     RSS Df F value p value 
ANOVA          30 0.46975                    
DRC model      36 0.60841  6  1.4758  0.2200 
 
 
> mselect(florasulam_DM_R_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
     logLik        IC Lack of fit    Res var 
W1.3 27.43008 -46.86015   0.3678616 0.01606007 
LL.3 26.71643 -45.43287   0.2697590 0.01664347 
W1.4 27.53490 -45.06980   0.2909383 0.01641990 
LL.2 25.41233 -44.82466   0.1998832 0.01729738 
LL.4 26.95822 -43.91644   0.2200403 0.01690024 
LL.5 27.16548 -42.33096   0.1672485 0.01720389 
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W2.4 26.15223 -42.30445   0.1454695 0.01759522 
 
 
# here, only few models actually converge, start with LL2 
> florasulam_FM_S_LL2 <- drm(fresh.matter ~ dose, data = florasulam_S, fct =  LL.2()) 
summary(florasulam_FM_S_LL2) 
Model fitted: Log-logistic (ED50 as parameter) with lower limit at 0 and upper limit at 1 (2 parms) 
 
Parameter estimates: 
 
                Estimate Std. Error    t-value p-value 
b:(Intercept) 179.036116  10.000000  17.903612  0.0000 
e:(Intercept)   0.376149  10.000000   0.037615  0.9702 
 
Residual standard error: 
 
 0.9656149 (38 degrees of freedom) 
 
 
> plot(florasulam_FM_S_LL2) 

 
Fig. 53 
 
> modelFit(florasulam_FM_S_LL2) 
Lack-of-fit test 
          ModelDf    RSS Df F value p value 
ANOVA          30  6.005                    
DRC model      38 35.432  8  18.376   0.000 
 
> mselect(florasulam_FM_S_LL2, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
logLik        IC  Lack of fit   Res var 
W1.3 -20.54798  49.09597 9.044245e-01 0.1768389 
LL.2 -54.33207 114.66413 1.328459e-09 0.9324121 
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LL.2 -54.33207 114.66413 1.328459e-09 0.9324121 
LL.3        NA        NA           NA        NA 
LL.5        NA        NA           NA        NA 
W1.4        NA        NA           NA        NA 
W2.4        NA        NA           NA        NA 
 
# here, only few models actually converge, start with LL2 
> florasulam_DM_S_LL4 <- drm(dry.matter ~ dose, data = florasulam_S, fct =  LL.2()) 
> summary(florasulam_DM_S_LL4) 
istic (ED50 as parameter) with lower limit at 0 and upper limit at 1 (2 parms) 
 
Parameter estimates: 
 
                Estimate Std. Error    t-value p-value 
b:(Intercept) 8.8503e-01 1.2168e-01 7.2735e+00       0 
e:(Intercept) 1.1471e-03 7.1189e-05 1.6113e+01       0 
 
Residual standard error: 
 
 0.0542031 (38 degrees of freedom) 
> plot(florasulam_DM_S_LL4) 

 
Fig. 54 
 
> modelFit(florasulam_DM_S_LL4) 
Lack-of-fit test 
 
          ModelDf      RSS Df F value p value 
ANOVA          30 0.091036                    
DRC model      38 0.111643  8  0.8489  0.5685 
 
> mselect(florasulam_DM_S_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
logLik       IC Lack of fit     Res var 
LL.2 60.86901 -115.738   0.5684599 0.002937976 
LL.2 60.86901 -115.738   0.5684599 0.002937976 
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LL.3       NA       NA          NA          NA 
LL.5       NA       NA          NA          NA 
W1.3       NA       NA          NA          NA 
W1.4       NA       NA          NA          NA 
W2.4       NA       NA          NA          NA 
 
 
####### COMPARE TWO biotypes 
> two_biotypes <- rbind(florasulam_S, florasulam_R) 
> two_biotypes.LL.4.0 <- drm(response ~ dose, data = two_biotypes, fct = LL.4()) 
> plot (two_biotypes.LL.4.0, type="all") 

 
Fig. 55 
 
> two_biotypes.LL.4.1 <- drm(response ~ dose, biotype, data = two_biotypes, fct = LL.4(), 
pmodels=list(~biotype-1, ~1, ~1, ~biotype-1)) 
> plot (two_biotypes.LL.4.1, type="all") 
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Fig. 56 
 
> summary(two_biotypes.LL.4.1) 
fitted: Log-logistic (ED50 as parameter) (4 parms) 
 
Parameter estimates: 
 
                 Estimate  Std. Error     t-value p-value 
b:biotypeR    -8.7852e-01  7.1273e-02 -1.2326e+01  0.0000 
b:biotypeS    -1.1768e+00  1.2222e-01 -9.6285e+00  0.0000 
c:(Intercept)  3.4332e+00  1.2681e+00  2.7074e+00  0.0084 
d:(Intercept)  9.3474e+01  1.0287e+00  9.0866e+01  0.0000 
e:biotypeR     9.6633e+00  9.0103e-01  1.0725e+01  0.0000 
e:biotypeS     9.7201e-03  9.2104e-04  1.0553e+01  0.0000 
 
Residual standard error: 
 
 4.825739 (74 degrees of freedom) 
 
> modelFit(two_biotypes.LL.4.1) 
Lack-of-fit test 
 
          ModelDf     RSS Df F value p value 
ANOVA          60  267.25                    
DRC model      74 1723.29 14   23.35    0.00 
 
> mselect(two_biotypes.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
logLik       IC  Lack of fit   Res var 
W1.4 -227.8951 469.7902 1.640459e-16  18.86790 
LL.4 -236.3137 486.6275 3.826316e-19  23.28776 
W2.4 -250.3981 514.7963 1.343332e-23  33.11670 
W1.3 -346.6876 703.3752 5.614307e-54 358.02611 
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LL.3 -362.5719 735.1438 3.845854e-59 532.56955 
LL.2        NA       NA           NA        NA 
LL.5        NA       NA           NA        NA 
> anova(two_biotypes.LL.4.1, two_biotypes.LL.4.0) 
1st model 
 fct:     LL.4() 
 pmodels: 1 (for all parameters) 
2nd model 
 fct:     LL.4() 
 pmodels: ~biotype - 1, ~1, ~1, ~biotype - 1 
 
ANOVA table 
 
          ModelDf   RSS Df F value p value 
2nd model      76 66110                    
1st model      74  1723  2  1382.4     0.0 
 
#·EDcomp(two_biotypes.LL.4.1, c(10, 50, 50), interval = "delta") 
 
> compParm(two_biotypes.LL.4.1, "e", "-") 
Comparison of parameter 'e'  
 
                  Estimate Std. Error  t-value p-value 
biotypeR-biotypeS  9.65354    0.90081 10.71647       0 
##### fresh and dry matter 
 
> two_biotypes.LL.4.1 <- drm(dry.matter ~ dose, biotype, data = two_biotypes  fct = LL.4(), 
pmodels=list(~biotype-1, ~1, ~1, ~biotype-1)) 
> plot(two_biotypes.LL.4.1, type="all") 

 
Fig. 57 
 
> modelFit(two_biotypes.LL.4.1) 
lack-of-fit test 
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          ModelDf     RSS Df F value p value 
ANOVA          60 0.56079                    
DRC model      74 0.71445 14  1.1743  0.3180 
 
> mselect(two_biotypes.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
 
TRIBENURON  
> tribenuron <- read.csv("tribenuron.csv", sep = ";", stringsAsFactors = FALSE)  
> plot(tribenuron$dose, tribenuron$response, log = "x", col = ifelse(tribenuron$biotype == "R", 
"darkred", "black"), pch = c(rep(0, sum(tribenuron$biotype=="R")), rep(5, sum(tribenuron$biotype 
== "S")))) 
> tribenuron_R <- tribenuron[tribenuron$biotype=="R",] 
> tribenuron_S <- tribenuron[tribenuron$biotype=="S",] 
> tribenuron_R_LL4 <- drm(response ~ dose, data = tribenuron_R, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> summary(tribenuron_R_LL4) 
> modelFit(tribenuron_R_LL4) 
> mselect(tribenuron_R_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
> tribenuron_S_LL4 <- drm(response ~ dose, data = tribenuron_S, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> summary(tribenuron_S_LL4) 
> modelFit(tribenuron_S_LL4) 
> mselect(tribenuron_S_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
> plot(tribenuron_R_LL4, broken = T, bp = 0.002, ylim = c(0, 100), xlim = c(0, 10000), col = "darkred", 
pch = 0) 
> par(new=T) 
> plot(tribenuron_S_LL4, broken = T, bp = 0.002, ylim = c(0, 100), xlim = c(0, 10000), lty = 2, pch = 5) 
> legend(200, 20, c("R", "S"), col = c("darkred", "black"), lty = c(1, 2), pch = c(0, 5), box.lty = 0) 
 
 
### dry/fresh  
> tribenuron_FM_R_LL4 <- drm(fresh.matter ~ dose, data = tribenuron_R, fct = W1.3()) 
> summary(tribenuron_FM_R_LL4) 
> plot(tribenuron_FM_R_LL4) 
> modelFit(tribenuron_FM_R_LL4) 
> mselect(tribenuron_FM_R_LL4, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4(), baro5())) 
> tribenuron_R_LL4 <- drm(dry.matter ~ dose, data = tribenuron_R, fct = LL.4(fixed = c(NA, 0, 1, NA))) 
> summary(tribenuron_R_LL4) 
> plot(tribenuron_R_LL4) 
> tribenuron_S_LL4 <- drm(fresh.matter ~ dose, data = tribenuron_S, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> summary(tribenuron_S_LL4) 
> plot(tribenuron_S_LL4) 
> tribenuron_S_LL4 <- drm(dry.matter ~ dose, data = tribenuron_S, fct = LL.4(fixed = c(NA, NA, NA, 
NA))) 
> summary(tribenuron_S_LL4) 
> plot(tribenuron_S_LL4) 
 
### compare herbicides - susceptible biotype 
> two_herbicides_S <- rbind(florasulam_S, tribenuron_S) 
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> two_herbicides_S.LL.4.1 <- drm(response ~ dose, herbicide, data = two_herbicides_S, fct = LL.4(), 
pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> summary(two_herbicides_S.LL.4.1) 
> plot(two_herbicides_S.LL.4.1, type="all") 
> two_herbicides_S.LL.4.2 <- drm(response ~ dose, data = two_herbicides_S, fct = LL.4()) 
> plot(two_herbicides_S.LL.4.1, type="all") 
> anova(two_herbicides_S.LL.4.1, two_herbicides_S.LL.4.2) 
> EDcomp(two_herbicides_S.LL.4.1, c(10, 50, 90), interval = "delta") 
> compParm(two_herbicides_S.LL.4.1, "e", "-") 
> comped() 
> ED(two_herbicides_S.LL.4.1, 50) 
> comped(ED(two_herbicides_S.LL.4.1, 50)[,1], ED(two_herbicides_S.LL.4.1, 50)[,2]) 
> modelFit(two_herbicides_S.LL.4.1) 
> mselect(two_herbicides_S.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
> two_herbicides_S.LL.4.1 <- drm(fresh.matter ~ dose, herbicide, data = two_herbicides_S, fct = 
LL.4(), pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> plot(two_herbicides_S.LL.4.1, type="all") 
> compParm(two_herbicides_S.LL.4.1, "e", "-") 
> modelFit(two_herbicides_S.LL.4.1) 
> mselect(two_herbicides_S.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
> two_herbicides_S.LL.4.1 <- drm(fresh.matter ~ dose, herbicide, data = two_herbicides_S, fct = 
LL.4(), pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> plot(two_herbicides_S.LL.4.1, type="all") 
> compParm(two_herbicides_S.LL.4.1, "e", "-") 
> modelFit(two_herbicides_S.LL.4.1) 
> mselect(two_herbicides_S.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
 
# compare herbicides - resistant biotype 
> two_herbicides_R <- rbind(florasulam_R, tribenuron_R) 
> two_herbicides_R.LL.4.1 <- drm(response ~ dose, herbicide, data = two_herbicides_R, fct = LL.4(), 
pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> summary(two_herbicides_R.LL.4.1) 
> plot(two_herbicides_R.LL.4.1, type="all", col = c("red", "blue")) 
> abline(v = ED(two_herbicides_R.LL.4.1, c(50))[,1], col = c("red", "blue")) 
# add 95 % confidence interval 
>  pm <- predict(two_herbicides_R.LL.4.1 , newdata = data.frame(dose=exp(seq(log(0.0005), 
log(200), length=100))), interval="confidence") 
>  lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 2], lty = 2) 
>  lines(exp(seq(log(0.0005), log(200), length=100)), pm[, 3], lty = 2) 
> two_herbicides_R.LL.4.2 <- drm(response ~ dose, data = two_herbicides_R, fct = LL.4()) 
> anova(two_herbicides_R.LL.4.1, two_herbicides_R.LL.4.2) 
> compParm(two_herbicides_R.LL.4.1, "e", "-") 
> modelFit(two_herbicides_R.LL.4.1) 
> mselect(two_herbicides_R.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
> two_herbicides_R.LL.4.1 <- drm(fresh.matter ~ dose, herbicide, data = two_herbicides_R, fct = 
LL.4(), pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> plot(two_herbicides_R.LL.4.1, type="all", col = c("red", "blue")) 
> abline(v = ED(two_herbicides_R.LL.4.1, c(50))[,1], col = c("red", "blue")) 
> compParm(two_herbicides_R.LL.4.1, "e", "-") 
> modelFit(two_herbicides_R.LL.4.1) 
> mselect(two_herbicides_R.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
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> two_herbicides_R.LL.4.1 <- drm(dry.matter ~ dose, herbicide, data = two_herbicides_R, fct = LL.4(),  
pmodels=list(~herbicide-1, ~1, ~1, ~herbicide-1)) 
> plot(two_herbicides_R.LL.4.1, type="all", col = c("red", "blue")) 
> abline(v = ED(two_herbicides_R.LL.4.1, c(50))[,1], col = c("red", "blue")) 
> compParm(two_herbicides_R.LL.4.1, "e", "-") 
> modelFit(two_herbicides_R.LL.4.1) 
> mselect(two_herbicides_R.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
 
# better fitting LL.2() model 
> two_herbicides_R.LL.4.1 <- drm(dry.matter ~ dose, herbicide, data = two_herbicides_R,  fct = LL.2(), 
pmodels=list(~herbicide-1, ~herbicide-1)) 
> plot(two_herbicides_R.LL.4.1, type="all", col = c("red", "blue")) 
> abline(v = ED(two_herbicides_R.LL.4.1, c(50))[,1], col = c("red", "blue")) 
> compParm(two_herbicides_R.LL.4.1, "e", "-") 
> modelFit(two_herbicides_R.LL.4.1) 
> mselect(two_herbicides_R.LL.4.1, list(LL.2(), LL.3(), LL.5(), W1.3(), W1.4(), W2.4())) 
 
#### 
# Fresh and dry matter 
> plot(florasulam_S_LL4, ylim = c(0, 100), xlim = c(0, 10000),col="red") 
> par(new=T) 
> plot(tribenuron_S_LL4, ylim = c(0, 100), xlim = c(0, 10000)) 
> EDcomp() 
> log(unique(florasulam[florasulam$biotype=="S",]$dose)) 
> exp(1)^log(unique(florasulam[florasulam$biotype=="S",]$dose)) 
> log10(unique(florasulam[florasulam$biotype=="S",]$dose)) 
> log_florasulam_R <- lm(response ~ log10(dose), data = florasulam[florasulam$biotype=="S",]) 
> logpred <- predict(log_florasulam_R) 
> lines(florasulam[florasulam$biotype=="S",]$dose, logpred)  
> m <- nls(response ~ log(dose), data = florasulam[florasulam$biotype=="S",]) 
> x<-seq(0,50,1)  
> y<-((runif(1,10,20)*x)/(runif(1,0,10)+x))+rnorm(51,0,1) 
 
#for simple models nls find good starting values for the parameters even if it throw a warning 
> m<-nls(y ~ a*x/(b+x)) 
#get some estimation of goodness of fit 
> cor(y,predict(m)) 
> hill <- function(KA, L, n){1/(1 + (KA / L) ^ n)} 
> plot(1:100,hill(1,1:100,1)) 
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Supplementary data 
 

 Data for analysis - florasulam 

herbicide dose biotype response 
fresh 
matter  

dry 
matter 

florasulam 0.001 R 0 8.433 1.277 

florasulam 0.001 R 0 6.537 1 

florasulam 0.001 R 0 5.586 0.783 

florasulam 0.001 R 0 4.576 0.737 

florasulam 0.0158 R 5 2.626 0.481 

florasulam 0.0158 R 5 4.003 0.725 

florasulam 0.0158 R 5 4.686 0.877 

florasulam 0.0158 R 10 3.755 0.738 

florasulam 0.05 R 10 3.501 0.595 

florasulam 0.05 R 5 5.788 0.879 

florasulam 0.05 R 5 4.546 0.881 

florasulam 0.05 R 10 5.007 0.807 

florasulam 0.158 R 10 3.804 0.611 

florasulam 0.158 R 15 3.545 0.655 

florasulam 0.158 R 10 3.703 0.612 

florasulam 0.158 R 10 4.867 0.771 

florasulam 0.5 R 15 4.423 0.595 

florasulam 0.5 R 15 3.347 0.447 

florasulam 0.5 R 15 3.938 0.521 

florasulam 0.5 R 5 5.836 0.763 

florasulam 1.58 R 10 5.498 0.573 

florasulam 1.58 R 20 1.634 0.322 

florasulam 1.58 R 15 4.071 0.626 

florasulam 1.58 R 15 4.571 0.671 

florasulam 5 R 35 1.966 0.303 

florasulam 5 R 40 1.649 0.262 

florasulam 5 R 35 2.021 0.227 

florasulam 5 R 35 1.675 0.244 

florasulam 15.8 R 55 1.275 0.159 

florasulam 15.8 R 55 1.698 0.177 

florasulam 15.8 R 55 1.379 0.139 

florasulam 15.8 R 60 0.83 0.13 

florasulam 50 R 80 0.505 0.076 

florasulam 50 R 80 0.186 0.062 

florasulam 50 R 80 0.588 0.09 

florasulam 50 R 80 0.728 0.101 

florasulam 158 R 85 0.24 0.079 

florasulam 158 R 85 0.133 0.055 

florasulam 158 R 85 0.262 0.072 

florasulam 158 R 85 0.407 0.036 

florasulam 0.001 S 0 1.301 0.329 
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florasulam 0.001 S 0 3.631 0.491 

florasulam 0.001 S 0 3.627 0.567 

florasulam 0.001 S 0 4.632 0.746 

florasulam 0.0158 S 65 0.314 0.061 

florasulam 0.0158 S 70 0.362 0.076 

florasulam 0.0158 S 68 0.248 0.061 

florasulam 0.0158 S 70 0.268 0.07 

florasulam 0.05 S 70 0.181 0.062 

florasulam 0.05 S 75 0.156 0.044 

florasulam 0.05 S 75 0.1 0.044 

florasulam 0.05 S 75 0.21 0.071 

florasulam 0.158 S 85 0.078 0.038 

florasulam 0.158 S 85 0.063 0.029 

florasulam 0.158 S 85 0.067 0.032 

florasulam 0.158 S 85 0.068 0.027 

florasulam 0.5 S 90 0.048 0.019 

florasulam 0.5 S 90 0.052 0.025 

florasulam 0.5 S 90 0.043 0.025 

florasulam 0.5 S 90 0.111 0.034 

florasulam 1.58 S 95 0.047 0.025 

florasulam 1.58 S 95 0.069 0.023 

florasulam 1.58 S 95 0.039 0.023 

florasulam 1.58 S 95 0.045 0.031 

florasulam 5 S 95 0.054 0.026 

florasulam 5 S 95 0.042 0.022 

florasulam 5 S 95 0.054 0.036 

florasulam 5 S 95 0.046 0.023 

florasulam 15.8 S 95 0.048 0.026 

florasulam 15.8 S 95 0.052 0.028 

florasulam 15.8 S 95 0.049 0.026 

florasulam 15.8 S 95 0.038 0.026 

florasulam 50 S 95 0.036 0.024 

florasulam 50 S 95 0.052 0.034 

florasulam 50 S 95 0.049 0.026 

florasulam 50 S 95 0.041 0.026 

florasulam 158 S 95 0.041 0.029 

florasulam 158 S 98 0.038 0.025 

florasulam 158 S 98 0.045 0.027 

florasulam 158 S 98 0.039 0.025 

 

 Data for analysis - tribenuron 

herbicide dose biotype response 
fresh 
matter 

dry 
matter 

tribenuron 0.001 R 0 8.433 1.277 

tribenuron 0.001 R 0 6.537 1 

tribenuron 0.001 R 0 5.586 0.783 
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tribenuron 0.001 R 0 4.576 0.737 

tribenuron 0.03555 R 0 NA NA 

tribenuron 0.03555 R 0 NA NA 

tribenuron 0.03555 R 0 NA NA 

tribenuron 0.03555 R 0 NA NA 

tribenuron 0.1125 R 0 3.237 0.447 

tribenuron 0.1125 R 0 1.865 0.296 

tribenuron 0.1125 R 0 2.753 0.414 

tribenuron 0.1125 R 0 2.045 0.304 

tribenuron 0.3555 R 10 4.322 0.557 

tribenuron 0.3555 R 10 3.275 0.487 

tribenuron 0.3555 R 15 3.251 0.538 

tribenuron 0.3555 R 10 3.507 0.539 

tribenuron 1.125 R 10 3.49 0.454 

tribenuron 1.125 R 10 4.678 0.737 

tribenuron 1.125 R 15 0.925 0.147 

tribenuron 1.125 R 10 2.392 0.438 

tribenuron 3.555 R 15 3.377 0.442 

tribenuron 3.555 R 15 2.642 0.391 

tribenuron 3.555 R 20 2.11 0.298 

tribenuron 3.555 R 20 2.654 0.429 

tribenuron 11.25 R 20 3.717 0.417 

tribenuron 11.25 R 20 2.797 0.292 

tribenuron 11.25 R 25 2.376 0.285 

tribenuron 11.25 R 20 2.795 0.409 

tribenuron 35.55 R 25 2.388 0.317 

tribenuron 35.55 R 30 2.326 0.336 

tribenuron 35.55 R 25 1.945 0.31 

tribenuron 35.55 R 25 2.95 0.507 

tribenuron 112.5 R 30 2.403 0.272 

tribenuron 112.5 R 35 2.111 0.272 

tribenuron 112.5 R 30 3.891 0.511 

tribenuron 112.5 R 30 4.157 0.409 

tribenuron 355.5 R 60 0.68 0.12 

tribenuron 355.5 R 60 1.162 0.126 

tribenuron 355.5 R 55 0.856 0.15 

tribenuron 355.5 R 50 1.165 0.166 

tribenuron 1125 R 60 0.277 0.076 

tribenuron 1125 R 75 0.325 0.077 

tribenuron 1125 R 85 0.101 0.05 

tribenuron 1125 R 85 0.121 0.057 

tribenuron 0.001 S 0 1.301 0.229 

tribenuron 0.001 S 0 3.631 0.491 

tribenuron 0.001 S 0 3.627 0.567 

tribenuron 0.001 S 0 4.632 0.746 

tribenuron 0.03555 S 15 1.988 0.373 
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tribenuron 0.03555 S 15 2.405 0.364 

tribenuron 0.03555 S 20 2.285 0.353 

tribenuron 0.03555 S 20 2.697 0.4 

tribenuron 0.1125 S 85 0.154 0.049 

tribenuron 0.1125 S 80 0.082 0.041 

tribenuron 0.1125 S 85 0.143 0.05 

tribenuron 0.1125 S 85 0.114 0.039 

tribenuron 0.3555 S 90 0.0112 0.046 

tribenuron 0.3555 S 88 0.0119 0.044 

tribenuron 0.3555 S 90 0.062 0.031 

tribenuron 0.3555 S 90 0.077 0.027 

tribenuron 1.125 S 92 0.09 0.036 

tribenuron 1.125 S 92 0.078 0.03 

tribenuron 1.125 S 92 0.044 0.029 

tribenuron 1.125 S 92 0.096 0.037 

tribenuron 3.555 S 95 0.068 0.031 

tribenuron 3.555 S 95 0.07 0.033 

tribenuron 3.555 S 95 0.04 0.029 

tribenuron 3.555 S 95 0.059 0.037 

tribenuron 11.25 S 95 0.065 0.037 

tribenuron 11.25 S 95 0.074 0.043 

tribenuron 11.25 S 95 0.04 0.038 

tribenuron 11.25 S 95 0.043 0.038 

tribenuron 35.55 S 95 0.043 0.032 

tribenuron 35.55 S 95 0.046 0.033 

tribenuron 35.55 S 95 0.049 0.033 

tribenuron 35.55 S 95 0.057 0.036 

tribenuron 112.5 S 95 0.067 0.031 

tribenuron 112.5 S 95 0.057 0.035 

tribenuron 112.5 S 95 0.057 0.027 

tribenuron 112.5 S 95 0.079 0.035 

tribenuron 355.5 S 100 0.041 0.032 

tribenuron 355.5 S 98 0.052 0.024 

tribenuron 355.5 S 98 0.045 0.025 

tribenuron 355.5 S 98 0.057 0.031 

tribenuron 1125 S 100 NA NA 

tribenuron 1125 S 100 NA NA 

tribenuron 1125 S 100 NA NA 

tribenuron 1125 S 100 NA NA 
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