

VISCOSITY - SHEAR FORCE

Viscosity is a measure of the resistance of a fluid to deform under shear stress.

SHEAR STRESS due to viscosity between layers: $\tau = \mu \frac{du}{dy}$

 μ - dynamic viscosity (coeff. of viscosity)

$$v = \frac{\mu}{\rho}$$
 - kinematic viscosity

u(y) (velocity profile)

Fixed no-slip plate

Use definition of **SHEAR FORCE:**

$$F = \tau A = \mu A \frac{du}{dy}$$

Dynamic viscosities of some fluids at 1 atm and 20°C (unless otherwise stated)

Fluid	Dynamic Viscosity μ , kg/m · s
Glycerin:	
-20°C	134.0
0°C	
	10.5
20°C	1.52
40°C	0.31
Engine oil:	
SAE 10W	0.10
SAE 10W30	0.17
SAE 30	0.29
SAE 50	0.86
Mercury	0.0015
Ethyl alcohol	0.0012
Water:	
0°C	0.0018
20°C	0.0010
100°C (liquid)	0.00028
100°C (vapor)	0.000012
Blood, 37°C	0.00040
Gasoline	0.00029
Ammonia	0.00015
Air	0.000018
Hydrogen, O°C	0.0000088

Cengel_Cimbala, 2006

CHARACTERISTICS OF HYDRODYNAMICS

flow area, CROSS SECTIONAL AREA (perpendicular to velocity, v) A(m²)

α	sin(α)	tan(\alpha)
00	0	0
50	0.087	0.087
100	0.174	0.176
20°	0.342	0.346
300	0.500	0.577
400	0.643	0.839
50°	0.766	1.192

$$S = \frac{dh}{L} \implies \frac{dh}{l}$$

For small α (cca 8-10°)

 $sin\alpha \approx tg\alpha$

CHARACTERISTIC OF HYDRODYNAMICS

$$u = \frac{ds}{dt}$$

THE AVERAGE (MEAN)

VELOCITY - v - is defined as the average speed through a

cross section.

$$v = \frac{1}{A} \int_{S} u. \, dA = \frac{Q}{A}$$

$$dQ = u dA$$

DISCHARGE (mass) = $\rho . v. A$

MASS RATE PAST A CROSS-SECTION: Q_m (kg/s)

DISCHARGE (volume) = v.A = Q

VOLUME FLOW RATE PAST A CROSS- SECTION: Q (m³/s)

KINDS AND FORMS OF FLOW

A. - **UNSTEADY FLOW**
$$Q = Q(x,y,z,t), v = v(x,y,z,t)$$
 $\frac{\partial Q}{\partial t} \neq 0$ $\frac{\partial Q}{\partial x_i} \neq 0$ $\frac{\partial v}{\partial t} \neq 0$ $\frac{\partial v}{\partial x_i} \neq 0$

$$\frac{\partial Q}{\partial t} \neq 0$$

$$\frac{\partial Q}{\partial x_i} \neq 0$$

$$\frac{\partial v}{\partial t} \neq 0$$

$$\frac{\partial v}{\partial x_i} \neq 0$$

- STEADY FLOW
$$Q = const.$$
 $\frac{\partial Q}{\partial t} = 0$ $\frac{\partial Q}{\partial x_i} = 0$

$$\frac{\partial Q}{\partial t} = 0$$

$$\frac{\partial Q}{\partial x_i} = 0$$

a) **UNIFORM** flow ...
$$\frac{\partial v}{\partial t} = 0$$
 $\frac{\partial v}{\partial x_i} = 0$

$$\frac{\partial v}{\partial t} = 0$$
 $\frac{\partial v}{\partial x_i} = 0$

$$A = const.$$
 $v = const.$

b) **NON – UNIFORM** flow
$$\frac{\partial v}{\partial t} = 0$$
 $\frac{\partial v}{\partial x_i} \neq 0$

$$\frac{\partial v}{\partial t} = 0 \qquad \frac{\partial v}{\partial x_i} \neq$$

$$A \neq const.$$
 $v \neq const.$

- B. WITH FREE LEVEL flow limited by solid walls, free level on surface, motion caused by own weight of liquid
 - PRESSURE flow limited by solid walls from all sides, motion caused by difference of pressures
- LAMINAR flow
 - TURBULENT flow

REAL FLUID

"A fluid in which there is *friction i.e* viscosity."

LAMINAR AND TURBULENT FLOW

Reynolds experiment **1883**:

Variable surface level

Two different, distinct **flow regimes**:

- A) LAMINAR FLOW
- B) TURBULENT FLOW

Osborne Reynolds (1842-1912)

REYNOLDS EXPERIMENT 1883

REY

Medium discharge

REYNOLDS CLASSIFIED THE FLOW TYPE ACCORDING TO THE MOTION OF THE FLUID.

Reynolds number for pipe
$$\mathbf{Re} = \frac{\mathbf{v} \mathbf{D}}{\mathbf{v}}$$

$$Re_{CR} = 2320$$

LAMINAR FLOW: every fluid molecule followed a straight path that was parallel to the boundaries of the tube.

TRANSITIONAL FLOW: every fluid molecule followed wavy but parallel path that was not parallel to the boundaries of the tube.

TURBULENT FLOW: every fluid molecule followed very complex path that led to a mixing of the dye.

LAMINAR AND TURBULENT FLOW

- laminar particles of liquid move at parallel paths
- turbulent motion of particles of liquid: irregular and inordinate, fluctuations of velocity vector in time and space, mixing inside flow
- Criterion Reynolds number $L characteristic length: \\ diameter D for pipelines, hydraulic radius R \\ Critical Reynolds Number for pipe <math>Re_{cr} = 2320$ for open channel $Re_{cr} = 580$ for groundwater flow $Re_{cr} = 1$

CONTINUITY EQUATION

mass leaving - mass entering = - rate of increase of mass in cv

(LAW OF CONSERVATION OF MASS)

Input mass $A_1 : \rho.Q.dt$

Output mass
$$A_2 : \left[(\rho \cdot Q) + \frac{\partial (\rho \cdot Q)}{\partial s} ds \right] dt$$

Change of mass inside V in time dt

$$\frac{\partial(\rho.A.ds)}{\partial t}dt$$

CONTINUITY EQUATION FOR UNSTEADY FLOW

$$\frac{\partial(\boldsymbol{\rho}.\boldsymbol{Q})}{\partial s} + \frac{\partial(\boldsymbol{\rho}.\boldsymbol{A})}{\partial t} = 0$$

CONTINUITY EQUATION - STEADY FLOW

steady flow compressible liquid – no dependency on time

$$\rho.Q = const.$$

$$Q = \rho_1 A_1 v_1 = \rho_2 A_2 v_2 = \rho_i A_i v_i = konst$$

STEADY FLOW of incompressible liquid

$$Q = const.$$
 $\rho = const.$

$$\mathbf{A}_1.\mathbf{v}_1 = \mathbf{A}_2.\mathbf{v}_2 = \mathbf{konst.} = \mathbf{Q}_{\mathbf{v}}$$

■ For pipes with variable diameter, m is still the same due to conservation of mass, but $v_1 \neq v_2$

$$Q = A_1 \cdot v_1 = A_2 \cdot v_2 = \text{konst.}$$

BERNOULLI EQ. FOR IDEAL FLUID

(LAW OF CONSERVATION OF ENERGY)

BERNOULLI EQUATION FOR IDEAL FLUID (ENERGY CONSERVATION)

expresses the **principle of conservation of energy**

The Bernoulli Equation is a statement of the conservation of mechanical energy

$$h + \frac{p}{\rho g} + \frac{v^2}{2g}$$

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = Const. = ME$$

pot. e. kinet.e.

THE DERIVATION OF BERNOULLI EQUATION (ENERGY CONSERVATION)

$$\frac{p}{\rho g} = \frac{p}{\text{PRESSURE HEAD}} = \frac{z + \frac{p}{\rho g}}{\text{Pressure the ad}} = \frac{z}{\rho g}$$

$$\frac{v^2}{2g}$$
 = **VELOCITY** HEAD

$$h + \frac{p}{\rho g} =$$

HYDRAULIC GRADE LINE – HGL or PRESSURE GRADE LINE – PGL"

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} =$$

Total head - ENERGY GRADE LINE - EGL

Each term in the BE is called "head"

BERNOULLI EQUATION FOR IDEAL FLUID

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = \text{const.} = E$$
EGL

PGL – pressure grade line

EGL – energy grade line

EH – energy horizont

Pressure head $(p/\rho g)$!!!! $p = p_{out} + \rho g z$!!!

PGL = (pressure head) + (elevation head)

EGL = (elevation head) + (pressure head) + (velocity head)

BERNOULLI EQ. FOR IDEAL FLUID

h – elevation (geodetic) head **p/ρg** - pressure head

 $v^2/2g$ - velocity head

IDEAL FLUID

HYDRAULIC CALCULATIONS OF PIPELINES

2 kinds of equations:

Bernoulli equation ← elevations and pressure relations,

Continuity equation - boundary conditions

calculation: Q, v, D, L, H, p

PGL, EGL

BERNOULLI EQUATION FOR IDEAL FLUID

Procedure:

- 1. Choose **GH**
- 2. Choose **(1)** and **(2)**
- **3. BE** for **(1)** and **(2)**
- 4. Continuity eq.
- 5. Calculation $\mathbf{v_i}$ and \mathbf{Q}
- 6. Graph of EGL and **PGL**

Given values : V_0 , D_1 , D_2 , H, h, h_2 , P_{AT} , P_V

 $?: \mathbf{Q}, \mathbf{v}_1, \mathbf{v}_2$

EGL, PGL

$$h + H + \frac{p_{AT}}{\rho g} + \frac{v_0^2}{2 g} = h_2 + \frac{p_V}{\rho g} + \frac{v_2^2}{2 g}$$

$$v_2 = \sqrt{2g.\left[h + H + \frac{p_{AT}}{\rho g} + \frac{v_o^2}{2g} - \left(h_2 + \frac{p_V}{\rho g}\right)\right]}$$

Discharge:

$$A_2 = \frac{nb}{4}$$

$$0 = \mathbf{v}_{2} \mathbf{A}_2 = \mathbf{v}_{4} \mathbf{A}_4$$

$$Q = v_2.A_2 = v_1.A_1$$

BERNOULLI EQ. FOR REAL FLUID

REAL FLUID

HYDRAULIC CALCULATIONS OF PIPELINES

3 kinds of equations:

Bernoulli equation ← elevations and pressure relations,

Continuity equation boundary conditions

Equations of losses ← geometry and roughness of pipe, discharge

calculation: Q, v, D, L, H, p, Z

CORIOLIS NUMBER - a

point velocity u

Transfer to average (mean) velocity v

rectangle with one side D

in technical calculations – kinetic energy head is expressed from mean velocity v

$$\frac{\alpha v^2}{2g}$$

 α - coefficient of kinetic energy - Coriolis number depends on the shape of cross section and on form of velocity profile

circular pipelines and regular channels $\alpha = 1,05$, 1,2, LAMINAR FLOW $\alpha = 2$,

current technical calculations of pipelines (TURBULENT FLOW) α 1,0

REAL FLUID

- Piping systems include fittings, valves, bends, elbows, tees, inlets, exits, enlargements, and contractions.
- These components interrupt the smooth flow of fluid and cause additional losses because of flow separation and mixing
- We introduce a relation for the minor losses associated with these components

$$h_L = K_l \frac{v^2}{2g}$$

- K_L is the loss coefficient.
- Is different for each component.
- Is assumed to be independent of Re.

CALCULATION OF HEAD (ENERGY) LOSSES:

In General:

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of energy (head) of fluid is lost.

loss of head <u>due to pipe</u>
<u>friction</u> and to viscous
dissipation in flowing
water

$$Darcy - Weisbach \ equation \Rightarrow h_F = f \frac{L}{D} \frac{v^2}{2g}$$

Loss due to the **change of the velocity** of the flowing fluid in the **magnitude** or in **direction** as <u>it</u>

<u>moves through fitting</u> like Valves, Tees,

Bends and Reducers.

$$h_L = K_l \frac{v^2}{2g}$$

MINOR LOSSES

Component	K _L	
Elbows		
Regular 90°, flanged	0.3	+
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	1+1
Long radius 90°, threaded	0.7	+
Long radius 45°, flanged	0.2	7
Regular 45°, threaded	0.4	
180° return bends		+
180° return bend, threaded	0.2	(('
180° return bend, flanged	1.5	- 1
Tees		ı l
Line flow, flanged	0.2	
Line flow, threaded	0.9	
Branch flow, flanged	1.0	ــالمكـــا
Branch flow, threaded	2.0	→ J

Component	K _L
Union, threaded	0.8
Valves	
Globe, fully open	10
Angle, fully open	2
Gate, fully open	0.15
Gate, ¼ closed	0.26
Gate, ½ closed	2.1
Gate, ¾ closed	17
Ball valve, fully open	0.05
Ball valve, 1/3 closed	5.5
Ball valve, 2/3 closed	210

Source: Munson et al. (1998)

BERNOULLI EQ. FOR REAL FLUID

$$h + \frac{p_1}{\rho g} + \frac{\alpha v_1^2}{2 g} = h + \frac{p_2}{\rho g} + \frac{\alpha v_2^2}{2 g} + \sum_{i=1}^{2} (h_{zmi} + h_{zti})$$

HEAD LOSS

$$h_L = h_{LF,major} + h_{LM,minor}$$

If the piping system has constant diameter

FRICTION FACTOR f

$$h_L = \left(f \frac{L}{D} + \sum K_L\right) \frac{v^2}{2g}$$

CORIOLIS NUMBER - a

point velocity u

average velocity v

in technical calculations – kinetic energy head is expressed from mean velocity v

$$\frac{\alpha v^2}{2g}$$

 α - coefficient of kinetic energy - Coriolis number depends on the shape of cross section and on form of velocity profile

circular pipelines and regular channels $\alpha = 1,05$, 1,2, LAMINAR FLOW $\alpha = 2$,

current technical calculations of pipelines (TURBULENT FLOW) α 1,0

27

Minor losses

LOCAL (MINOR) LOSSES IN PIPELINES

Slope of EGL (friction losses)

$$i_E = \frac{h_{LF}}{L} \Rightarrow h_{LF} = i_E \cdot L$$

MINOR LOSSES

$$h_{lM} = \boxed{K_{lM} \frac{v^2}{2g}}$$

Reynolds number

$$Re = \frac{v.D}{v}$$

Coef. for minor loss

FRICTION (MAJOR) LOSSES IN PIPELINES

MAJOR LOSSES

i_E Slope of EGL

$$i_E = \frac{h_{lt}}{L} \Rightarrow h_{lt} = i_E . L$$

f – friction coefficient

$$Re = \frac{v.D}{D}$$

TWO RESERVOIRS ARE CONNECTED BY A PIPE

??? -Q, v₁, v₂, TČ.ČE

Procedure:

- 1. Choose GH.
- 2. Choose (A) and (B).
- 3. BE for (A) and (B).
- 4. Divide into sections.
- 5. Express losses
- 6. Calculation v_i and Q
- 7. EGL and PGL

BERNOULLI EQ. for (A) a (B)

$$dh + H + \frac{p_{at}}{\rho g} + \frac{v_0^2}{2g} = h + \frac{p_v}{\rho g} + \frac{v_2^2}{2g} + \sum_{i=1}^{k} h_{LMi} + \sum_{i=1}^{l} h_{LFi}$$

Sections of pipe

1. sec
$$\left(K_{inlet} + K_{change} + f_1 \frac{l_1}{D_1}\right) \frac{v_1^2}{2g} = n1 \frac{v_1^2}{2g}$$

2. sec
$$\left(2.K_{ch_of_dir} + K_{ch_of_D} + f_2 \frac{(l_2+dh+l_3)}{D_2}\right) \frac{v_2^2}{2g} = n2 \frac{v_2^2}{2g}$$

BERNOULLI EQ.

$$dh + H + \frac{p_{at}}{\rho g} + \frac{v_0^2}{2g} = h + \frac{p_v}{\rho g} + \frac{v_2^2}{2g} + n1 \frac{v_1^2}{2g} + n2 \frac{v_2^2}{2g}$$

 $Unkonown: \mathbf{Q}; \mathbf{v_1}; \mathbf{v_2};$

$$Q = v_1.S_1 = v_2.S_2 \quad \Rightarrow \quad v_2 = v_1 \frac{S_1}{S_2}$$

 \mathbf{p}_{AT}

Draw EGL and PGL

TURBULENT FLOW

- b) Overlap layer
- c) **Turbulent layer** -turbulent flow ($\tau = \tau_T; \tau_L = 0$)

Thickness of the viscous sublayer

$$\delta = 33.4 \, \frac{D}{\text{Re} \, f^{1/2}}$$

Thickness of the viscous sublayer depends on D, Re and f:

Roughness of pipe wall

1) Absolute roughness (Δ)

- 2) Hydraulics roughness
- 3) Relative roughness Δ/D , Δ/r , Δ/R , D/Δ

 δ =f(D,Re, f)

Turbulent flow

 δ - laminar sublayer

Diagram - Nikuradse 1933

Johann Nikuradse (1894-1979)

1930's Nikuradse made great progress

Artificially roughened pipes with sand of know size, D 34

A. (1) LINEAR ZONE – Hagen-Poiseuille 's law f = 64/Re - line 1

f = f(Re)

B. (2) CRITICAL ZONE (Re =
$$2320 - 4000$$
) $f = f(Re)$

instability zone - lamin. ???? turb. Flow .. jump - Frenkel $f = 2.7 / \text{Re}^{0.53}$

Laminar sublayer is

C. (3) SMOOTH PIPES ZONE – f = f(Re)

$$-\mathbf{f} = \mathbf{f} (\mathbf{Re})$$

 $\delta > 5.\Delta$

$$f = 0.3164 / \text{Re}^{0.25}$$

Blasius $f = 0.3164 / \text{Re}^{0.25}$ Re.... 4000......(10⁵)

greater than roughness

Laminar sublayer nearly covers roughness

D. (4) TRANSITIONAL ZONE from Blasius - up to
$$\delta = \Delta/5$$
 $f = f(Re, r/\Delta)$

 $= f(r/\Delta)$

Frenkel
$$\frac{1}{\sqrt{f}} = -2\log\left|\frac{\Delta}{3,71.D} + \left(\frac{6,81}{\text{Re}}\right)^{0,9}\right|$$

Laminar sublayer is less than roughness

E. (5) FULLY ROUGH TURBULENT ZONE –
$$\delta < \Delta/5$$

Nikuradse
$$\frac{1}{\sqrt{f}} = 2\log\left[\frac{3,71D}{\Delta}\right]$$

COMMERCIALLY AVAILABLE PIPES

Lewis Moody, 1944

Moody chart presents the friction factor \mathbf{f} for pipe flow as a function of the Re and relative roughness (Δ/D)

for commercial pipe in transition zone: COLEBROOK-WHITE EQUATION (region 3,4,5)

$$\frac{1}{\sqrt{f}} = -2\log\left[\frac{2,51}{\text{Re}\sqrt{f}} + \frac{\Delta}{3,7D}\right]$$

Cyril F. Colebrook, 1939

END