Ageing and rehabilitation of water wells Experiences from Germany

Georg Houben

Federal Institute for Geosciences and Natural Resources (BGR) Hannover/ Germany

Bundesanstalt für Geowissenschaften und Rohstoffe Hannover

georg.houben@bgr.de

The history of wells in Germany

- oldest wells: more than 7000 years old (5,260 BC), up to 13 m deep, wooden
- prior to industrial revolution:
 - Erfurt: 45,000 people, 700 wells (64:1)
 - Hagen: 26,000 people, 1,380 wells (19:1)
 - Bielefeld: 30,000 people, 2,000 wells (15:1)
 - Oldenburg: 18,400 people, 2,000 wells (9:1)
- Berlin 1802: 48 master drillers

(Grahn 1902; Lueger & Weyrauch 1914; Houben 2019; Der Spiegel)

early well rehabilitation

The history of well cleaning

Example Duderstadt

- 18 public wells in 1728, one serving 30-40 members of "well neighborhood"
- in 1518 city introduced mandatory well cleaning, interval of two to three years
- cleanings taken as occasion for "well cleaning fest"
- 5 barrels beer served free of charge during festivity, caused "…on the one hand much exuberance, fighting and desecration of the holy days, on the other hand also the ruin of citizens and neighbors, as some do not have the means to buy the one barrel of beer, which would be their turn…"
- well fest abolished in 1724
- since 1849 regular maintenance by municipality
- well fests survived in Sachsenhausen (1490), Wunsiedel, Jever

(Veh: in Porath & Rapsch 1998).

Groundwater becomes dominant water source in the 19th century: problems

- deeper wells: higher probability of encountering iron-rich and corrosive water

Abb. 307. Durch Grundwasser zerstörtes schmiedeeisernes Bohrrohr. (Nach 3 Jahren.)

Abb. 308. Angriff von Grundwasser auf die schmiedeeiserne Öse eines Rohrbrunnens aus Gußeisen.

1. Ursprüngliche Beschaffenheit.

Verstopfter Zustand: 2. äußerer Mantel. Abb. 309. Durch Eisenockeransatz undurchlässig gewordener Filterkorb.

Abb. 311. Verstopfung eines Filterkorbes durch Bildung eines betonartigen Mantels, bestehend aus Eisen, Kalk und Sand. (Nach 2 Jahren.)

96.00 96.00 Jahr: 1. 2. 3. 4. 5. 6. 7. 8. 9.10. 15. 20. 25.

(Prinz 1919)

Early steps in well rehabilitation

Abb. 316. Stoßvorrichtung zum Entsanden von Brunnen.

- brushing
- water jetting
- surge plunger
- impulse
- pressurized air injection
- steam injection
- acidification

Early well reconstruction & sand prevention

- pulling

-

separately removable screen

Abb. 308. Angriff von Grundwasser auf die schmiedeeiserne Öse eines Rohrbrunnens aus Gußeisen.

(Ground)water supply in Germany

Pore aquifers N. Germany (glacial, fluvial) Fractured aquifers in mountaineous areas Karst aquifers (7% of water supply) Public water supply:

- 5.05 x 10⁹ m³/a
- 4,500 water supply companies, mostly public
- 16,000 abstraction sites (incl. 4,900 springs)
- more than 75 % from underground

Industry water supply:

- 19.1 x 10⁹ m³/a
- 10,000 companies with own supply
- predominantly river water for cooling

Agriculture

- 9,000 farmers with own supply
- 150 x 106 m³/a (77 % gw)

Groundwater	Bank filtrate	 Artificially enriched gw 						
Springs	Lakes & reservoirs	Rivers						
Sea and brackish water other 								

1'048'620;6% 0;0%

14'741'966; 77%

Bundesanstalt für Geowissenschaften und Rohstoffe Hannover

454'167; 2% _____151'110; 1% _____.48'475; 0%

383'730;2%

x 1,000 m³/a

Iron oxide incrustations

Bundesanstalt für Geowissenschaften und Rohstoffe Hannover

Photos: Aquaplus, Weitze, Houben, Sander

Wells and the redox zonation of aquifers

- ohne Maßstab -

"Rusty little monsters"

Banfield & Zhang (2001)

Iron bacteria et al.: the (bio)film business

Photos: Oliver Thronicker, Georg Houben

Crystallisation and re-crystallisation of iron oxides

"Fe(OH)₃" ferrihydrite FeOOH goethite, lepidocrocite

Fe₂O₃ hematite

Crystallisation and re-crystallisation of iron oxides

Re-crystallisations leads to hardening and decreased solubility!

Carbonate incrustations

Photos: Weitze, Houben, pigadi

Particle clogging (mechanical)

Surface

Straining

Bridging

Physical - Chemical

Lignite open pit mines sampling wells from the outside

Particle clogging: skin layer

Lignite open pit mine Garzweiler Photos: Weidner, Ho u

Groundwater

Analysis of Wellbore Skin Samples-Typology, Composition, and Hydraulic Properties

by Georg J. Houben 1 , Matthias Halisch 2 , Stephan Kaufhold 3 , Christoph Weidner 3 , Jürgen Sander 4 , and Morris Reich 5

Abstract

The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy-efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were

Particle clogging: skin layer

Clogging of wells

Clogging \rightarrow reduction of pore spaces \rightarrow reduction of permeability and well yield Calculation using the **Kozeny-Carman** equation

Development of yield in clogging wells

Explanation

A New well:

pore scace is open, unhindered flow

B Slow well ageing:

formation of incrustations at rim of flow channels and in dead-end pores Result: slowly increasing drawdown

C Fast well ageing:

incrustations reach main part of flow channels Result: quickly increasing drawdown "point of no return"

Rehabilitation: steps

Rehabilitation processes

Mechanical processes:

- (1) Thermal (heating/freezing)
- (2) Erosion (by flowing water)
- (3) Impulse (explosives, ultrasonic...)

Chemical processes:

(1) proton-asssited dissolution (acids, organic/inorganic)

(2) reductants (pH neutral)

(3) desinfection: strong oxidants (e.g. hydrogen peroxide)

Mechanical rehabilitation: techniques (1) Brushes & plungers

Mechanical rehabilitation: techniques (2) Jetting and pumping systems

Source: Aquaplus, Detay 1997, BPS

Mechanical rehabilitation: techniques (3)

Impulse-based

- explosives
- ultrasonic
- cavitation

Source: pigadi, Sonic Ultraschall

Mechanical rehabilitation: energy losses

Energy losses due to:

- spatial dissipation of energy
- reflection, refraction
- → fast loss of energy away from source, efficiency behind screen often quite low

Solution: rehabilitate from outside

Example: ultrasonic

Chemical rehabilitations: really necessary?

Geowissenschaften und Rohstoffe

Hannover

Houben et al. (2000)

Chemical rehabilitations: what (not) to do?

Dump & wait? Verboten!

- ineffective
- extensive clean-up

Germany: 25-30% of rehabilitations involve chemicals

Best practice:

- chamber systems (recirculation)
- occupational safety!
- chemicals:
 - hydrochloric acid (pH 1)
 - sulphuric acid
 - additive to acid: hydrogen peroxide
 - neutralisation and disposal of acids!
 - alternative: sodium dithionite (pH neutral)

Short-lived successes?!

Rehabilitation = buying time

Prevention: killing rusty little monsters (1) Soviet style (East Germany)

Cobalt-60 sources in stainless steel cover (gamma radiation = kills bacteria) Two probes in Gravel pack: 180° spacing 760 wells equipped, illegal after 1990 not all recovered

(2) West-Berlin style

Hydrogen peroxide (1% solution)
24 h waiting period
→ remove by pumping (> 1 h)

Problem: needs to be repeated regularly (every 1-2 months, worst case: every second week)

Prevention: killing rusty little monsters (3) reactive coatings

Problem

Solution?

silver coating

copper coating

Prevention: killing rusty little monsters (3) reactive coatings: after ≈ 300 days

Silver coating

slightly effective

copper coating

highly effective

Prevention: killing rusty little monsters (3) reactive coatings: after ≈ 570 days

Silver coating

copper coating

not effective

hardly effective

Prevention: killing rusty little monsters (3) reactive coatings: aftermath

silver coating

copper coating

Problem: effect wears off after a few months due to erosion and chemical consumption

Prevention: killing rusty little monsters (3) copper coating: small-scale

Experimental set-up

after four months

native polished, native oxidised, PVC blank, PVC spray-coated, PVC galvanized

Only polished copper showed (limited) potential

Prevention: operation

Problem: iron bacteria

Solution: prevent oxygen supply → avoid switching on/off (continuous pumping) Problem: particle clogging

Solution: prevent particle accumulation \rightarrow switch on/off often (discontinous pumping)

Prevention: good design & construction

- minimize entrance velocities
- avoid non-linear and turbulent flow
- avoid mixing of incompatible hydrochem. zones
- avoid formation of skin layer
- plug the well annulus

So, all you need to optimize is... the mother of all equations

$$s_{tot} = \left\{ \left(\frac{1}{2 \cdot \pi \cdot B} \right) \left[\left(\frac{1}{K_{aq}} \cdot \ln\left(\frac{r_0}{r_b}\right) \right) + \left(\frac{1}{K_{sk}} \cdot \ln\left(\frac{r_{sk-o}}{r_{sk-i}}\right) \right) + \frac{1}{K_{gp}} \cdot \ln\left(\frac{r_b}{r_s}\right) \right] \right\} \cdot Q$$

$$+\left\{\left(\frac{1}{2\cdot\pi\cdot\mathbf{B}}\right)^{2}\cdot\left[\left(\beta^{*}\cdot\left(\frac{1}{K_{gp}}\right)^{2}\cdot\left(\frac{1}{r_{s}}-\frac{1}{r_{b}}\right)\right)+\left(\frac{1}{2\cdot g}\cdot\left(\frac{1}{r_{s}\cdot C_{v}\cdot C_{c}\cdot A_{p}}\right)^{2}\right)+\left(f_{Ds}\cdot\frac{16\cdot L_{s}\cdot B^{2}}{g\cdot d_{s}^{5}}\right)+\sum_{i=1}^{i=n_{cd}}\left(f_{Dc}\cdot\frac{32\cdot L_{c}\cdot B^{2}}{g\cdot d_{c}^{5}}\right)\right]\right\}\cdot Q^{2}$$

$$+ \frac{Q}{2\pi \cdot T} \cdot \frac{(1-p_p)}{p_p} \cdot ln \left[\frac{(1-p_p) \cdot L_s}{r_w} \right]$$

Wells: components

Flowing goundwater passes through:

- Aquifer
- Borehole wall (skin layer)
- Gravel pack (single or dual)
- Screen (slots)
- Well interior (screen and casing)
- Pump
- Riser pipe

Total drawdown - the mother of all equations

 $s_{tot} = s_{aq} + s_{sk} + (s_{gp} + s_{cv}) + s_s + s_{up} =$

But I was always bad at math...

Excel tool, computes drawdown for all well components Allows comparison of options → optimization "virtual" step-drawdown tests Python application

Welcome to Well Designer!														
INPUTDATA						RESULTS			1st Well		3rd Well		4th Well	
Parameter	Symbol	Unit	1st Well	3rd Well	4th Well	Parameter	Symbol	Unit	Value	Quality Control	Value	Quality Control	Value	Quality Control
Pumping rate	Q	[m³/h]	75	125	200	Entrance velocity at borehole wall	V _{f-aq}	[m/s]	0,0007		0,0033		0,0020	
Drilling diameter (at screen dept	n d _b	[m]	0,45	0,335	0,45	Entrance velocity at screen	V _{f-sc}	[m/s]	0,0013		0,0063		0,0035	
Screen diameter	ds	[m]	0,25	0,175	0,25	Entrance velocity at borehole wall	v _{a-aq}	[m/s]	0,0025	ОК	0,0110	ОК	0,0066	ОК
Casing diameter	d _{cs}	[m]	0,25	0,175	0,8	Entrance velocity at screen	V _{a-sc}	[m/s]	0,0265	ОК	0,1263	too high	0,0707	too high
Aquifer thickness (screen length)	B (=L₅)	[m]	20	10	20	Hydraulic conductivity screen	K _{sc}	[m/s]	0,654	ОК	0,654	ОК	0,654	ОК
Radius of influence	ro	[m]	1000	1000	1000	Reynolds number at borehole wall	Reb	0	0,7	ОК	3,3	ОК	2,0	ОК
Aquifer hydraulic conductivity	K _{aq}	[m/s]	1,00E-03	1,00E-03	1,00E-03	Reynolds number at screen	Re _{sc}	0	6,6	ОК	31,6	too high	17,7	slightly elevated
Aquifer mean grain size	d _{50aq}	[mm]	1	1	1	Reynolds number inside screen	Re _{sc}	0	106.123	turbulent	252.675	turbulent	282.996	turbulent
Aquifer porosity	n _{aq}	0	0,25	0,25	0,25	Reynolds number inside casing	Re _{cs}	0	106.123	turbulent	252.675	turbulent	88.436	turbulent
Gravel pack hydraulic conductivit	y K _{gp}	[m/s]	5,00E-03	5,00E-03	5,00E-03	Upflow velocity inside screen (Q/A	Vup-sc	[m/s]	0,42	ОК	1,44	ОК	1,13	ОК
Gravel pack mean grain size	d _{50gp}	[mm]	5	5	5	Upflow velocity inside casing (Q/A	V _{up-cs}	[m/s]	0,42	ОК	1,44	ОК	0,11	ОК
Gravel pack porosity	n _{gp}	D	0,3	0,3	0,3	Specific inflow	Q/L₅	[m³/s*m]	0,0010		0,0035		0,0028	
Skin layer hydraulic conductivity	K _{sk}	[m/s]	1,00E-06	1,00E-06	1,00E-06	Petersen criterion	Pe	0	28,0	ОК	20,0	ОК	28,0	ОК
Skin layer thickness	d _{sk}	[mm]	1	1	1	Skin factor	Fs	0	4,4		6,0		4,4	
Number of screen slots (total)	n _s	[]		100	100	Critical radius	r _{crit}	[m]	0,02	ОК	0,06	ОК	0,05	ОК
Number of screen slots per circur	r N	[]	100	10	10	Gravel pack thickness	d _{gp}	[m]	0,100	ОК	0,080	ОК	0,100	ОК
Aperture of slot (slot opening wid	d w _{si}	[m]	0,002	0,002	0,002	Gravel pack granulometry	d_{50gp}/d_{50a}	, D	5,00	ОК	5,00	ОК	5,00	ОК
Distance between slot centers	Ws	[m]	0,008	0,008	0,008	Pump space (minimum)	d _{pp+} d _{cool}	[]	0,175	ОК	0,300	pump won't fit	0,300	ОК

Houben (2015)

Pump (in)efficiency

Study by German pump industry. Causes for low efficiency:

- 1. wrong dimensioning/selection
- 2. ageing (incrustations...)

Great Britain (Environm. Agency): $\eta_{\rm p}$ = 15 to 60 % (residential pumps $\eta_{\rm p}$ = 40 %)

1 m drawdown \equiv 4.54*10⁻³ kWh/m³ at $\eta_{p} = 0.6$

Accept the inevitable: all wells age

Know your enemy: identify cause of ageing

Watch your enemy: continuously monitor well yield

Kill it before it grows: do not let incrustations harden or particles accumulate

Chose your weapon: select method according to well & ageing type

Rehabilitations do not stop ageing, they only buy more time

Don't flog dead horses: think of reconstruction when rehabilitation fails

Best prevention measure: properly designed and constructed well

Want to know more?

Hydrogeol J (2015) 23:1633-1657 CrossMark DOI 10.1007/s10040-015-1312-8 PAPER Hydrogeol J (2015) 23:1659-1675 DOI 10.1007/s10040-015-1313-7 Review: Hydraulics of water wells-flow laws PAPER and influence of geometry Review: Hydraulics of water wells-head losses of individual components Hydrogeol J (2016) 24:2093-2101 Georg J. Houben¹ DOI 10.1007/s10040-016-1457-0 PAPER

How appropriate is the Thiem equation for describing groundwater flow to actual wells?

Franziska Tügel¹ · Georg J. Houben² · Thomas Graf¹

Groundwater

Analysis of Wellbore Skin Samples—Typology, **Composition, and Hydraulic Properties**

by Georg J. Houben¹, Matthias Halisch², Stephan Kaufhold³, Christoph Weidner³, Jürgen Sander⁴, and Morris Reich⁵

Bundesanstalt für Geowissenschaften und Rohstoffe Hannover

Georg J. Houben¹

Thank you for your attention.

Questions are welcome!

