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Abstract

Under field conditions, well skin may be non-uniformly distributed over the screen section. To investigate such non-uniform

skin effect on aquifer response, a model is developed where the non-uniform skin effect is represented by an arbitrary piecewise

continuous skin function Sk(z) imposed on the boundary of the pumping well. Wellbore storage is taken into account in the

pumping well. Due to Sk(z) the model solutions are in terms of non-orthonormal functions, and the Gram–Schmidt method is

employed to determine them. It is found that the wellbore flux distribution of the pumping well Qw(z, t) is inversely related to

the variation of Sk(z), creating three dimensional flow in the vicinity of the pumping well. This three dimensional flow exists

even when wellbore storage is absent in the pumping well, which is different from the fact that uniform skin effect can influence

aquifer drawdown only when wellbore storage exists in the pumping well. However, the three dimensional flow evolves to

radial flow at farther distances, where the non-uniform skin effect is transformed into a uniform one that can be represented by a

constant skin factor equal to the vertical average of Sk(z) weighted by Qw(z, t). The conventional well hydraulics models of a

constant skin factor can thus be used to deal with non-uniform skin problems in the radial flow regime or when vertically

average drawdown is concerned.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In well construction, drilling mud is usually

employed for lubricating and cooling the drill bit,

removing the drill cuttings, and stabilizing the

borehole. Mud penetration may alter permeability of

the porous formation surrounding the well screen,

thereby creating a skin region around the well.
0022-1694/$ - see front matter q 2005 Elsevier B.V. All rights reserved.
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The skin region having permeability less than that

of the formation is called a positive skin; the reverse is

called a negative skin. Under constant rate pumping,

Van Everdingen (1953); Hurst (1953) assumed that a

skin region of infinitesimal thickness results in a

steady-state pressure drop across the wellbore face.

This head discontinuity is characterized by a constant

skin factor Sk. If there is no wellbore storage in the

pumping well, Sk does not influence aquifer draw-

down (Streltsova, 1988; Jargon, 1976; Chu et al.,

1980; Moench, 1985; Kabala, 2001). Under constant
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Notations

an(p) coefficients in (11)–(15), dimensionless.

An(p) coefficients determined by the Gram–

Schmidt method, dimensionless.

b constant aquifer thickness, in [L].

bn(p) coefficients in (11)–(15), dimensionless.

CD coefficient of wellbore storage,

dimensionless.

F(r, p) radial component of HD(r,z,p).

G(z, p) vertical component of HD(r,z,p).

hD(r,z,t) depth-specific drawdown, dimension-

less.

h�
Dðr; tÞ depth average drawdown, dimensionless.

hwD(t) drawdown in the pumping well,

dimensionless.

HD(r,z,p) Laplace-domain solution of h(r,z,t).

H�
Dðr; pÞ Laplace-domain solution of h*(r,t).

HwD(p) Laplace-domain solution of hwD(t).

Kr horizontal permeability of aquifer, in

[L/T].

Kz vertical permeability of aquifer, in [L/T].

K0(x) modified Bessel function of the second

kind of order 0.

K1(x) modified Bessel function of the second

kind of order 1.

p Laplace transform parameter of t.

Q prescribed constant pumping rate, in

[L3/T].

Qw(t) total flow rate entering the well screen,

dimensionless.

Qw(p) Laplace-domain solution of Qw(t).

qwD(z,t) wellbore flux in the pumping well,

dimensionless.

qwD(z,p) Laplace-domain solution of qwD(z,t).

r radial distance from the pumping well, in

[L].

r* extent of three-dimensional flow regime,

[L].

rc casing radius of pumping well, in [L].

rs radius of skin region, in [L].

rw radius of the pumping well, in[L].

S storage coefficient of aquifer,

dimensionless.

Sk conventional constant skin factor,

dimensionless.
�Sk equivalent constant skin factor of non-

uniform skin, dimensionless.

Sp(r,z) defined by (26), dimensionless.

Sk(z) non-uniform skin function, dimensionless.

T aquifer transmissivity, equal to Krb, in

[L2/T].

un(z, p) non-orthogonal base functions,

dimensionless.

umn(p) defined by (18).

wn(p) defined by (17).

Y(p) function to be approximated by the Gram–

Schmidt method, dimensionless.

z vertical distance, in [L].

ai positive skin factor of the ith section,

dimensionless.

b ðKz=KrÞðr
2
w=b

2Þ

cn (pCn2p2b)1/2.

g Euler’s constant.

f(z) steady-state wellbore flux.

ln defined by (27).

r r/rw.

r* r*/rw.

t Tt=Sr2
w.

z z/b.
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head pumping, the use of Sk is also valid (Uraiet and

Raghavan, 1980), yet Sk has influence on aquifer

drawdown even if wellbore storage is absent in the

pumping well (Chang and Chen, 2002; Chen and

Chang, 2003). A negative skin cannot be character-

ized by changing Sk into KSk in the models because

such a mathematical manipulation changes a pre-

scribed pumping condition into an injection, or vice
versa. Hurst et al. (1969) introduced the concept of

effective well radius to deal with a negative skin.

Another way of dealing with a well skin is to

assume that the skin region is a homogeneous porous

annulus of finite extent embedded in an aquifer of

differing properties (Clegg, 1967; Barker and Herbert,

1982; Faust and Mercer, 1984; Butler, 1988;

Novakowski, 1989; Ruud and Kabala, 1997; Young,
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1998; Peursema et al., 1999; Chen and Chang, 2002,

and others). This approach, valid for both constant-

rate and constant-head pumping, does not create a

head discontinuity at the wellbore face and can be

applied to positive or negative skin conditions.

However, certain complex skin conditions are

beyond the description of these two approaches. For

example, mud invasion, acidization processes, and

stress redistribution may result in a skin region where

permeability continuously varies as a function of the

radial distance from the well (Bidaux and Tsang,

1991). In reservoir engineering, it is common to

perforate the producing formation in several discrete

intervals. Wells, either vertical or horizontal, com-

pleted in this way are referred to as ‘selectively

completed wells’, of which each flow entry interval

may be subject to a different skin effect (Yildiz and

Cinar, 1998; Ozkan, 2001). Under field conditions, the

fluid pressure, the concentration and particle sizes of

the drilling mud, and porosity of the aquifer may all

vary with depth. As a result, non-uniformly dis-

tributed mud penetration may create a skin region of

varying thickness and/or permeability (Fig. 1). As

opposed to the discrete non-uniform skin associated

with a selectively completed well, Fig. 1 illustrates a

continuous, or at least piece-wise continuous, non-

uniform skin around a fully penetrating well. The

purposes of this paper are (1) to evaluate the effect of

non-uniform skin on aquifer response under constant
Fig. 1. Schematic diagram of possible non-uniform skin surround-

ing a well.
rate pumping, and (2) to investigate the conditions

under which its influence can be dealt with by a

constant skin factor.
2. Model and solutions
2.1. Assumptions and model

A mathematical model based on Fig. 1 is

developed here. In this model, a pumping well fully

penetrates a homogeneous, anisotropic (KrsKz),

confined aquifer of uniform thickness, b. A non-

uniform skin region surrounds the screen section of

the pumping well. As indicated by Hawkins (1956),

the skin factor Sk can be defined in terms of aquifer

and well characteristics as

Sk Z
K

Ks

K1

� �
ln

rs

rw

; Sk O0 (1)

where K and Ks are the hydraulic conductivity of the

aquifer and the skin region, respectively; rw and rs are

the radius of well and skin region, respectively. Eq.

(1) indicates that Sk can be depth-dependent if Ks and/

or rs varies with depth. For the current study,

therefore, the effect of a non-uniform skin is

represented by a skin function Sk(z) that is arbitrary

and at least piecewise continuous over b. Without a

loss of generality, the Sk(z) of Fig. 2 is used for the

evaluation of the non-uniform skin effect in the

following discussion. It is a piecewise continuous

function of NS sections. Each section is characterized

by a constant positive skin factor, ai such that an

arbitrary skin function in the dimensionless form is

SkðzÞ Z ai; ziK1 %z!zi; i Z 1; 2;/;NS

z0 Z 0; zNS Z 1
(2)

where z is defined by z/b, and NSZ7 for the current

study.

Pumping water from a well surrounded by a non-

uniform skin induces horizontal (radial) and vertical

flow in the aquifer, and hence the governing equation

in dimensionless form is

v2hD

vr2
C

1

r

vhD

vr
Cb

v2hD

vz2
Z

vhD

vt
(3)



Fig. 2. An arbitrary piece-wise continuous skin function Sk(z)

characterizes a possible non-uniform skin effect. Shown in the

figure is the Sk(z) used to determine well bore flux and the head

distribution in this study.
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All the symbols are defined in Notation, unless

otherwise noted. By invoking the infinite conductivity

assumption, the head in the pumping well is

independent of depth. It is assumed that wellbore

storage occurs in the pumping well. As a result, the

boundary conditions of the pumping well are

hDð1; z; tÞKSkðzÞ
vhD

vr
rZ1 Z hwDðtÞ
�� (4)

K

ð1

0

vhD

vr
rZ1dz CCD

dhwDðtÞ

dt
Z 1

���� (5)

where CD denotes the constant wellbore storage

coefficient. In (4), vhD/vr at rZ1 gives wellbore

flux, qwD(z,t), which is continuous across the

infinitesimal skin thickness. The integral term in (5),

therefore, defines the total flow rate entering the

wellbore, Qw(t), which increases with time and tends

to unity (the prescribed pumping rate Q in dimension-

less form) as wellbore storage vanishes. Other

necessary initial and boundary conditions are

hDðr; z; 0Þ Z hwDð0Þ Z 0 (6)

hDðN; z; tÞ Z 0 (7)
vhD

vz
zZ0;1 Z 0
�� (8)

Eqs. (3)–(8) together give a complete description

of the problem of interest. If Sk(z) is set to a constant,

there is no vertical flow component and the above

model reduces to the radial flow model studied by

Agarwal et al. (1970) who gave the solution of hwD(t),

or by Chu et al. (1980) who presented the aquifer

drawdown solution, h�
Dðr; tÞ.
2.2. Development of drawdown solution

The drawdown solution is determined first by

applying to the model the Laplace transform with

respect to time and the method of separation of

variables. As discussed in detail in Appendix A, the

Laplace domain solution of hD(r,z,t) is

HDðr; z; pÞ Z
XN

nZ0

AnðpÞK0ðcnrÞcosðnpzÞ (9)

where cn Z ðpCn2p2bÞ1=2.The coefficients of An(p),

for nZ0,1,2,., satisfy the following constraints

XN

nZ0

AnðpÞunðz; pÞ Z YðpÞ; 0%z%1 (10)

where Y(p) is 1/p, and un(z, p) are

unðz; pÞ Z ½anðpÞCbnðpÞSkðzÞ�cosðnpzÞ;

n Z 0; 1; 2;.
(11)

a0ðpÞ Z
ffiffiffi
p

p
K1ð

ffiffiffi
p

p
ÞCpCDK0ð

ffiffiffi
p

p
Þ (12)

b0ðpÞ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pCDK1ð

ffiffiffi
p

p
Þ

3

q
(13)

anðpÞ Z pCDK0ðcnÞ; n Z 1; 2;. (14)

bnðpÞ Z pCDcnK0ðcnÞ; n Z 1; 2;. (15)

It is important to note that the infinite series of (9)

is not a Fourier series because un(z, p) for nZ0,1,2,.
are not orthogonal in the interval 0%z%1 due to the

involvement of Sk(z). Hence, the determination of

An(p) requires an appropriate method such as the

Gram–Schmidt method.



C.-S. Chen, C.-C. Chang / Journal of Hydrology 317 (2006) 190–201194
2.3. The Gram–Schmidt method

In essence, the Gram–Schmidt method is used to

approximate a given function in terms of a set of

orthogonal functions derived from a known set of

non-orthogonal base functions. For the current study,

the function to be approximated is 1/p, which is

denoted by Y(p), and the base functions are un(z, p). In

connection with the Gram–Schmidt method, (10) is

rewritten as

XN

nZ0

ANn
ðpÞunðz; pÞyYNðpÞ (16)

where N is a large integer, ANn(p) denotes An(p) for the

N selected, and YN(p) signifies the approximation of

Y(p) associated with ANn(p). As N increases, YN(p)

approximates Y(p) more closely, and as N/N, YN(p)

becomes equal to Y(p).

The evaluation of ANn(p) in (16) can be made by

the recursive relations developed by Kirkham and

Powers (1972), where a number of parameters are

calculated for each n, nZ0,1,2,.,N. Among these

parameters, only two are directly dependent on the

approximate function and the base functions, and they

are defined by

wnðpÞ Z

ð1

0
YðpÞunðz; pÞdz; n Z 0; 1; 2;. (17)

umnðpÞ Z

ð1

0
umðz; pÞunðz; pÞdz;

m Z 0; 1; 2;.;N; n Z 0; 1; 2;.m

(18)

The other parameters in each iteration can be

derived from wn(p) and umn(p) using the formulae

given by Kirkham and Powers (1972). After ANn(p)

are known, the Stehfest (1970) inversion method is

applied to (9) to determine hD(r,z,t).

Actually, the recursive relations are an explicit way

of determining ANn(p) for the following N’s simul-

taneous linear algebraic equations

½umn�fANng Z fwng; m Z n Z 0; 1; 2;.;N (19)

where [umn] is a N!N symmetrical matrix, {wn}

and {ANn} are 1!N column vectors. Alternatively,

ANn can thus be determined by applying a standard

matrix inversion method to (19); that is, {ANn}Z
{wn}[umn]K1, where [umn]K1 is the inverse of [umn].

It has been verified that ANn’s determined by the

recursive relations are nearly identical to those

obtained using the matrix inversion method.

For the current study where (2) is used, closed-

form expressions of wn(p) and umn(p) can be obtained

without difficulty by performing the integrations in

(17) and (18). By the trial-and-error procedure, it is

found that as N surpasses 1000 the approximation of

(16) becomes less than 1% error.
2.4. Other relevant solutions

Aquifer drawdown from a fully penetrating

observation well is regarded as vertical average

drawdown, h�
Dðr; tÞ, which is the integration of

hD(r,z,t) with respect to z over (0, 1). Noting that

the vertical integration of cos(npz) in (9) over (0, 1) is

zero for nR1 and is non-zero for nZ0, the Laplace-

domain solution of h�
Dðr; tÞ is

H�
Dðr; pÞ Z A0ðpÞK0ðr

ffiffiffi
p

p
Þ (20)

The application of Darcy’s law to (9) at rZ1 yields

the solution of wellbore flux in the Laplace domain

qwDðz;pÞZK
vHD

vr
rZ1 Z

XN

nZ0

AnðpÞcnK1ðcnÞcosðnpzÞ

�����
(21)

The integration of qwD(z,p) with respect to z over

(0, 1) gives the total flow rate in the Laplace domain

QwðpÞ Z

ð1

0
qwDðz; pÞdz Z A0ðpÞ

ffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þ (22)

The application of (9) to (A3) yields the Laplace

domain solution of hwD(t)

HwDðpÞ Z
1

CD

1

p2
K

1ffiffiffi
p

p A0ðpÞK1ð
ffiffiffi
p

p
Þ

� 	
(23)

The Laplace inversion of (20)–(23) by the Stehfest

method gives the respective solutions in the dimen-

sionless time domain.



Fig. 4. The vertical anisotropy, represented by b, does not

significantly influence f(z); a maximum 6% discrepancy occurs

in 0.4%z%0.6, where Sk(z) is the smallest.
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3. Analysis and discussion

3.1. Variation of wellbore flux

The distribution of qwD(z,t) determined by (21) is

shown in Fig. 3. The vertical variation of qwD(z,t) at

different times remains the same, and hence it can be

represented by a time-independent function f(z),

which in fact is the steady-state wellbore flux.

Referring to Fig. 2, it is seen that f(z) is inversely

related to Sk(z); that is, f(z) is largest in the interval of

0.4%z%0.6 where Sk(z) is smallest, and f(z) is

smallest while Sk(z) is largest for 0.25%z%0.4.

Dependent on the distribution of Sk(z), f(z) can be

smaller or larger than unity, where the uniform

wellbore flux is free from the non-uniform skin effect.

However, f(z) shifts in the direction of increasing

time until t is greater than 106, responding to the

temporal change of Qw(t). Therefore, wellbore

storage ceases to influence wellbore flux at tZ106,

and after then Qw(t) reaches its maximum of unity. As

a result, qwD(z,t) can be expressed as the product of

f(z) and Qw(t). By this relation, it is understood that

the integration of f(z) with respect to z over (0,1)

must be equal to unity.

The influence of vertical anisotropy on f(z) is

displayed in Fig. 4, where b is representative of the
Fig. 3. The vertical variation of well bore flux, qwD(z,t), at different

dimensionless times remains the same and can be represented by the

steady-state well bore flux that is denoted by f(z). f(z) is inversely

related to Sk(z). The dashed line represents the uniform well bore

flux which is free from the skin effect.
ratio of vertical anisotropy. While b is increased by 25

times from 4!10K6 to 10K4, f(z) changes with a less

than 6% maximum difference in the interval of

0.4%z%0.6. Thus, vertical anisotropy has little

influence on wellbore flux distribution. However,

this result only pertains to fully penetrating wells. For

partially penetrating wells, the vertical anisotropy

could influence the wellbore flux, as it would control

the amount of flow to the pumping well from above or

below the screened interval.
3.2. Variation of aquifer drawdown

The influence of Sk(z) on hD(r,z,t) is shown in

Fig. 5, in which three other solutions (i.e. vertical

average drawdown by (20), the Theis solution, and the

Chu et al. (1980) solution) are also included for

comparison. At tZ106, three-dimensional (vertical

and radially axi-symmetric) flow prevails for

1%r%50, within which hD(r,z,t) exhibits both radial

and vertical variations. The vertical variations are in

response to the distribution of f(z), as larger wellbore

flux results in more drawdown and vice versa. In

addition, the vertical average of hD(r,z,t) coincides

with the Chu et al. (1980) solution using a constant

skin factor of 12.44. Therefore, the influence of Sk(z)

on depth average drawdown can be lumped into an



Fig. 5. Variations of hD(r,z,t) at different r and z for (a) t Z106 and

(b) tZ108. Three-dimensional flow prevails for 1%r%50, where

hD(r,z,t) is always under the influence of Sk(z). Three-dimensional

flow changes to radial flow as rO50, where hD(r,z,t) is

independent of depth and can be determined by h�Dðr; tÞ. h�Dðr; tÞ

coincides with the Chu et al. (1980) solution using a constant skin

factor of 12.44. h�Dðr; tÞ is less than at tZ106 but equal to at tZ108

the Theis solution, indicating that well bore storage vanishes at large

times(e.g., tO106).
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equivalent constant skin factor, �Sk, as discussed

below. As distance increases, however, the vertical

variations of hD(r,z,t) diminish because vertical flow

components at farther distances are smaller due to less

influence by Sk(z). As r is greater than 100, vertical

flow components become negligible and the three-

dimensional flow evolves into a radial flow, where

hD(r,z,t) reduces to h�
Dðr; tÞ of (20), which again can

be matched by the Chu et al. (1980) solution of
�Sk Z12:44.
At tZ108, the magnitude of hD(r,z,t) or h�
Dðr; tÞ is

increased while the variations of hD(r,z,t) or h�
Dðr; tÞ

are similar to those as occurred at tZ106. But, now

vertical average drawdown matches the Theis

solution, indicating the absence of the compound

effect of wellbore storage and skin. However, three-

dimensional flow still takes place for 1%r%50, and

thus aquifer drawdown in the neighborhood of the

pumping well is under the influence of Sk(z), whether

wellbore storage in the pumping well exists or not.

The extent of the three-dimensional flow regime, r*,

can be approximated by

r�%0:5=
ffiffiffi
b

p
or r�%0:5b

ffiffiffiffiffiffiffiffiffiffiffi
Kr=Kz

p
(24)

where r* is the dimensional r*. A similar result exists

for partial penetration effect. Hantush (1964) indi-

cated that the three dimensional flow in association

with a partially penetrating well changes to a radial

type as rR1:5b
ffiffiffiffiffiffiffiffiffiffiffi
Kr=Kz

p
.

In summary, a non-uniform skin effect can be

represented by a constant skin factor, provided aquifer

drawdown is obtained from fully penetrating obser-

vation wells. And conventional well hydraulics

theories of infinitesimal skin thickness approach are

sufficient for data analysis. However, if drawdown

measured by piezometers in the neighborhood of the

pumping well varies with depth, the data analysis

should be made with care concerning the possible

influence of a non-uniform skin region around the

pumping well.

On the other hand, the vertical anisotropy has

significant influence on hD(r,z,t) (see Fig. 6). Three

values of b (i.e. 4!10K6, 2.5!10K5, and 10K4)

result in three distinctive drawdown curves with

noticeable vertical variations that are inversely related

to b. Therefore, the smaller the ratio of Kz/Kr the more

pronounced is the Sk(z) effect on hD(r,z,t).
3.3. Large-time approximation of hD(r,z,t)

As derived in Appendix B, the asymptotic solution

of hD(r,z,t) at large times is

hDðr; z; tÞ Z
1

2
ln½2:25t=r2�CSpðr; zÞ (25)

where



Fig. 6. In the three dimensional flow region, the vertical anisotropy

significantly influences hD(r,z,t).

Fig. 7. Semi-logarithmic plot of hD(r,z,t) of rZ10 at zZ0.3 and 0.

5. At large times, hD(r,z,t) at different depths exhibits straight lines

parallel to the Theis approximation. The vertical separation from the

straight lines to the Theis approximation is Sp(r,z) of the respective

depth.
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Spðr; zÞ Z 2
XN

nZ1

K0ðrnp
ffiffiffi
b

p
Þ

K1ðnp
ffiffiffi
b

p
Þ

ln

np
ffiffiffi
b

p cosðnpzÞ (26)

ln Z

ð1

0
4ðzÞcosðnpzÞdz; n Z 1; 2;. (27)

There is no CD in (25) because wellbore storage

is negligible at large times. The large-time

asymptotic solution consists of a logarithmic

approximation of the Theis solution, and a Sk(z)-

induced component. Accordingly, the semi-logarith-

mic plot of hD(r,z,t) in Fig. 7 displays two parallel

straight lines for large-time drawdown at zZ0.3 and

0.5, respectively. The vertical separation from the

line of zZ0.3 or 0.5 to the line of the Theis

approximation is Sp(r,z) of the respective depth. It

is understood that Sp(r,z) of zZ0.5 is positive

because f(z) of zZ0.5 is larger than unity, and

Sp(r,z) of zZ0.3 is negative because f(z) of zZ0.3

is less than unity. Also, as r is large (e.g., rRr*),

the ratio of the Bessel functions in the infinite series

of (26) approaches zero rapidly. Thus, aquifer

drawdown at large times and far distances reduces

to the Theis solution, as shown in Fig. 5b. If f(z) is

set to unity as for uniform skin, ln is zero for nR1,

confirming that the uniform skin effect along with

wellbore storage effect vanishes at large times.
3.4. Equivalent constant skin factor and associated

solutions

To find an expression for the equivalent constant

skin factor �Sk in vertical average drawdown, (4) is

integrated with respect to z over (0,1). Then

h�
Dð1; tÞC

ð1

0
SkðzÞ

vhD

vr
rZ1dz Z hwDðtÞ
�� (28)

The gradient term inside the integral of (28) is

the wellbore flux, which is the product of Qw(t)

and f(z). The replacement of Qw(t) by an

equivalent term (vh�
D=vr at rZ1) enables (28) to

be written as

h�
Dð1; tÞK �Sk

vh�
D

vr
rZ1 Z hwDðtÞ
�� (29)

which is the boundary condition subject to a

constant skin factor in radial flow models, provided

the skin factor is defined by

�Sk Z

ð1

0
SkðzÞ4ðzÞdz (30)

For Sk(z) given in Fig. 2 and f(z) displayed in

Fig. 3, �Sk determined by (30) is 12.44, which has
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been used in previous discussion. Streltsova (1988)

discussed the estimation of the constant skin factor

using drawdown data measured at the pumping well

during a constant-rate pumping test. This method is

illustrated in Fig. 8, where hwD(t) was determined by

(23) and Sk(z) given in Fig. 2. The drawdown points

at large dimensionless times fall on a straight line of

slope equal to 1.151. Extrapolation of this straight

line to tZ1 gives hwD(1), and then the constant

skin factor is determined by (Streltsova, 1988;

equation 2.66)

Sk Z
2pT

Q
hwð1ÞK

1

2
ln

2:25T

Sr2
w

(30a)

of which the dimensionless form is

Sk Z hwDð1ÞK0:405 (30b)

Since hwD(1) is 12.845, Sk is 12.44, the same as

that calculated by (30). Therefore, the constant skin

factor as used in the infinitesimal thickness approach

actually is the vertical average of the non-uniform

distributed skin function weighted by wellbore flux

as revealed in (30).

If Sk(z) in (11) is replaced by �Sk, umnZ0 for nsm,

and umns0 for mZn; that is, un(z, p) is orthogonal in
Fig. 8. At large times, semi-logarithmic plot of hwD(t) becomes a

straight line, which is used in conjunction with (31), to estimate the

equivalent constant skin factor, �Sk .
(0, 1). Then, in a straightforward manner, it can be

found that An is zero for nR1, and A0(p) is

½pða0Cb0
�SkÞ�

K1, where a0(p) and b0(p) are defined

by (12) and (13), respectively. As a result, (20)

reduces to

H�
Dðr;pÞZ

1

p

K0ðr
ffiffiffi
p

p
Þffiffiffi

p
p

K1ð
ffiffiffi
p

p
ÞCCDp½K0ð

ffiffiffi
p

p
ÞCS�

k

ffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þ�

(31)

which is identical to Eq. (9) of Chu et al. (1980), and

(23) reduces to

HwDðpÞZ
1

p

K0ð
ffiffiffi
p

p
ÞCS�

k

ffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þffiffiffi

p
p

K1ð
ffiffiffi
p

p
ÞCCDp½K0ð

ffiffiffi
p

p
ÞCS�

k

ffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þ�

(32)

which is identical to Eq. (8) of Agarwal et al. (1970).

3.5. Absence of Wellbore storage

It is worthy mentioning that when wellbore

storage is very small in the pumping well, the

relevant solutions to the model cannot be derived

from the above solutions by setting CD to zero. This

is because when CD is zero (4) and (5) are no longer

interrelated. Then, A0(p) alone can be determined by

applying (9) to (A3). With this known A0(p), the

application of (9) to (A2) results in a new set of

un(z,p) for nZ1, 2,., in (10), while Y(p) remains as

1/p. Again, the new base functions are non-

orthogonal due to the involvement of Sk(z), and

An(p) for nZ1, 2,. can be determined by the

Gram–Schmidt method.
4. Conclusion

1. The distribution of wellbore flux in the pumping

well is inversely related to the variation of Sk(z),

inducing three dimensional flow in the neighbor-

hood of the pumping well where aquifer draw-

down changes in concert with Sk(z). Regardless

of whether wellbore storage exists in the

pumping well or not, this three dimensional

flow takes place for all times during the pumping

period.

2. The three dimensional flow evolves to radial flow

at far distance, where influence of Sk(z) is
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transformed into a uniform one that can be

represented by a constant skin factor defined as

the vertical average of Sk(z) weighted by the

wellbore flux of the pumping well. And its value

can be estimated using the conventional well

hydraulics method available for the determination

of the skin factor. At late times after wellbore

storage vanishes in the pumping well, aquifer

drawdown in the radial flow regime is not

influenced by the skin effect.

3. If aquifer drawdown measured by point-wise

instrument in the neighborhood of the pumping

well demonstrates depth dependence, the possible

non-uniform skin effect should be taken into

account in the data analysis.

4. If drawdown data are taken from fully penetrating

observation wells or in the radial flow regime, the

non-uniform skin effect can be studied using the

conventional well hydraulics models of a constant

skin factor.
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Appendix A. Determination of Laplace domain

solution

Application of the Laplace transform with respect

to t to (3)–(8) yields

v2HD

vr2
C

1

r

vHD

vr
Cb

v2HD

vz2
KpHD Z 0 (A1)

HDð1; z; pÞKSkðzÞ
vHD

vr
rZ1 Z HwDðpÞ
�� (A2)

K

ð1

0

vHD

vr
rZ1dz CpCDHwDðpÞ Z

1

p

���� (A3)

HDðN; z; tÞ Z 0 (A4)

vHD

vz
zZ0 Z 0 at z Z 0 and 1
�� (A5)
By assuming that HD(r,z,p) is the product of F(r,

p) and G(z, p), (A1) can be separated into the

following two ordinary differential equations

d2G

dz2
C32G Z 0 (A6)

d2F

dr2
C

1

r

dF

dr
Kc2F Z 0 (A7)

where cZ ðpCb32Þ1=2, and 3 is constant. When 3Znp
for nZ1,2., there are infinite numbers of solutions

that can satisfy (A6) subject to (A5), and they are

Gðz; pÞ Z cnðpÞcosðnpzÞ; n Z 0; 1; 2;. (A8)

where cn(p) are constant. Correspondingly, there are

also infinite numbers of solutions to (A4) and (A7),

such as

Fðr; pÞ Z dnðpÞK0ðcnrÞ; n Z 0; 1;. (A9)

where dn(p) is constant and cnZ ðpCbn2p2Þ1=2. The

linear combination of the products of (A8) and (A9)

forms the complete solution of HD(r,z,p)

HDðr; z; pÞ Z
XN

nZ0

AnðpÞK0ðcnrÞcosðnpzÞ (A10)

where An(p) is the product of cn(p) and dn(p).

Substitution of (A2) into (A3) results in

K

ð1

0

vHD

vr
rZ1dz CpCD HDð1; z; pÞ

���
KSkðzÞ

vHD

vr
rZ1

�� �
Z

1

p
(A11Þ

Substitution of (A10) into (A11) leads to (10).
Appendix B. Large-time

approximation of hD(r,z,t)

In referring to (21), qwD(z,p) can be expressed in

terms of f(z) and Qw(p) such that

XN

nZ0

AnðpÞcnK1ðcnÞcosðnpzÞ Z 4ðzÞQwðpÞ (B1)

Multiplying (B1) by cos(mpz), where m is an

integer, and then performing the integration with

respect to z over (0,1), one obtains
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XN

nZ0

AnðpÞcnK1ðcnÞ

ð1

0
cosðmpzÞcosðnpzÞdz

Z lmQwðpÞ (B2)

where lm is defined by (27). The integral term in (B2)

is unity for mZnZ0, is 1/2 for mZns0, and is zero

for msn. As a result, An(p) are expressed in terms of

Qw(p) as

A0ðpÞ Z
QwðpÞffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þ

(B3)

AnðpÞ Z
2lnQwðpÞ

cnK1ðcnÞ
n Z 1; 2; 3;. (B4)

Substitution of (B3) and (B4) into (A10) gives an

alternative form of (9)

HDðr; z; pÞ

Z QwðpÞ
K0ðr

ffiffiffi
p

p
Þffiffiffi

p
p

K1ð
ffiffiffi
p

p
Þ

C2
XN

nZ1

K0ðrcnÞ

cnK1ðcnÞ
lncosðnpzÞ

" #

(B5)

When p is small, Qw(p) can be approximated by

1/p, cn by np
ffiffiffi
b

p
,

ffiffiffi
p

p
K1ð

ffiffiffi
p

p
Þ by unity, and K0ðr

ffiffiffi
p

p
Þ

by Klnð0:5r
ffiffiffi
p

p
ÞK0:5772. As a result, (B5) of small

p is

HDðr;z;pÞZK
1

p
½lnð0:5r

ffiffiffi
p

p
ÞCg�C

1

p
Spðr;zÞ (B6)

Application of the Laplace inversion formula of

Abramowitz and Stegun (1970; equation 29.3.98) to

(B6) leads to (25).
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