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SUMMARY

A mathematical model describing the constant pumping is developed for a partially penetrating well
in a heterogeneous aquifer system. The Laplace-domain solution for the model is derived by applying
the Laplace transforms with respect to time and the finite Fourier cosine transforms with respect to
vertical co-ordinates. This solution is used to produce the curves of dimensionless drawdown versus
dimensionless time to investigate the influences of the patch zone and well partial penetration on the
drawdown distributions. The results show that the dimensionless drawdown depends on the hydraulic
properties of the patch and formation zones. The effect of a partially penetrating well on the drawdown
with a negative patch zone is larger than that with a positive patch zone. For a single-zone aquifer case,
neglecting the effect of a well radius will give significant error in estimating dimensionless drawdown,
especially when dimensionless distance is small. The dimensionless drawdown curves for cases with and
without considering the well radius approach the Hantush equation (Advances in Hydroscience. Academic
Press: New York, 1964) at large time and/or large distance away from a test well. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The pumping test with a constant pumping rate is a popular technique for high-transmissivity
aquifers. The aquifer parameters such as transmissivity and storage coefficient can be determined
from a test-data analysis with the measured drawdowns. These aquifer parameters have been widely
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utilized for estimating the water resources in the ground-water hydraulics. Most of the data analysis
methods used in the ground-water field are developed for a fully penetrating well and the well
diameter is considered as infinitesimally small. In addition, the aquifer is assumed as homogenous,
isotropic, infinite-extent and with a constant thickness. For a small-diameter well, the aquifer
parameters are usually estimated according to the Theis formula [1] in which the pumping well
was considered as a line source. On the other hand, the aquifer parameters for a large-diameter well
may be founded using an approach suggested by Papadopulos and Cooper [2] in which the wellbore
storage was also considered. Several researchers had provided the analytical models or results for
the various types of problems in engineering applications, e.g. [3–5]. Hantush [3] developed an
analytical model of a constant pumping test in a partially penetrating well. His solution in the
Laplace domain was obtained via the Laplace transform and the finite Fourier sine transform, and
the time-domain solution was derived using the inverse Laplace transforms.

An aquifer having a small region of anomalous hydrogeological properties may be called a
cylindrical inhomogeneity (patchy aquifer). A patchy aquifer may have the radius of heterogeneous
cylinder (patch region) up to 60 m [6] and can be considered as a composite aquifer system. The
patch zone may affect the pumping drawdown; consequently, the aquifer-drawdown distribution
depends on the thickness and properties of the patch and formation zones.

In the well constructions, the well drilling induces the invasion of drilling mud into aquifer
and may produce a positive patch zone that has a lower permeability than that of the original
formation. In contrast, the extensive well development and substantial spalling and fracturing of
borehole wall may increase the permeability of the adjacent formation around the wellbore and
form a negative patch zone. In any case, the thickness of a patch zone may range from a few
millimetres to several meters and thus must be considered in the pumping-test data analyses [7].
For wells in a heterogeneous aquifer, Novakowski [7] presented a composite analytical solution by
using the Laplace transforms. He provided some type curves generated from the Laplace-domain
solution and used them to explore the effects of the wellbore storage and patch zone on the
head distributions. Using the Laplace transforms and Bromwich integral method, Yeh et al. [8]
obtained the time-domain solution for a radial two-layer drawdown equation for an aquifer under
constant-flux pumping in a finite-radius well. They also proposed a numerical method to efficiently
evaluate the solution with accuracy to five decimal places. The existing solutions, addressing the
problems of the partially penetrating well in a heterogeneous aquifer system, had been developed
mostly under some simplified conditions. Examples for the solutions in a petroleum industry
are Bixel and van Poolen [9] and Jargon [10] and in a groundwater hydraulic are Barker and
Herbert [6] and Butler [11]. Cassiani and Kabala [12] mentioned that those articles simplified the
problems by assuming a uniform point flux along a screened portion of the wellbore. Considering
the wellbore storage and skin effect, Park and Zhan [13] provided a solution of groundwater flow
for a finite-diameter horizontal well in an anisotropic leaky aquifer. Their solution was derived
based on the separation of the source and geometric functions. Zhan and Bian [14] had derived
the closed-form solutions of the steady-state leakage rates and volumes for both the constant-rate
and constant-drawdown pumping wells. With the scale-invariant relationship, those solutions of
the total leakage rate and volume can be generalized to finite size aquifers with impermeable
boundaries.

Markle et al. [15] developed an analytical model for a constant-head test conducted in a vertically
fractured media. Their solution was presented in the Laplace domain and numerically inverted to
obtain the values of the time-domain solution. They provided small- and large-time approximations
to analyse the test data. More recently, Moench [16] presented a Laplace-domain solution for flow
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to a finite-diameter well in a homogeneous, anisotropic unconfined aquifer. His solution accounts
for the effects of the wellbore storage and patch zone and allows for the non-instantaneous release
of water from an unsaturated zone. Cassiani et al. [17] developed a semi-analytical solution for
a pumping test on the partially penetrating wells in a confined aquifer that accounting not only
for the wellbore storage, infinitesimal skin, and anisotropic aquifer, but also for a mixed-type
boundary condition at a well face. Their solution was obtained via the method of the dual integral
equation. Inversion of the Laplace transform and Fourier transform were handled numerically via
the Stehfest algorithm and the fast Fourier transform.

The purpose of this article is to present a new mathematical model describing a constant pumping
test in a partially penetrating well that has a patch zone in a radial confined aquifer system. The
Laplace-domain solution is derived by applying the Laplace transforms with respect to time and the
finite Fourier cosine transforms with respect to vertical co-ordinates. Then the time-domain results
are evaluated when applying the modified Crump algorithm [18, 19] to invert the Laplace-domain
solution. Simplified solutions obtained with the flux–flux discontinuous boundary conditions (e.g.
[3, 8]) are compared with our solution.

2. MATHEMATICAL MODEL

A partially penetrating well in a heterogeneous aquifer system is illustrated in Figure 1. Several
assumptions made for the solutions in terms of drawdowns are:

(1) The aquifer is anisotropic, infinite-extent and with a constant thickness.
(2) The well is partially penetrated with a finite radius.
(3) The pumping flow rate is maintained at a constant value throughout the whole test period.
(4) The patch zone has uniform thickness in the z-direction within the top and bottom imper-

meable layers.

A term representing the vertical flow is included in the equations of a radial confined aquifer
system to account for the effect of well partial penetration. According to the assumptions mentioned
above, the governing equations of drawdowns, s(r, z, t), can be expressed within the patch and
formation zones, respectively, as

Kr1
�2s1(r, z, t)

�r2
+ Kr1

r

�s1(r, z, t)
�r

+ Kz1
�2s1(r, z, t)

�z2
= Ss1

�s1(r, z, t)
�t

, rw�r�r1 (1)

and

Kr2
�2s2(r, z, t)

�r2
+ Kr2

r

�s2(r, z, t)
�r

+ Kz2
�2s2(r, z, t)

�z2
= Ss2

�s2(r, z, t)
�t

, r1�r<∞ (2)

where the subscript 1 denotes the patch zone, the subscript 2 denotes the formation zone, Kr is
the hydraulic conductivity in the radial direction, Kz is the hydraulic conductivity in the vertical
direction, Ss is the specific storage, r is the radial distance from the centreline of pumping well,
rw is the radius of pumping well, r1 is the outer radius of patch zone and t is the time from the
star of pumping.
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Figure 1. Schematic diagram of the well and aquifer configurations.

The drawdowns are initially assumed to be zero within both the patch and formation zones,
these are

s1(r, z, 0) = s2(r, z, 0) = 0 (3)

The drawdown tends to be zero when r approaches infinity. Therefore, the outer boundary
condition for the formation zone is given by

s2(∞, z, t) = 0 (4)

The continuities of drawdown and flux between the patch and formation zones, respectively,
require

s1(r1, z, t) = s2(r1, z, t) (5)

and

Kr1
�s1(r1, z, t)

�r
= Kr2

�s2(r1, z, t)
�r

(6)

The lower and upper boundary conditions in a z-direction are, respectively,

�s1(r, 0, t)
�z

= �s2(r, 0, t)
�z

= 0 (7)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2007; 31:1659–1674
DOI: 10.1002/nag



CONSTANT-RATE PUMPING WELL 1663

and

�s1(r, L , t)

�z
= �s2(r, L , t)

�z
= 0 (8)

where L is the thickness of the confined aquifer.
According to Darcy’s law, the boundary condition for maintaining a constant flux across the

screen is assumed as

�s1(rw, z, t)

�r
=− Q

2�rwKr1(b2 − b1)
[U (z − b1) −U (z − b2)], 0�z�L (9)

where Q is the pumping rate, b1 and b2 are, respectively, the lower and upper vertical co-ordinates
of well screen, and U (Q) is a unit step function defining that U (z − bi ) equals one when bi�z but
equals zero otherwise for i = 1 or 2. Equation (9) assumes that the flow rate along the well screen
is uniform. Such an assumption is similar to that made in Reference [20, p. 304, (15) and (16)].

2.1. Analytical solutions

To solve the boundary value problem, the Laplace transform and finite Fourier cosine transform are
applied to the governing equations and boundary conditions. The Laplace transform is taken with
respect to time and the finite Fourier cosine transform is taken with respect to the z-co-ordinate.
The inverse finite Fourier transform is analytically performed to obtain the solutions for drawdowns
within the patch and formation zones. Detailed derivations for the Laplace-domain solutions are
given in Appendix A and the results are

s1(r, z, p) = Q

4�T2

[
1

p

2T2
rwT1

�3 I0(q3r) + �4K0(q3r)

�∞

]
+ Q

4�T2
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×
∞∑
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]
F(b1, b2) cos(wnz) (10)

and

s2(r, z, p) = Q

4�T2

[
1

p

2T2
rwT1

�5K0(q4r)

�∞K0(q4r1)
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[
�
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K0(q2r1)

]
F(b1, b2) cos(wnz) (11)

where p is the Laplace variable, F(b1, b2) = [sin(wnb2) − sin(wnb1)]/wn , I0(Q) and K0(Q) are the
modified Bessel functions of the first and second kinds of order zero, and I1(Q) and K1(Q) are the
modified Bessel functions of the first and second kinds of order one. Notice that the right-hand side
of (10) and (11) have two terms; the first term represents the solution for a confined radial flow,
and the second term contains a summation term accounting for the effect of a partially penetrating
well.
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2.2. Average drawdown to the observation well

The water level in an observation well as shown in Figure 1 represents the average drawdown in
an aquifer that is in contact with the well screen (or perforated section) of an observation well.
The average drawdown in an observation well that is screened between the depths of b′

1 and b′
2

can be obtained by integrating the drawdown equations with respect to z between the limits of
b′
1 and b′

2, and then dividing the result by (b′
2 − b′

1). Thus, the average drawdown within the patch
and formation zones can be expressed as
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p

2T2
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�∞

]
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4T2
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×
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′
2) (12)

and
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[
1

p

2T2
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2.3. Full penetration with a patch zone

For the case of a fully penetrating well with a patch zone, b1 equals zero and b2 equals the
thickness of confined aquifer, L. The Laplace-domain solutions of drawdown distributions within
the patch and formation zones can, respectively, reduce to

s1(r, p) = Q

4�T2

[
1

p

2T2
rwT1

�3 I0(q3r) + �4K0(q3r)

�∞

]
(14)

and

s2(r, p) = Q

4�T2

[
1

p

2T2
rwT1

�5K0(q4r)

�∞K0(q4r1)

]
(15)

These two solutions can also be obtained by solving (1)–(6) when neglecting the second derivative
of the drawdown with respect to z in (1) and (2) [8]. Thus, (9), the average flow rate across the
wellbore, turns out to be

�s1(rw, t)

�r
= − Q

2�rwKr1L
(16)

2.4. Solution of radial single-zone flow

If the patch zone is absent, the formation becomes a single-zone aquifer system. For the case of
the isotropic aquifer and partially penetrating well, the Laplace-domain solutions of (10) and (11)
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reduce to

s(r, z, p) = Q

4�T

2
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The limit of (17) as rw approaches zero can be written as

s(r, z, p) = Q
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lim
rw→0

2
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Carslaw and Jaeger [21] gave a formula

I0(x)K1(x) + K0(x)I1(x)= 1

x
(19)

According to I0(0)= 1 and I1(0) = 0, the limit of (19) as x → 0 gets

lim
x→0

[xK1(x)] = 1 (20)

Accordingly, (18) reduces to

s(r, z, p) = Q

4�T

2K0(q6r)

p
+ Q

4�T

4

(b2 − b1)
×
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n=1

[
K0(q5r)

p

]
F(b1, b2) cos(wnz) (21)

which is the Laplace-domain solution for a line source case presented in Hantush [3].
2.5. Dimensionless solutions

The dimensionless variables are defined as � = Kz/Kr, � = Ss/Kr, �= Kr2/Kr1, � = Krt/Ssr2w,
�= r/rw, LD = L/rw, B1 = b1/rw, B2 = b2/rw, wnD = n�/LD, � = s(4�T )/Q and � = s(4�T )/

Q where � represents the ratio of vertical hydraulic conductivity to horizontal hydraulic conduc-
tivity, � represents the ratio of specific storage to horizontal hydraulic conductivity, � represents
the ratio of formation horizontal hydraulic conductivity to patch horizontal hydraulic conductivity,
� represents the dimensionless time during the pumping, � represents the dimensionless distance
from the centreline of well, LD represents the dimensionless thickness of confined aquifer, �
represents the dimensionless drawdown in the Laplace domain and � represents the dimensionless
drawdown in the time domain.

The Laplace-domain solutions for dimensionless average drawdowns of (12) and (13) are

�1(�, p) =
[
2�

p

�3D I0(q3D�) + �4DK0(q3D�)

�∞D

]
+ 1

p

4�
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1)

×
∞∑
n=1

[
�1D

�0D
I0(q1D�) + �2D

�0D
K0(q1D�)

]
F(B1, B2)F(B ′

1, B
′
2) (22)
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and

�2(�, p) =
[
2�

p

�5DK0(q4D�)

�∞DK0(q4D�1)

]
+ 1

p

4�

(B2 − B1)(B ′
2 − B ′
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×
∞∑
n=1

[
�DK0(q2D�)

�0DK0(q2D�1)

]
F(B1, B2)F(B ′

1, B
′
2) (23)

3. NUMERICAL IMPLEMENTATION

The Laplace transforms are commonly used to solve the differential and integral equations. In many
engineering problems, the Laplace-domain solutions for the mathematical models are tractable, yet
the corresponding solutions in the time domain may not be easily solved. Under such circumstances,
the methods of numerical Laplace inversion such as the Stehfest method [22], Crump method [23],
or Talbot method [24] may be used. The Laplace inversion transform of (22) and (23) are performed
to three decimal places using the routine INLAP of IMSL [19], developed according to the work
of de Hoog et al. [18].
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Figure 2. Comparison of the results between our solution and Hantush’s
solution for �= 0.1 when � = 1 or 5.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2007; 31:1659–1674
DOI: 10.1002/nag



CONSTANT-RATE PUMPING WELL 1667

4. DISCUSSION OF RESULTS

4.1. Effect of well radius

The effect of well radius on the drawdown due to a constant-flux pumping can be clearly explored
by comparing the present solution with the Hantush solution [3]. The dimensionless drawdown
curves according to our solution and the Hantush solution [3] is plotted in Figure 2 for � = 0.1 when
�= 1 or 5. For comparison purpose, the axis of dimensionless time is chosen as �/�2(T t/Sr2)
which was also used in Hantush [3]. Figure 2 indicates that neglecting the effect of a well radius
may make significant error in estimated dimensionless drawdowns, especially � is small. For � = 1
(at a well), the differences of dimensionless drawdowns between two solutions are large when
�/�2<1 and very small when �/�2�100. For � = 5, the dimensionless drawdowns for the solutions
with and without considering the well radius are almost identical. In fact, both the dimensionless
drawdown curves approach Hantush’s equation at very large dimensionless time.

4.2. Effect of anisotropy

This section investigates the effect of the anisotropy for � = 0.1, � = 1, �1 = 4 and LD = 200
when � = 0.01, 0.1 or 1. The vertical flow occurs near a pumping well when the well is partially
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Figure 3. Dimensionless drawdown versus dimensionless time (�) for � = 0.1, � = 1, �1 = 4,
and LD = 200 when � = 0.01, 0.1 or 1.
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tribution for � = 10, � = 1, � = 0.1, B1 = 20, B2 = 180 and LD = 200. The dimensionless

patch thickness (�1) ranges from 1 (no patch) to 25.

penetrated. Therefore, the vertical hydraulic conductivity is an important parameter to be consid-
ered. For field problems, the ratio of vertical hydraulic conductivity to radial hydraulic conductivity
(�) ranges from 0.01 to 1. Figure 3 shows that the difference of dimensionless drawdowns is ap-
parent when � is large; in contrast, the difference of dimensionless drawdowns is small when � is
small, i.e. �<100. On the other hand, the effect of � on dimensionless drawdown is significant at
large dimensionless time. In addition, the slope of three curves is approximately identical when
��105. This result indicates that the vertical flow effect is noticeable when � is small. Obviously,
the erroneous results for a pumping-test data analysis performed in an anisotropic aquifer will be
made if � is assumed to be one.

4.3. Effect of patch thickness

The effect of dimensionless patch thickness on dimensionless drawdown distribution is displayed in
Figure 4. The curves are plotted for � = 10, � = 1, � = 0.1, B1 = 20, B2 = 180, and LD = 200 when
�1 ranges from 1 to 25. Note that the dimensionless patch thickness is equal to �1 − 1 and �1 = 1
represents no patch case. The permeability of the patch for this case is one order of magnitude
lower than that of a formation (�= 10). With a thicker patch zone, the presence of a patch zone is
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identifiable for a lower permeability. The dimensionless drawdowns for �1 = 2–25 are greater than
that of an uniform medium (�1 = 1) at early dimensionless time, reflecting the effect of a patch
zone. Obviously, without considering the presence of a patch for a two-zone aquifer system, the
predicted drawdown will be under-estimated, for a negative patch and over-estimated for a positive
patch. Notice that the slope of these dimensionless drawdown curves tends to equal that of an
uniform medium when ��104, implying that the patch effect diminishes at large dimensionless
time.

4.4. Effect of well partial penetration

When � = 0.1 or 10, Figure 5 depicts the relationship of dimensionless drawdown versus dimen-
sionless time for � = 1, � = 1, �1 = 4, LD = 200,�= 0.1, 0.4, 0.8 and 1.0. Note that �= 1 repre-
sents a fully penetrating well case. The dimensionless drawdown tends to increase rapidly with
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Figure 5. The plot of dimensionless drawdown versus dimensionless time for
� = 1, � = 1, �1 = 4, LD = 200,� = 0.1, 0.4, 0.8 and 1 when � = 0.1 or 10. The dot-
ted line represents the dimensionless time-drawdown curve for � = 0.1 and the solid

line represents the dimensionless time-drawdown curve for � = 10.
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dimensionless time and stabilize when dimensionless time is very large (��104 for � = 0.1 and
��102 for �= 10). The dimensionless drawdown with a partially penetrating well significantly
differs from that with a fully penetrating well. Obviously, the dimensionless drawdown increases
with decreasing � at the same dimensionless time. The effect of a well partial penetration increases
with dimensionless time. In addition, the effect of a well partial penetration on the drawdown with
a negative patch (�= 0.1) is larger than that with a positive patch (�= 10).

5. CONCLUSIONS

New Laplace-domain solutions had been developed for a constant pumping at a partially penetrating
well in a heterogeneous aquifer. The solutions were derived to account for the effects of the patch
thickness and well partial penetration on the drawdown distributions. The derived solution considers
the effects of well radius and provides appropriate mathematical models for the analyses of pumping
test data. An efficient numerical inversion approach is used for evaluating this Laplace-domain
solution. The results show that this solution can be used to investigate the effects of the patch
thickness, well radius and well partial penetration on the drawdown distributions. The solution
for the case with a well radius has shown to reduce to that presented by Hantush [3] if the well
radius is neglected. This study demonstrates that Hantush’s solution gives significant errors in the
drawdown when the observation well is close to a pumping well and/or the pumping time is very
small.

APPENDIX A: DERIVATIONS OF (10) AND (11)

The solutions of drawdown within the patch and formation zones are derived via Laplace transform
with respect to time variable t and the finite Fourier transform with respect to spatial variable z.
The appropriate finite Fourier transform is given by [25]

F[s(z)] = s̃(wn) =
∫ L

0
s(z) cos(wnz) dz, 0�z�L (A1)

where wn = n�/L , n = 0, 1, 2, . . . . The transform has following operational property:

F

{
d2s(z)

dz2

}
= (−1)n

ds(z)

dz

∣∣∣∣
z=L

− ds(z)

dz

∣∣∣∣
z=0

− w2
ns̃(wn) (A2)

Applying Laplace transform and the finite Fourier cosine transform, (1) and (2) give the following
subsidiary equations:

d2̃s1(r, wn, p)

dr2
+ 1

r

d̃s1(r, wn, p)

dr
= q21 s̃1(r, wn, p), rw�r�r1 (A3)

and

d2̃s2(r, wn, p)

dr2
+ 1

r

d̃s2(r, wn, p)

dr
= q22 s̃2(r, wn, p), r1�r<∞ (A4)

where p is the Laplace transform variable of time variable t, s̃ is the transformed drawdown,
q1 =√

�1w2
n + �1 p, and q2 =√

�2w2
n + �2 p.
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The transformed boundary conditions are

s̃2(∞, wn, p) = 0 (A5)

and

d̃s1(rw, wn, p)

dr
=− 1

p

Q

2�rw(b2 − b1)Kr1
F(b1, b2) (A6)

The continuity conditions required at the interface between the patch and formation zones are

s̃1(r1, wn, p) = s̃2(r1, wn, p) (A7)

and

d̃s1(r1, wn, p)

dr
= �

d̃s2(r1, wn, p)

dr
(A8)

The general solutions of (A3) and (A4) are

s̃1(r, wn, p) =C1 I0(q1r) + C2K0(q1r) (A9)

and

s̃2(r, wn, p) =C3 I0(q2r) + C4K0(q2r) (A10)

where C1,C2,C3 and C4 are the undetermined constants.
Substituting (A9) and (A10) into (A5)–(A8), one obtains

C1 = − 1

p

Q

2�rw(b2 − b1)Kr1

�1

�0
(A11)

C2 = − 1

p

Q

2�rw(b2 − b1)Kr1

�2

�0
(A12)

C3 = 0 (A13)

and

C4 =− 1

p

Q

2�rw(b2 − b1)Kr1

�

�0K0(q2r1)
(A14)

Consequently, the solutions of the drawdowns within the patch and formation zones can be obtained
by substituting the constants of (A11)–(A14) into (A9) and (A10) as

s̃1(r, wn, p) =− 1

p

Q

2�rw(b2 − b1)Kr1
F(b1, b2)

[
�1

�0
I0(q1r) + �2

�0
K0(q1r)

]
(A15)

and

s̃2(r, wn, p) =− 1

p

Q

2�rw(b2 − b1)Kr1
F(b1, b2)

�K0(q2r)

�0K0(q2r1)
(A16)
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Applying the inverse finite Fourier transform gives

s1(r, z, p) = Q

4�T2

[
1

p

2T2
rwT1

�3 I0(q3r) + �4K0(q3r)

�∞

]
+ Q

4�T2

1

p

4T2
(b2 − b1)rwT1

×
∞∑
n=1

[
�1

�0
I0(q1r) + �2

�0
K0(q1r)

]
F(b1, b2) cos(wnz) (A17)

and

s2(r, z, p) = Q

4�T2

[
1

p

2T2
rwT1

�5K0(q4r)

�∞K0(q1r1)

]
+ Q

4�T2

1

p

4T2
(b2 − b1)rwT1

×
∞∑
n=1

[
�K0(q2r)

�0K0(q2r1)

]
F(b1, b2) cos(wnz) (A18)

Equations (A17) and (A18) are, respectively, the Laplace-domain solutions for the drawdowns
within the patch and formation zones.

NOMENCLATURE

b1 lower z co-ordinate of well screen
b2 upper z co-ordinate of well screen
B b/rw
B ′ b′/rw
Kr hydraulic conductivity in a radial direction
Kz hydraulic conductivity in a vertical direction
L thickness of confined aquifer
LD L/rw
S storage coefficient
Ss specific storage
s drawdown distribution
T transmissivity
t time from the star of pumping
p Laplace variable
Q constant flow rate into or out the wellbore

q1
√

�1w2
n + �1 p

q2
√

�2w2
n + �2 p

q3
√

�1 p

q4
√

�2 p

q5
√

�w2
n + �p
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q6
√

�p
qnD qn × rw, n = 1, 2, . . . , 6
wnD n�/LD, n = 1, 2, . . .
r radial distance from the centreline of well
r1 outer radius of patch region
rw radius of the pumping well
wn n�/L , n = 0, 1, 2, . . .
z vertical distance from a lower impermeable layer
I0(u), K0(u) modified Bessel functions of the first and second kinds of order zero
I1(u), K1(u) modified Bessel functions of the first and second kinds of order one
� �1 I0(q1r1) + �2K0(q1r1)
�0 q1[�2K1(q1rw) − �1 I1(q1rw)]
�1 q1K0(q2r1)K1(q1r1) − �q2K0(q1r1)K1(q2r1)
�2 q1 I1(q1r1)K0(q2r1) + �q2 I0(q1r1)K1(q2r1)
�3 q3K0(q4r1)K1(q3r1) − �q4K0(q3r1)K1(q4r1)
�4 q3 I1(q3r1)K0(q4r1) + �q4 I0(q3r1)K1(q4r1)
�5 �3 I0(q3r1) + �4K0(q3r1)
�∞ q3[�4K1(q3rw) − �3 I1(q3rw)]
�D �1D(q1D�1) + �2DK0(q1D�1)
�0D q1D[�2DK1(q1D) − �1D I1(q1D)]
�1D q1DK0(q2D�1)K1(q1D�1) − �q2DK0(q1D�1)K1(q2D�1)
�2D q1D I1(q1D�1)K0(q2D�1) + �q2D I0(q1D�1)K1(q2D�1)
�3D q3DK0(q4D�1)K1(q3D�1) − �q4DK0(q3D�1)K1(q4D�1)
�4D q3D I1(q3D�1)K0(q4D�1) + �q4D I0(q3D�1)K1(q4D�1)
�5D �3D I0(q3D�1) + �4DK0(q3D�1)
�∞D q3D[�4DK1(q3D) − �3D I1(q3D)]
�n Kzn/Krn, n = 1, 2
�n SSn/Krn, n = 1, 2
� Kr2/Kr1

� r/rw
� s(4�T )/Q

� Krt/Ssr2w
� (B2 − B1)/LD

F(b1, b2) [sin(wnb2) − sin(wnb1)]/wn

F(b′
1, b

′
2) [sin(wnb′

2) − sin(wnb′
1)]/wn

Subscripts

D dimensionless
1 patch zone
2 formation zone
w pumping well
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