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Preface

Fluid mechanics is a traditional cornerstone in the education of civil engineers. As numerous
books on this subject suggest, it is possible to introduce fluid mechanics to students in many
ways. This text is an outgrowth of lectures I have given to civil engineering students at the
University of Canterbury during the past 24 years. It contains a blend of what most teachers
would call basic fluid mechanics and applied hydraulics. 

Chapter 1 contains an introduction to fluid and flow properties together with a review of vector
calculus in preparation for chapter 2, which contains a derivation of the governing equations of
fluid motion. Chapter 3 covers the usual topics in fluid statics – pressure distributions, forces on
plane and curved surfaces, stability of floating bodies and rigid body acceleration of fluids.
Chapter 4 introduces the use of control volume equations for one-dimensional flow calculations.
Chapter 5 gives an overview for the problem of solving partial differential equations for velocity
and pressure distributions throughout a moving fluid and chapters 6–9 fill in the details of
carrying out these calculations for irrotational flows, laminar and turbulent flows, boundary-layer
flows, secondary flows and flows requiring the calculation of lift and drag forces. Chapter 10,
which introduces dimensional analysis and model similitude, requires a solid grasp of chapters
1–9 if students are to understand and use effectively this very important tool for experimental
work. Chapters 11–14 cover some traditionally important application areas in hydraulic
engineering. Chapter 11 covers steady pipe flow, chapter 12 covers steady open channel flow,
chapter 13 introduces the method of characteristics for solving waterhammer problems in
unsteady pipe flow, and chapter 14 builds upon material in chapter 13 by using characteristics
to attack the more difficult problem of unsteady flow in open channels. Throughout, I have tried
to use mathematics, experimental evidence and worked examples to describe and explain the
elements of fluid motion in some of the many different contexts encountered by civil engineers.

The study of fluid mechanics requires a subtle blend of mathematics and physics that many
students find difficult to master. Classes at Canterbury tend to be large and sometimes have as
many as a hundred or more students. Mathematical skills among these students vary greatly, from
the very able to mediocre to less than competent. As any teacher knows, this mixture of student
backgrounds and skills presents a formidable challenge if students with both stronger and weaker
backgrounds are all to obtain something of value from a course. My admittedly less than perfect
approach to this dilemma has been to emphasize both physics and problem solving techniques.
For this reason, mathematical development of the governing equations, which is started in
Chapter 1 and completed in Chapter 2, is covered at the beginning of our first course without
requiring the deeper understanding that would be expected of more advanced students.

A companion volume containing a set of carefully chosen homework problems, together with
corresponding solutions, is an important part of courses taught from this text. Most students can
learn problem solving skills only by solving problems themselves, and I have a strongly held
belief that this practice is greatly helped when students have access to problem solutions for
checking their work and for obtaining help at difficult points in the solution process. A series of
laboratory experiments is also helpful. However, courses at Canterbury do not have time to
include a large amount of experimental work. For this reason, I usually supplement material in
this text with several of Hunter Rouse's beautifully made fluid-mechanics films.



vi

This book could not have been written without the direct and indirect contributions of a great
many people. Most of these people are part of the historical development of our present-day
knowledge of fluid mechanics and are too numerous to name. Others have been my teachers,
students and colleagues over a period of more than 30 years of studying and teaching fluid
mechanics. Undoubtedly the most influential of these people has been my former teacher,
Hunter Rouse. However, more immediate debts of gratitude are owed to Mrs Pat Roberts, who
not only encouraged me to write the book but who also typed the final result, to Mrs Val Grey,
who drew the large number of figures, and to Dr R H Spigel, whose constructive criticism
improved the first draft in a number of places. Finally, I would like to dedicate this book to the
memory of my son, Steve.

Bruce Hunt
Christchurch
New Zealand
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Figure 1.1  Use of a floating board to apply shear stress to a reservoir surface.

Chapter 1

Introduction

A fluid is usually defined as a material in which movement occurs continuously under the
application of a tangential shear stress. A simple example is shown in Figure 1.1, in which a
timber board floats on a reservoir of water.

If a force,  is applied to one end of the board, then the board transmits a tangential shear stress,F,
 to the reservoir surface. The board and the water beneath will continue to move as long as �, F

and  are nonzero, which means that water satisfies the definition of a fluid. Air is another fluid�
that is commonly encountered in civil engineering applications, but many liquids and gases are
obviously included in this definition as well.

You are studying fluid mechanics because fluids are an important part of many problems that a
civil engineer considers. Examples include water resource engineering, in which water must be
delivered to consumers and disposed of after use, water power engineering, in which water is
used to generate electric power, flood control and drainage, in which flooding and excess water
are controlled to protect lives and property, structural engineering, in which wind and water
create forces on structures, and environmental engineering, in which an understanding of fluid
motion is a prerequisite for the control and solution of water and air pollution problems.

Any serious study of fluid motion uses mathematics to model the fluid. Invariably there are
numerous approximations that are made in this process. One of the most fundamental of these
approximations is the assumption of a continuum. We will let fluid and flow properties such as
mass density, pressure and velocity be continuous functions of the spacial coordinates. This
makes it possible for us to differentiate and integrate these functions. However an actual fluid
is composed of discrete molecules and, therefore, is not a continuum. Thus, we can only expect
good agreement between theory and experiment when the experiment has linear dimensions that
are very large compared to the spacing between molecules. In upper portions of the atmosphere,
where air molecules are relatively far apart, this approximation can place serious limitations on
the use of mathematical models. Another example, more relevant to civil engineering, concerns
the use of rain gauges for measuring the depth of rain falling on a catchment. A gauge can give
an accurate estimate only if its diameter is very large compared to the horizontal spacing between
rain droplets. Furthermore, at a much larger scale, the spacing between rain gauges must be small
compared to the spacing between rain clouds. Fortunately, the assumption of a continuum is not
usually a serious limitation in most civil engineering problems.
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* A Newton, N, is a derived unit that is related to a kg through Newton's second law, F 
 ma .
Thus, N 
 kg 	 m /s 2 .

� � µ
du
dy

(1.1)

Figure 1.2  A velocity field in
which  changes only with theu
coordinate measured normal to
the direction of u .

� � µ /� (1.2)

Fluid Properties

The mass density,  is the fluid mass per unit volume and has units of kg/m3. Mass density is�,
a function of both temperature and the particular fluid under consideration. Most applications
considered herein will assume that  is constant. However, incompressible fluid motion can�
occur in which  changes throughout a flow. For example, in a problem involving both fresh and�
salt water, a fluid element will retain the same constant value for  as it moves with the flow.�
However, different fluid elements with different proportions of fresh and salt water will have
different values for  and  will not have the same constant value throughout the flow. Values�, �
of  for some different fluids and temperatures are given in the appendix.�

The dynamic viscosity,  has units of * and is the constant ofµ , kg / (m � s ) � N � s /m 2

proportionality between a shear stress and a rate of deformation. In a Newtonian fluid, µ is a
function only of the temperature and the particular fluid under consideration. The problem of
relating viscous stresses to rates of fluid deformation is relatively difficult, and this is one of the
few places where we will substitute a bit of hand waving for mathematical and physical logic.
If the fluid velocity,  depends only upon a single coordinate,  measured normal to  asu , y , u ,
shown in Figure 1.2, then the shear stress acting on a plane normal to the direction of  is giveny
by

Later in the course it will be shown that the velocity in the
water beneath the board in Figure 1.1 varies linearly from
a value of zero on the reservoir bottom to the board
velocity where the water is in contact with the board.
Together with Equation (1.1) these considerations show
that the shear stress,  in the fluid (and on the board�,
surface) is a constant that is directly proportional to the
board velocity and inversely proportional to the reservoir
depth. The constant of proportionality is  In manyµ .
problems it is more convenient to use the definition of
kinematic viscosity

in which the kinematic viscosity,  has units of m2/s.�,
Values of  and  for some different fluids andµ �
temperatures are given in the appendix.
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Figure 1.3  Horizontal pressure and
surface tension force acting on half
of a spherical rain droplet.

�p�r 2
� �2�r (1.3)

�p �
2�
r

(1.4)

�p 2r � 2� (1.5)

�p �
�

r
(1.6)

�p � �
1
r1

�
1
r2

(1.7)

Surface tension, �, has units of  and is a force per unit arc length created on anN /m � kg /s 2

interface between two immiscible fluids as a result of molecular attraction. For example, at an
air-water interface the greater mass of water molecules causes water molecules near and on the
interface to be attracted toward each other with greater forces than the forces of attraction
between water and air molecules. The result is that any curved portion of the interface acts as
though it is covered with a thin membrane that has a tensile stress �. Surface tension allows a
needle to be floated on a free surface of water or an insect to land on a water surface without
getting wet.

For an example, if we equate horizontal pressure and
surface tension forces on half of the spherical rain droplet
shown in Figure 1.3, we obtain

in which  = pressure difference across the interface.�p
This gives the following result for the pressure difference:

If instead we consider an interface with the shape of a half circular cylinder, which would occur
under a needle floating on a free surface or at a meniscus that forms when two parallel plates of
glass are inserted into a reservoir of liquid, the corresponding force balance becomes

which gives a pressure difference of

A more general relationship between  and � is given by�p

in which  and  are the two principal radii of curvature of the interface. Thus, (1.4) hasr1 r2
 while (1.6) has  and  From these examples we conclude that (a)r1 � r2 � r r1 � r r2 � � .

pressure differences increase as the interface radius of curvature decreases and (b) pressures are
always greatest on the concave side of the curved interface. Thus, since water in a capillary tube
has the concave side facing upward, water pressures beneath the meniscus are below atmospheric
pressure. Values of � for some different liquids are given in the appendix.

Finally, although it is not a fluid property, we will mention the “gravitational constant” or
“gravitational acceleration”,  which has units of m/s2. Both these terms are misnomers becauseg ,
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* One exception occurs in the appendix, where water vapour pressures are given in kPa absolute. They
could, however, be referenced to atmospheric pressure at sea level simply by subtracting from each
pressure the vapour pressure for a temperature of 100(C (101.3 kPa).

W � Mg (1.8)

g � 9.81 m/s 2 (1.9)

 is not a constant and it is a particle acceleration only if gravitational attraction is the sole forceg
acting on the particle. (Add a drag force, for example, and the particle acceleration is no longer

) The definition of  states that it is the proportionality factor between the mass, , andg . g M
weight,  of an object in the earth's gravitational field.W ,

Since the mass remains constant and  decreases as distance between the object and the centreW
of the earth increases, we see from (1.8) that  must also decrease with increasing distance fromg
the earth's centre. At sea level  is given approximately byg

which is sufficiently accurate for most civil engineering applications.

Flow Properties

Pressure,  is a normal stress or force per unit area. If fluid is at rest or moves as a rigid bodyp ,
with no relative motion between fluid particles, then pressure is the only normal stress that exists
in the fluid. If fluid particles move relative to each other, then the total normal stress is the sum
of the pressure and normal viscous stresses. In this case pressure is the normal stress that would
exist in the flow if the fluid had a zero viscosity. If the fluid motion is incompressible, the
pressure is also the average value of the normal stresses on the three coordinate planes.

Pressure has units of  and in fluid mechanics a positive pressure is defined to be aN /m 2
� Pa ,

compressive stress. This sign convention is opposite to the one used in solid mechanics, where
a tensile stress is defined to be positive. The reason for this convention is that most fluid
pressures are compressive. However it is important to realize that tensile pressures can and do
occur in fluids. For example, tensile stresses occur in a water column within a small diameter
capillary tube as a result of surface tension. There is, however, a limit to the magnitude of
negative pressure that a liquid can support without vaporizing. The vaporization pressure of a
given liquid depends upon temperature, a fact that becomes apparent when it is realized that
water vaporizes at atmospheric pressure when its temperature is raised to the boiling point.

Pressure are always measured relative to some fixed datum. For example, absolute pressures are
measured relative to the lowest pressure that can exist in a gas, which is the pressure in a perfect
vacuum. Gage pressures are measured relative to atmospheric pressure at the location under
consideration, a process which is implemented by setting atmospheric pressure equal to zero.
Civil engineering problems almost always deal with pressure differences. In these cases, since
adding or subtracting the same constant value to pressures does not change a pressure difference,
the particular reference value that is used for pressure becomes immaterial. For this reason we
will almost always use gage pressures.*
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�x �y � �n �x 2
� �y 2 cos� �

�

2
�x�y ax (1.10)

cos� �
�y

�x 2
� �y 2

(1.11)

�x � �n �
�

2
�x ax (1.12)

Figure 1.4  Normal stress forces
acting on a two-dimensional
triangular fluid element.

�x � �n (1.13)

�y � �n (1.14)

If no shear stresses occur in a fluid, either because the fluid has no relative motion between
particles or because the viscosity is zero, then it is a simple exercise to show that the normal
stress acting on a surface does not change as the orientation of the surface changes. Consider, for
example, an application of Newton's second law to the two-dimensional triangular element of
fluid shown in Figure 1.4, in which the normal stresses  and  have all been assumed�x , �y �n
to have different magnitudes. Thus  gives�Fx � max

in which  acceleration component in the  direction. Since the triangle geometry givesax � x

we obtain after inserting (1.11) in (1.10) for cos� and dividing by �y

 Thus, letting  gives�x � 0

A similar application of Newton's law in the  directiony
gives

Therefore, if no shear stresses occur, the normal stress acting on a surface does not change as the
surface orientation changes. This result is not true for a viscous fluid motion that has finite
tangential stresses. In this case, as stated previously, the pressure in an incompressible fluid
equals the average value of the normal stresses on the three coordinate planes.
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Figure 1.5  The position vector, r, and pathline of a fluid particle.

V �
dr
dt

�
dx
dt

i �
dy
dt

j �
dz
dt

k (1.15)

V � u i � v j � w k (1.16)

u �
dx
dt

v �
dy
dt

w �
dz
dt

(1.17 a, b, c)

V �
dr
dt

�
r (t � � t ) � r (t )

� t
�

�s e t

� t
� V e t (1.18)

Let  = time and  be the position vector of a moving fluid particle,t r (t ) � x (t ) i � y (t ) j � x (t )k
as shown in Figure 1.5. Then the particle velocity is

If we define the velocity components to be

then (1.15) and (1.16) give

If  = unit tangent to the particle pathline, then the geometry shown in Figure 1.6 allows us toe t
calculate

in which  = arc length along the pathline and  particle speed. Thus, thes V � ds /dt � � V � �
velocity vector is tangent to the pathline as the particle moves through space.
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Figure 1.6  Relationship between the position vector,
arc length and unit tangent along a pathline.

Figure 1.7  The velocity field for a collection of fluid particles at one instant in time.

V � 	 dr (1.19)

It is frequently helpful to view, at a particular value of  the velocity vector field for a collectiont ,
of fluid particles, as shown in Figure 1.7.

In Figure 1.7 the lengths of the directed line segments are proportional to  and the line� V � � V ,
segments are tangent to the pathlines of each fluid particle at the instant shown. A streamline is
a continuous curved line that, at each point, is tangent to the velocity vector   at a fixed valueV
of  The dashed line  is a streamline, and, if  = incremental displacement vector along t . AB dr AB ,
then

in which  and 	 is the scalar proportionality factor between  and dr � dx i � dy j � dz k � V � � dr � .
[Multiplying the vector  by the scalar 	 does not change the direction of  and (1.19)dr dr ,
merely requires that  and  have the same direction. Thus, 	 will generally be a function ofV dr
position along the streamline.] Equating corresponding vector components in (1.19) gives a set
of differential equations that can be integrated to calculate streamlines.
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dx
u

�
dy
v

�
dz
w

�
1
	

(1.20)

a �
dV
dt

(1.21)

a �
dV
dt

e t � V
de t

dt
(1.22)

de t

dt
�

e t t � � t � e t (t )

� t
�

1
R

�s
� t

en �
V
R

e n (1.23)

a �
dV
dt

e t �
V 2

R
e n (1.24)

There is no reason to calculate the parameter 	 in applications of (1.20). Time,  is treated ast ,
a constant in the integrations.

Steady flow is flow in which the entire vector velocity field does not change with time. Then the
streamline pattern will not change with time, and the pathline of any fluid particle coincides with
the streamline passing through the particle. In other words, streamlines and pathlines coincide
in steady flow. This will not be true for unsteady flow.

The acceleration of a fluid particle is the first derivative of the velocity vector.

When  changes both its magnitude and direction along a curved path, it will have componentsV
both tangential and normal to the pathline. This result is easily seen by differentiating (1.18) to
obtain

The geometry in Figure 1.8 shows that

in which  radius of curvature of the pathline and  unit normal to the pathline (directedR � en �

through the centre of curvature). Thus, (1.22) and (1.23) give

Equation (1.24) shows that  has a tangential component with a magnitude equal to  anda dV /dt
a normal component,  that is directed through the centre of pathline curvature.V 2 /R ,
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Figure 1.8  Unit tangent geometry along a pathline.
 so that �e t (t � � t ) � � �e t (t )� � 1 � e t t � � t � e t (t ) � � 1 ��

dF (t )
dt

�
F (t � � t ) � F (t )

� t
as � t � 0 (1.25)

�F (x , y , z , t )
�y

�
F (x , y � �y , z , t ) � F (x , y , z , t )

�y
as �y � 0 (1.26)

�2F
�x�y

�
�2F
�y�x

(1.27)

Review of Vector Calculus

When a scalar or vector function depends upon only one independent variable, say  then at ,
derivative has the following definition:

However, in almost all fluid mechanics problems  and  depend upon more than onep V
independent variable, say  are independent if we can change thex , y , z and t . [x , y , z and t
value of any one of these variables without affecting the value of the remaining variables.] In this
case, the limiting process can involve only one independent variable, and the remaining
independent variables are treated as constants. This process is shown by using the following
notation and definition for a partial derivative:

In practice, this means that we calculate a partial derivative with respect to  by differentiatingy
with respect to  while treating  as constants.y x , z and t

The above definition has at least two important implications. First, the order in which two partial
derivatives are calculated will not matter.
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�F (x , y , z , t )
�y

� G (x , y , z , t ) (1.28)

F (x , y , z , t ) � � G (x , y , z , t ) dy � C (x , z , t ) (1.29)

� � i �

�x
� j �

�y
� k �

�z
(1.30)

�
 � i �

�x

� j �

�y

� k �


�z
(1.31)

�
~

�
 d� � �
S


 e n dS
(1.32)

Second, integration of a partial derivative

in which  is a specified or given function is carried out by integrating with respect to  whileG y
treating  as constants. However, the integration “constant”,  may be a function ofx , z and t C ,
the variables that are held constant in the integration process. For example, integration of (1.28)
would give

in which integration of the known function  is carried out by holding  constant, andG x , z and t
 is an unknown function that must be determined from additional equations.C (x , z , t )

There is a very useful definition of a differential operator known as del:

Despite the notation, del  is not a vector because it fails to satisfy all of the rules for vector�

algebra. Thus, operations such as dot and cross products cannot be derived from (1.30) but must
be defined for each case.

The operation known as the gradient is defined as

in which 
 is any scalar function. The gradient has several very useful properties that are easily
proved with use of one form of a very general theorem known as the divergence theorem

in which  is a volume enclosed by the surface  with an outward normal � S en .
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Figure 1.9  Sketch used for derivation of Equation (1.32).

�
~

i �

�x

d� � ��i�
x2

x1

�


�x
dx dy dz � ��

S2

i 
 x2 , y , z dy dz

� ��
S1

i 
 x1 , y , z dy dz

(1.33)

�
~

i �

�x

d� � �
S2


e n dS � �
S1


 en dS (1.34)

�
~

� 
d � � �
6

i
1 �
Si


e n dS � �
S


en dS (1.35)

F p � � �
S

p e n dS
(1.36)

A derivation of (1.32) is easily carried out for the rectangular prism shown in Figure 1.9.

Since  is the outward normal on  and  on  (1.33) becomesi S2 � i S1 ,

Similar results are obtained for the components of (1.31) in the  and  directions, and addingj k
the three resulting equations together gives

in which  is the sum of the six plane surfaces that bound  Finally, if a more general shapeS � .
for  is subdivided into many small rectangular prisms, and if the equations for each prism are�
added together, then (1.32) results in which  is the external boundary of  (ContributionsS � .
from the adjacent internal surfaces  cancel in the sum since  but )Si and Sj 
i � 
j eni

� �e nj
.

One easy application of (1.32) is the calculation of the pressure force,  on a tiny fluidF p ,
element. Since  = normal stress per unit area and is positive for compression, we calculatep
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F p � � �
~

�p d � � � � � p
(1.37)

Figure 1.10  A volume chosen for an application of (1.32) in which
all surfaces are either parallel or normal to surfaces of constant 
.

� � 
 � 
1 S1 e n1
� 
2 S2 en2 (1.38)

� � 
 � S1 en1

1 � 
2 (1.39)

� 
 � en1


1 � 
2

�n
� e n1

d

dn

(1.40)

However, use of (1.32) with  substituted for 
 givesp

Thus,  is the pressure force per unit volume acting on a tiny fluid element.��p

Further progress in the interpretation of  can be made by applying (1.32) to a tiny volume�

whose surfaces are all either parallel or normal to surfaces of constant 
, as shown in
Figure 1.10. Since 
 has the same distribution on  but  contributions fromS3 and S4 en3

� �e n4
,

 cancel and we obtainS3 and S4

But  so that (1.38) becomesS1 � S2 and en2
� �e n1

Since  in which  = thickness of  in the direction perpendicular to surfaces of� � S1�n �n �
constant 
, division of (1.39) by  gives�
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Thus,  has a magnitude equal to the maximum spacial derivative of 
 and is perpendicular�

to surfaces of constant 
 in the direction of increasing 
.

Figure 1.11  Geometry used for the calculation of the directional derivative.

�̄
 � ên
d

dn

� ên


1 � 
3

�n
(1.41)

e t � � 
 � e t � e n


1 � 
3

�n
� cos�


1 � 
3

�n
(1.42)

e t � � 
 �


1 � 
3

�s
�

d

ds

(1.43)

Application of the preceding result to (1.37) shows that the pressure force per unit volume,
has a magnitude equal to the maximum spacial derivative of  (The derivative of  in the�p , p . p

direction normal to surfaces of constant pressure.) Furthermore, because of the negative sign on
the right side of (1.37), this pressure force is perpendicular to the surfaces of constant pressure
and is in the direction of decreasing pressure.

Finally, a simple application of (1.40) using the geometry shown in Figure 1.11 will be used to
derive a relationship known as the directional derivative. Equation (1.40) applied to Figure 1.11
gives the result

If  is a unit vector that makes an angle � with  then dotting both sides of (1.41) with e t en , e t
gives

However  and (1.42) gives the result�n � �s cos� ,
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In words, (1.43) states that the derivative of 
 with respect to arc length in any direction is
calculated by dotting the gradient of 
 with a unit vector in the given direction.

V � � 
 (1.44)

e t � V �
d

ds

(1.45)

Figure 1.12  Streamlines and surfaces of constant potential for irrotational flow.

Equation (1.43) has numerous applications in fluid mechanics, and we will use it for both control
volume and differential analyses. One simple application will occur in the study of irrotational
flow, when we will assume that the fluid velocity can be calculated from the gradient of a
velocity potential function, 
.

Thus, (1.44) and (1.40) show that  is perpendicular to surfaces of constant 
 and is in theV
direction of increasing 
. Since streamlines are tangent to  this means that streamlines areV ,
perpendicular to surfaces of constant 
, as shown in Figure 1.12. If  is a unit vector in anye t
direction and  is arc length measured in the direction of  then (1.44) and (1.43) gives e t ,

Thus, the component of  in any direction can be calculated by taking the derivative of 
 in thatV
direction. If  is tangent to a streamline, then  is the velocity magnitude,  If  ise t d
 /ds V . e t
normal to a streamline, then  along this normal curve (which gives another proof thatd
 /ds � 0

 is constant along a curve perpendicular to the streamlines). If  makes any angle between 0e t
and  with a streamline, then (1.45) allows us to calculate the component of  in the� /2 V
direction of e t .



Chapter 1 — Introduction 1.15

� � V � i �

�x
� j �

�y
� k �

�z
� u i � v j � wk �

�u
�x

�
�v
�y

�
�w
�z

(1.46)

V � � � u i � vj � w k � i �

�x
� j �

�y
� k �

�z
� u

�

�x
� v

�

�y
� w

�

�z
(1.47)

�
~

� � V d � � �
S

V � en dS
(1.48)

� � V �
1
� �

S

V � e n dS (1.49)

� � V �
�u
�x

�
�v
�y

�
�w
�z

� 0 (1.50)

The divergence of a vector function is defined for (1.30) in a way that is analogous to the
definition of the dot product of two vectors. For example, the divergence of  isV

There is another definition we will make that allows  to be dotted from the left with a vector:�

Equations (1.46) and (1.47) are two entirely different results, and, since two vectors A and B
must satisfy the law  we now see that  fails to satisfy one of the fundamentalA � B � B � A , �

laws of vector algebra. Thus, as stated previously, results that hold for vector algebra cannot
automatically be applied to manipulations with del.

The definition (1.46) can be interpreted physically by making use of a second form of the
divergence theorem:

in which  is a volume bounded externally by the closed surface  is the outward normal� S , en
on S and  is any vector function. If  is the fluid velocity vector, then  gives theV V V � en
component of  normal to  with a sign that is positive when  is out of  and negative when V S V � V
is into  The product of this normal velocity component with  gives a volumetric flow rate� . dS
with units of m3/s. Thus, the right side of (1.48) is the net volumetric flow rate out through S
since outflows are positive and inflows negative in calculating the sum represented by the surface
integral. If (1.48) is applied to a small volume, then the divergence of  is given byV

Equation (1.49) shows that the divergence of  is the net volumetric outflow per unit volumeV
through a small closed surface surrounding the point where  is calculated. If the flow is� � V
incompressible, this net outflow must be zero and we obtain the “continuity” equation
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�
~

�u
�x

d� � ���
x2

x1

�u
�x

dx dy dz � ��
S2

u x2 , y , z dy dz � ��
S1

u x1 , y , z dy dz (1.51)

�
~

�u
�x

d � � �
S2

u i � e n dS � �
S1

u i � en dS � �
S

u i � e n dS (1.52)

�
~

�u
�x

�
�v
�y

�
�w
�z

d � � �
S

u i � v j � wk � en dS (1.53)

� × V �

������������

������������

i j k

�

�x
�

�y
�

�z

u v w

�
�w
�y

�
�v
�z

i �
�w
�x

�
�u
�z

j

�
�v
�x

�
�u
�y

k
(1.54)

�v
�x

k �

v2 � v1

�x
k � �z k (1.55)

A derivation of (1.48) can be obtained by using Figure 1.9 to obtain

But  is the outward normal. Thus, (1.51)i � en � 1 on S2 and i � e n � �1 on S1 since en
becomes

in which use has been made of the fact that  on every side of the prism except  and i � en � 0 S1 S2 .

Similar results can be obtained for  and adding the resulting three�~ �v/�y d � and �
~

�w /�z d � ,
equations together gives

Equation (1.53) holds for arbitrary functions  and is clearly identical with (1.48). Theu , v and w
extension to a more general volume is made in the same way that was outlined in the derivation
of (1.32).

In analogy with a cross product of two vectors the curl of a vector is defined in the following
way:

If we let  be the fluid velocity vector, then a physical interpretation of (1.54) can be made withV
the use of Figure 1.13. Two line segments of length  are in a plane parallel to the�x and �y

 plane  and have their initial locations shown with solid lines. An instant later these linesx , y
have rotated in the counterclockwise direction and have their locations shown with dashed lines.
The angular velocity of the line  in the  direction is�x k
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Figure 1.13  Sketch for a physical interpretation of � × V .

�
�u
�y

k � �

u4 � u3

�y
k �

u3 � u4

�y
k � �z k (1.56)

�v
�x

�
�u
�y

k � 2 �z k (1.57)

� × V � 2 � (1.58)

� × � 
 � 0 (1.59)

and the angular velocity of the line  in the  direction is�y k

in which the right sides of (1.55) and (1.56) are identical if the fluid rotates as a rigid body. Thus,
the  component in (1.54) becomesk

if rigid-body rotation occurs. Similar interpretation can be made for  and  components ofi j
(1.54) to obtain

in which  is the angular velocity vector. Often  is referred to in fluid mechanics as the� � × V
vorticity vector.

A very useful model of fluid motion assumes that  Equation (1.58) shows that this� × V � 0.
is equivalent to setting  which gives rise to the term “irrotational” in describing these� � 0,
flows. In an irrotational flow, if the line  in Figure 1.13 has an angular velocity in the�x
counterclockwise direction, then the line  must have the same angular velocity in the�y
clockwise direction so that  Many useful flows can be modelled with this approximation.�z � 0.

Some other applications of the curl come from the result that the curl of a gradient always
vanishes,

in which 
 is any scalar function. Equation (1.59) can be proved by writing
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� × � 
 �

����������������

����������������

i j k

�

�x
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�y
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�z
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�x
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�y
�


�z

�
�2


�y�z
�
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�x�z
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�2


�z�x
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�
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�x�y
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�2


�y�x
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(1.60)

� × V � � × � 
 (1.61)

� p � �� g k (1.62)

0 � � × ��gk � �g
��

�y
i � g

��

�x
j (1.63)

��

�y
� 0 (1.64)

��

�x
� 0 (1.65)

Since  are independent variables, (1.60) and (1.27) can be used to complete the proofx , y and z
of (1.59).

When velocities are generated from a potential function, as shown in (1.44), then taking the curl
of both sides of (1.44) gives

Thus, (1.58), (1.59) and (1.61) show that the angular velocity vanishes for a potential flow, and
a potential flow is irrotational.

For another application, consider the equation that we will derive later for the pressure variation
in a motionless fluid. If  points upward, this equation isk

Equations (1.40) and (1.62) show that surfaces of constant pressure are perpendicular to  andk
that pressure increases in the  direction. Equation (1.62) gives three scalar partial differential�k
equations for the calculation of  However, there is a compatibility condition that must bep .
satisfied, or else these equations will have no solution for  Since  taking the curlp . � × � p � 0,
of both sides of (1.62) shows that this compatibility condition is

Dotting both sides of (1.63) with  givesi

and dotting both sides of (1.63) with  givesj

Equations (1.64) and (1.65) show that � cannot change with  if (1.62) is to have ax and y
solution for  Thus, � may be a constant or may vary with  and/or  and a solution of (1.62)p . z t ,
for  will exist.p
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Chapter 2

The Equations of Fluid Motion

In this chapter we will derive the general equations of fluid motion. Later these equations will
be specialized for the particular applications considered in each chapter. The writer hopes that
this approach, in which each specialized application is treated as a particular case of the more
general equations, will lead to a unified understanding of the physics and mathematics of fluid
motion.

There are two fundamentally different ways to use the equations of fluid mechanics in
applications. The first way is to assume that pressure and velocity components change with more
than one spacial coordinate and to solve for their variation from point to point within a flow. This
approach requires the solution of a set of partial differential equations and will be called the
“differential equation” approach. The second way is to use an integrated form of these differential
equations to calculate average values for velocities at different cross sections and resultant forces
on boundaries without obtaining detailed knowledge of velocity and pressure distributions within
the flow. This will be called the “control volume” approach. We will develop the equations for
both of these methods of analysis in tandem to emphasize that each partial differential equation
has a corresponding control volume form and that both of these equations are derived from the
same principle.

Continuity Equations

Consider a volume,  bounded by a fixed surface,  in a flow. Portions of  may coincide� , S , S
with fixed impermeable boundaries but other portions of  will not. Thus, fluid passes freelyS
through at least some of  without physical restraint, and an incompressible flow must haveS
equal volumetric flow rates entering and leaving  through  This is expressed mathematically� S .
by writing

in which  = outward normal to  Thus, (2.1) states that the net volumetric outflow through en S . S
is zero, with outflows taken as positive and inflows taken as negative. Equation (2.1) is the
control volume form of a continuity equation for incompressible flow.

The partial differential equation form of (2.1) is obtained by taking  to be a very small volume�

in the flow. Then an application of the second form of the divergence theorem, Eq. (1.49), allows
(2.1) to be rewritten as
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� � V � 0 (2.3)

�u
�x

�
�v
�y

�
�w
�z

� 0 (2.4)

�
S

� V � e n dS � �
d
dt �

~

� d � (2.5)

�
~

� � �V �
��

�t
d � � 0 (2.6)

� � � V �
��

�t
� 0 (2.7)

� �u
�x

�
� �v
�y

�
� �w
�z

�
��

�t
� 0 (2.8)

Since  can always be chosen small enough to allow the integrand to be nearly constant in � � ,
Eq. (2.2) gives

for the partial differential equation form of (2.1). If we set  then theV � u i � v j � wk ,
unabbreviated form of (2.1) is

A conservation of mass statement for the same control volume used to derive (2.1) states that the
net mass flow rate out through  must be balanced by the rate of mass decrease within S � .

Equation (2.5) is a control volume equation that reduces to (2.1) when � is everywhere equal to
the same constant. However, as noted in the previous chapter, some incompressible flows occur
in which � changes throughout � .

The partial differential equation form of (2.5) follows by applying (2.5) and the divergence
theorem to a small control volume to obtain

in which the ordinary time derivative in (2.5) must be written as a partial derivative when moved
within the integral. (  is a function of  only, but � is a function of both  and the spacial�

~
� d � t t

coordinates.) Since (2.6) holds for an arbitrary choice of  we obtain the following partial� ,
differential equation form of (2.5):

The unabbreviated form of (2.7) is

Again we see that (2.7) reduces to (2.3) if � is everywhere equal to the same constant.
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* It has been assumed in deriving (2.3), (2.7) and (2.12) that  is the same velocity in all three equations. InV̄
other words, it has been assumed that mass and material velocities are identical. In mixing problems, such as
problems involving the diffusion of salt or some other contaminant into fresh water, mass and material
velocities are different. In these problems (2.3) is used for incompressible flow and (2.7) and (2.12) are
replaced with a diffusion or dispersion equation. Yih (1969) gives a careful discussion of this subtle point.

� � � V � V � �� �
��

�t
� 0 (2.9)

0 � V � �� �
��

�t
�

dx
dt

��

�x
�
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dt

��

�y
�

dz
dt

��

�z
�

��

�t
(2.10)

D
Dt

� V � � �
�

�t
(2.11)

D�

Dt
� 0 (2.12)

u
��

�x
� v

��

�y
� w

��

�z
�

��

�t
� 0 (2.13)

Now we can consider the consequence of applying (2.3) and (2.7) simultaneously to an
incompressible heterogeneous flow, such as a flow involving differing mixtures of fresh and salt
water. Expansion of  in either (2.7) or (2.8) gives� � �V

The first term in (2.9) vanishes by virtue of (2.3), and use of (1.17 a, b, c) in (2.9) gives

The four terms on the right side of (2.10) are the result of applying the chain rule to calculate
 in which  with  and  equal to the coordinates of a movingd� /dt � � � (x , y , z , t ) x (t ) , y (t ) z (t )

fluid particle. This time derivative following the motion of a fluid particle is called either the
substantial or material derivative and is given the special notation

Thus, (2.9) can be written in the compact form

or in the unabbreviated form

Equation (2.12), or (2.13), states that the mass density of a fluid particle does not change with
time as it moves with an incompressible flow. Equation (2.5) is the only control volume form of
(2.12), and the partial differential equations (2.3), (2.7) and (2.12) contain between them only two
independent equations. An alternative treatment of this material is to derive (2.7) first, then
postulate (2.12) as “obvious” and use (2.7) and (2.12) to derive (2.3).*

In summary, a homogeneous incompressible flow has a constant value of � everywhere. In this
case, (2.1) and (2.3) are the only equations needed since all other continuity equations either
reduce to these equations or are satisfied automatically by � = constant. A heterogeneous
incompressible flow has  In this case, (2.1) and (2.3) are used together with� � � (x , y , z , t ) .
either (2.5) and (2.7) or (2.5) and (2.12).
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dx
dt

�V
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�V
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�t

(2.14)

a � u
�V
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� v
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�V
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�V
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DV
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� �
S

p e n dS � �
~

�g d � � �
~

f � d � � �
~

DV
Dt

� d � (2.16)

� �
~

� p d � � �
~

�g d � � �
~

f � d � � �
~

�
dV
Dt

d � (2.17)

� � p � �g � �f � �
DV
Dt

(2.18)

Momentum Equations

The various forms of the momentum equations all originate from Newton's second law, in which
the resultant of external forces on a moving element of fluid equals the product of the mass and
acceleration. The acceleration was defined in Eq. (1.21) as the time derivative of the velocity
vector of a moving fluid particle. Since the  coordinates of this particle are allx , y and z
functions of  and since  an application of the chain rule givest , V � V (x , y , z , t ) ,

Thus, (2.14) and (1.17a, b, c) show that  is calculated from the material derivative of a V .

Since Newton's law will be applied in this case to the movement of a collection of fluid particles
as they move with a flow, we must choose the surface of  a little differently. We will let � S
deform with  in a way that ensures that the same fluid particles, and only those particles, remaint
within  over an extended period of time. This is known in the literature as a system volume,�

as opposed to the control volume that was just used to derive the continuity equations. The mass
of fluid within this moving system volume does not change with time.

If we include pressure, gravity and viscous forces in our derivation, then an application of
Newton's second law to a tiny system volume gives

in which the pressure force  creates a force in the negative  direction for  is apdS en p > 0, g
vector directed toward the centre of the earth with a magnitude of (= 9.81 m/s2 at sea level) andg

 = viscous force per unit mass. An application of the first form of the divergence theorem,f
Eq. (1.32) with  to the first term of (2.16) gives� � p ,

Since  can be chosen to be very small, (2.17) gives a partial differential equation form of the�

momentum equation:
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f � �� 2 V � �
�

2V

�x 2
�

�
2V

�y 2
�

�
2V

�z 2
(2.19)

�
1
�
� p � g � �� 2 V �

DV
Dt

(2.20)

�
1
�
�p � g � �g �

p
�g

�
g
g

� � g � h (2.21)

h �
p
�g

� e g � r (2.22)

r � x i � y j � zk (2.23)

h �
p
�g

� y (2.24)

A relatively complicated bit of mathematical analysis, as given for example by Yih (1969) or
Malvern (1969), can be used to show that an incompressible Newtonian flow has

in which � = kinematic viscosity defined by (1.2). Thus, inserting (2.19) into (2.18) and dividing
by � gives

Equation (2.20), which applies to both homogeneous and heterogeneous incompressible flows,
is a vector form of the Navier-Stokes equations that were first obtained by the French engineer
Marie Henri Navier in 1827 and later derived in a more modern way by the British
mathematician Sir George Gabriel Stokes in 1845.

Equation (2.20) can be put in a simpler form for homogeneous incompressible flows. Since � is
everywhere equal to the same constant value in these flows, the first two terms can be combined
into one term in the following way:

in which the piezometric head,  is defined ash ,

The vector  = unit vector directed through the centre of the earth, and  = positioneg � g /g r
vector defined by

Thus,  is a gravitational potential function that allows  to be written for any coordinateeg � r h
system. For example, if the unit vector  points upward, then  andj eg � � j

If the unit vector  points downward, then  andk eg � k
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h �
p
�g

� z (2.25)

h �
p
�g

� x sin� � y cos� (2.26)

Figure 2.1  Coordinate system used for an open-channel flow.
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(2.28 a, b, c)

In open channel flow calculations it is customary to let  point downstream along a channel bedi
that makes an angle � with the horizontal, as shown in Figure 2.1. Then eg � i sin� � j cos�
and

Note that (2.26) reduces to (2.24) when .� � 0

The introduction of (2.21) into (2.20) gives a form of the Navier-Stokes equations for
homogeneous incompressible flows:

Equation (2.27) is a vector equation that gives the following three component equations:
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Dt

d � (2.29)
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S
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~

� �V
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d � (2.32)

F � �
S

�V V � e n dS �
d
dt �

~

�V d � (2.33)

Thus for homogeneous incompressible flows, Eqs. (2.3) and (2.27) give four scalar equations for
the four unknown values of  For an inhomogeneous incompressible flow, �h , u , v and w .
becomes a fifth unknown, and Eq. (2.27) must be replaced with Eq. (2.20). Then the system of
equations is closed by using either (2.7) or (2.12) to obtain a fifth equation.

The control volume form of the momentum equation is obtained by integrating (2.18) throughout
a control volume of finite size. In contrast to the system volume that was used to derive (2.18),
the control volume is enclosed by a fixed surface. Parts of this surface usually coincide with
physical boundary surfaces, while other parts allow fluid to pass through without physical
restraint. Since the three terms on the left side of  (2.18) are forces per unit volume from pressure,
gravity and viscosity, respectively, integration throughout a control volume gives

in which  = resultant external force on fluid within the control volume. In general, this willF
include the sum of forces from pressure, gravity and boundary shear.

The right side of (2.29) can be manipulated into the sum of a surface integral and volume integral
by noting that

The first term on the right side of (2.30) vanishes by virtue of (2.7), and the last term is the
product of � with the material derivative of  Therefore,

Integrating both sides of (2.31) throughout  and using the same techniques that were used to�

derive Eq. (1.48) [see, for example, Eq. (1.52)] leads to the result

Placing the partial derivative in front of the integral in the last term of (2.32) allows the partial
derivative to be rewritten as an ordinary derivative since integrating  throughout  gives a�V �

result that is, at most, a function only of  Thus, (2.32) and (2.29) together give the followingt .
control volume form for the momentum equation:
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� g� h � V � � V (2.34)

e t �
V
V

(2.35)

� g e t � � h �
V
V
� V � � V (2.36)

� g et � � h � V �
V
V
� � V � V � e t � � V (2.37)

� g
dh
ds

� V �
dV
ds

�
d
ds

1
2

V � V �
d
ds

1
2

V 2 (2.38)

d
ds

h �
V 2

2g
� 0 (2.39)

This very general equation holds for all forms of incompressible flow and even for compressible
flow. It states that the resultant of all external forces on a control volume is balanced by the sum
of the net flow rate (flux) of momentum out through  and the time rate of increase ofS
momentum without  The last term in (2.33) vanishes when the flow is steady.� .

Another equation that is often used in control volume analysis is obtained from (2.27) by
neglecting viscous stresses  and considering only steady flow  Then (2.27)� � 0 �V /�t � 0 .
reduces to

If we dot both sides of (2.34) with the unit tangent to a streamline

we obtain

The scalar  may be moved under the brackets in the denominator on the right side ofV � �V �
(2.36) to obtain

But Eq. (1.44) can be used to write  in which  arc length in the direction of e t � � � d/ds s � e t
(i.e.  arc length measured along a streamline). Thus, (2.37) becomess �

Dividing both sides of (2.38) by  and bringing both terms to the same side of the equation givesg

Equation (2.39) states that the sum of the piezometric head and velocity head does not change
along a streamline in steady inviscid flow, and it is usually written in the alternative form
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h1 �

V 2
1

2g
� h2 �

V 2
2

2g
(2.40)

f � �� 2 V �
�

3
� � � V (2.41)

p � �RT (2.42)

in which points 1 and 2 are two points on the same streamline. Since streamlines and pathlines
coincide in steady flow, and since � is seen from (2.12) to be constant for any fluid particle
following along a streamline, a similar development starting from (2.20) rather than (2.27) can
be used to show that (2.40) holds also for the more general case of heterogeneous incompressible
flow. Equation (2.40) is one form of the well known Bernoulli equation.

Finally, although we will be concerned almost entirely with incompressible flow, this is an
opportune time to point out modifications that must be introduced when flows are treated as
compressible. Since volume is not conserved in a compressible flow, Eq. (2.3) can no longer be
used. Equations (2.7) and (2.18) remain valid but Eq. (2.19) is modified slightly to

Equation (2.7) and the three scalar components of the Navier-Stokes equations that result when
(2.41) is substituted into (2.18) contain five unknowns: the pressure, three velocity components
and the mass density. This system of equations is then “closed” for a liquid or gas flow of
constant temperature by assuming a relationship between  However, for a gas flow inp and �.
which the temperature also varies throughout the flow, it must be assumed that a relationship
exists between  and the temperature,  For example, an ideal gas has the equationp , � T .

in which  absolute pressure, � = mass density,  absolute temperature and  gasp � T � R �

constant. Equation (2.42) is the fifth equation, but it also introduces a sixth unknown,  into theT ,
system of equations. The system of equations must then be closed by using thermodynamic
considerations to obtain an energy equation, which closes the system with six equations in six
unknowns. Both Yih (1969) and Malvern (1969) give an orderly development of the various
equations that are used in compressible flow analysis.
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�p � �g (3.1)

� g �h � 0 (3.2)

Chapter 3

Fluid Statics

In this chapter we will learn to calculate pressures and pressure forces on surfaces that are
submerged in reservoirs of fluid that either are at rest or are accelerating as rigid bodies. We will
only consider homogeneous reservoirs of fluid, although some applications will consider systems
with two or more layers of fluid in which � is a different constant within each layer. We will start
by learning to calculate pressures within reservoirs of static fluid. This skill will be used to
calculate pressure forces and moments on submerged plane surfaces, and then forces and
moments on curved surfaces will be calculated by considering forces and moments on carefully
chosen plane surfaces. The stability of floating bodies will be treated as an application of these
skills. Finally, the chapter will conclude with a section on calculating pressures within fluid that
accelerates as a rigid body, a type of motion midway between fluid statics and the more general
fluid motion considered in later chapters.

Fluid statics is the simplest type of fluid motion. Because of this, students and instructors
sometimes have a tendency to treat the subject lightly. It is the writer's experience, however, that
many beginning students have more difficulty with this topic than with any other part of an
introductory fluid mechanics course. Because of this, and because much of the material in later
chapters depends upon mastery of portions of this chapter, students are encouraged to study fluid
statics carefully.

Pressure Variation

A qualitative understanding of pressure variation in a constant density reservoir of motionless
fluid can be obtained by setting  in Eq. (2.20) to obtainV � 0

Since  points downward through the centre of the earth, and since  is normal to surfaces ofg �p
constant  and points in the direction of increasing  Eq. (3.1) shows that surfaces of constantp p ,
pressure are horizontal and that pressure increases in the downward direction.

Quantitative calculations of pressure can only be carried out by integrating either (3.1) or one of
its equivalent forms. For example, setting  in (2.27) givesV � 0

which leads to the three scalar equations
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�h
�x

� 0

�h
�y

� 0

�h
�z

� 0

(3.3 a, b, c)

h � h0 (3.4)

p � p0 � �g � r (3.5)

p � p0 � �g � (3.6)

Figure 3.1  Geometry for the calculation of  in (3.5).g � r

Equation (3.3a) shows that  is not a function of  (3.3b) shows that  is not a function of h x , h y
and (3.3c) shows that  is not a function of  Thus, we must haveh z .

in which  is usually a constant, although  may be a function of  under the most generalh0 h0 t
circumstances. If we use the definition of  given by (2.22), Eq. (3.4) can be put in the moreh
useful form

in which  = pressure at  and  = gravitational vector definedp0 � �gh0 � r � � r � 0 g � g eg
following Eq. (2.16). Since  multiplied by the projections of  along g �r � gr cos� � g r g ,
the geometry in Figure (3.1) shows that

in which  = pressure at  and  is a vertical coordinate that is positive in the downwardp0 � � 0 �
direction and negative in the upward direction.
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Example 3.1

Equation (3.6) also shows that  is constant in the horizontal planes  = constant and that p � p
increases in the downward direction as  increases. An alternative interpretation of (3.6) is that�
the pressure at any point in the fluid equals the sum of the pressure at the origin plus the weight
per unit area of a vertical column of fluid between the point  and the origin. Clearly, the(x , y , z )
choice of coordinate origin in any problem is arbitrary, but it usually is most convenient to
choose the origin at a point where  is known. Examples follow.p0

Given: � and L .

Calculate:  at point  in gage pressure.p b

Solution: Whenever possible, the writer prefers to work a problem algebraically with symbols
before substituting numbers to get the final answer. This is because (1) mistakes are less apt to
occur when manipulating symbols, (2) a partial check can be made at the end by making sure that
the answer is dimensionally correct and (3) errors, when they occur, can often be spotted and
corrected more easily.

By measuring  from the free surface, where  we can apply (3.6) between points  and � p � 0, a b
to obtain

 pb � 0 � �g L � �g L

Units of  are  so the units are units of pressure,pb kg/m 3 m/s 2 m � kg/m � s 2
� N /m 2 ,

as expected. Substitution of the given numbers now gives

 pb � (1000)(9.81)(5) � 49,050 N /m 2
� 49.05 kN /m 2
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Example 3.2

Given: � and R .

Calculate: The height,  of water rise in the tube if the meniscus has a radius of curvature equalL ,
to the tube radius, R .

Solution: Applying (3.6) between points  and  givesa b

pb � 0 � �g �L � � �g L

Thus, the pressure is negative at  If  = tube radius, and if the meniscus has the sameb . R
spherical radius as the tube, Eq. (1.4) or (1.7) gives

pb � �
2�
R

Elimination of  from these two equations givespb

L �
2�
�gR

A check of units gives , which is L � N /m ÷ kg/m 3 × m

s 2
× m �

N � s 2

kg
� m

correct. 

After obtaining  from the appendix, substituting numbers gives�

 L �
2 7.54 × 10	2

1000 9.81 .0025
� 0.00615 m � 6.15 mm

This value of  has been calculated by using  for distilled water in air. Impurities in tap waterL �
decrease  and some additives, such as dish soap, also decrease  It is common practice in� , � .
laboratories, when glass piezometer tubes are used to measure pressure, to use as large diameter
tubes as possible, which reduces  by increasing  If capillarity is still a problem, then  isL R . L
reduced further by using additives to decrease � .
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Example 3.3

Given: �1 , �2 , L1 and L2 .

Calculate:  if surface tension effects at  and  are negligible.pc a b

Solution: Applying (3.6) from  to  givesa b

pb � pa � �1 g L1 � 0 � �1 g L1

Applying (3.6) from  to  givesc b

pb � pc � �2 g L2

Elimination of  givespb

�1 g L1 � pc � �2 g L2

or  pc � �1 g L1 � �2 g L2

This calculation can be done in one step by writing the pressure at  and then adding a �g ��
when going down or subtracting  when going up to eventually arrive at �g �� c .

0 � �1 g L1 � �2 g L2 � pc

The next example also illustrates this technique.
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Example 3.4

xc A � �
A

x dx dy

yc A � �
A

y dx dy
(3.7 a, b)

Given: �1 , �2 , �3 , L1 , L2 and L3 .

Calculate: pa � pb .

Solution:
pa � �1 g L1 � �2 g L2 � �3 g L3 � pb

 � pa � pb � �1 g L1 � �2 g L2 � �3 g L3

Area Centroids

There are certain area integrals that arise naturally in the derivation of formulae for calculating
forces and moments from fluid pressure acting upon plane areas. These integrals have no
physical meaning, but it is important to understand their definition and to know how to calculate
their value. Therefore, we will review portions of this topic before considering the problem of
calculating hydrostatic forces on plane areas.

The area centroid coordinates,  are given by the following definitions:xc , yc ,

The integrals on the right side of (3.7 a, b) are sometimes referred to as the first moments of the
area, and  can be thought of as average values of  within the plane area,  Whenxc , yc x , y A .

 then (3.7 a, b) show thatxc � yc � 0,
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�
A

x dx dy � 0

�
A

y dx dy � 0
(3.8 a, b)

Figure 3.2  Two geometries considered in the calculation of area centroids.

xc �
1
A �

A

x dA �
1
A �

N

i
1
xi � Ai � 0 (3.9)

In this case, the coordinate origin coincides with the area centroid.

In many applications, one or both of the centroidal coordinates can be found through
considerations of symmetry. In Figure 3.2 a, for example,  lies along a line of symmetry sincec
corresponding elements on opposite sides of the  axis (the line of symmetry) cancel out in they
sum

The  coordinate in Figure 3.2 a must be determined from an evaluation of the integral in (3.7yc
b). When two orthogonal lines of symmetry exist, as in Figure 3.2 b, then the area centroid
coincides with the intersection of the lines of symmetry. Locations of centroids are given in the
appendix for a few common geometries.
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Ix � �
A

y 2 dA

Iy � �
A

x 2 dA

Ixy � �
A

xy dA

(3.10 a, b, c)

�
A

xy dA � �
N

i
1
xi yi �Ai � 0 (3.11)

p � pc � �gx x � �gy y (3.12)

F � � k �
A

p dA
(3.13)

Moments and Product of Inertia

The moments and product of inertia for a plane area in the  plane are defined asx , y

in which  are moments of inertia about the  axes, respectively, and  is theIx and Iy x and y Ixy
product of inertia. Again, these integrals have no physical meaning but must often be calculated
in applications. These integrals are sometimes referred to as second moments of the area.

If one, or both, of the coordinate axes coincides with a line of symmetry, as in Figures 3.2 a and
3.2 b, then the product of inertia vanishes.

When this happens, the coordinate axes are called "principal axes". Frequently, principal axes
can be located from considerations of symmetry. In other cases, however, they must be located
by solving an eigenvalue problem to determine the angle that the coordinate axes must be rotated
to make the product of inertia vanish. We will only consider problems in which principal axes
can be found by symmetry. Moments and products of inertia for some common geometries are
given in the appendix.

Forces and Moments on Plane Areas

Consider the problem of calculating the pressure force on a plane area, such as one of the areas
shown in Figure 3.2. The pressure at the area centroid,  can be calculated from an applicationc ,
of (3.6), and pressures on the surface are given by (3.5) after setting

 and  (since  on ).p0 � pc , g � gx i � gy j � gz k r � x i � y j z � 0 A

The coordinate origin coincides with the area centroid, and the pressure force on the area is given
by the integral of  over p A :
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F � � pc A k (3.14)

Equation (3.14) shows that the force on a plane area equals the
product of the area with the pressure at the area centroid.

M � �
A

r × � p k dA � � i �
A

y p dA � j �
A

x p dA
(3.15)

M � rcp × � pc A k � � i ycp pc A � j xcp pc A (3.16)

xcp �
1

pc A �
A

x p dA

ycp �
1

pc A �
A

y p dA
(3.17 a, b)

Inserting (3.12) in (3.13) and making use of (3.8 a, b) gives

Frequently we need to calculate both the pressure force and the moment of the pressure force.
The moment of the pressure force about the centroid,  isc ,

On a plane area there is one point, called the centre of pressure and denoted by  where thecp ,
force  can be applied to give exactly the same moment about  as the moment calculatedpc A c
from (3.15). Thus, the moment about  is thenc

in which  and  are the coordinates of the centre of pressure. The corresponding  and xcp ycp i j
components of (3.15) and (3.16) give

When the pressure,  is plotted as a function of  over a plane surface area,  wep , x and y A ,
obtain a three-dimensional volume known as the pressure prism. Equations (3.17 a, b) show that
the centre of pressure has the same  coordinates as the volumetric centroid of thex and y
pressure prism. There is a very important case in which the centroid of the pressure prism is used
directly to locate the centre of pressure. This occurs when a constant width plane area intersects
a free surface, as shown in Figure 3.3. Then the pressure prism has a cross section in the shape
of a right triangle, and the centre of pressure is midway between the two end sections at a point
one third of the distance from the bottom to the top of the prism.
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Figure 3.3  Pressure prisms and centres of pressure when a plane area intersects a free surface
for (a) a vertical area and (b) a slanted area.

xcp �
�

pc A
gx Iy � gy Ixy

ycp �
�

pc A
gx Ixy � gy Ix

(3.18 a, b)

For more general cases when the plane area either is not rectangular or does not intersect a free
surface, the centre of pressure is usually located by substituting (3.12) into (3.17 a, b) to obtain

in which  are the  components of the vector  and  are thegx and gy x and y g Ix , Iy and Ixy
moments and products of inertia defined by (3.10 a, b, c). In most applications a set of principal
axes is located by symmetry and used so that Ixy � 0.
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Example 3.5

xcp �
�

pc A
gx Iy and ycp �

�

pc A
gy Ix

Given: � , � , H and B .

Calculate: The pressure force and rcp � xcp i � ycp j .

Solution: The pressure force is given by

 F � �pc A k � � � g �c A k � � �g
H
2

sin� BH k

The area centroid,  has been located by symmetry at the midpoint of the rectangle, andc ,
considerations of symmetry also show that the coordinate axes have been oriented so that

 Thus, a set of principal axes is being used and (3.18 a, b) reduce toIxy � 0.

In these equations we have   andgx � �g sin� , gy � 0, A � BH , Iy � bH 3 /12
 Thus, we obtainIx � B 3H /12 .

 xcp �
�

�g H
2

sin� BH

�gsin�
BH 3

12
� �

H
6

 ycp �
�

�g H
2

sin� BH

(0)
B 3H
12

� 0

The distance from the plate bottom to the centre of pressure is  which agreesH/2 � H/6 � H/3 ,
with the result noted in the discussion of the volume centroid of the pressure prism shown in
Figure 3.3(b). As a partial check, we also notice that the dimensions of the expressions for

 are correct.F , xcp and ycp
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* This result could have been found more efficiently by noting that the pressure distribution over the gate is
uniform. Thus, a line normal to the gate and passing through the area centroid also passes through the volume
centroid of the pressure prism.

Example 3.6

Given: � , D , B and H .

Calculate: The tension,  in the cable that is just sufficient to open the gate.T ,

Solution: When the gate starts to open, the reservoir bottom and the gate edge lose contact. Thus,
the only forces on the gate are the cable tension, the water pressure force on the top of the gate
surface and the hinge reaction when  is just sufficient to open the gate. We will assume thatT
the hinges are well lubricated and that atmospheric pressure exists on the lower gate surface. A
free body diagram of the gate is shown below.

Setting the summation of moments about the
hinge equal to zero gives

TH � pc A H /3 � xcp � 0

� T � 1/3 � xcp /H pc A

Since  we have  and,g � � g k , gx � gy � 0
therefore,  from (3.18 a, b).*xcp � ycp � 0

We also have  and pc � �gD A � BH /2 .

 � T � 1/3 �gD BH /2 �
�gDBH

6

The hinge reaction force could be found by setting the vector sum of forces equal to zero.
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Example 3.7

Given: � , �c , B , H , � , and � .
Calculate:  for the rectangular gate.xcp and ycp
Solution: The  plane is vertical, and the angle between the  axis is �. The  and zx � x � and x xy x �y �

are both in the plane of the gate. The most difficult part of the problem is writing  as a vectorg
in the  system of coordinates, which is a set of principal axes for the rectangular gate. Thisxy
can be done by writing  as a vector in both the  and  coordinate systems:g zx �y � zxy

g � g i �� sin� � k cos� � gx i � gy j � gz k

Since  is perpendicular to  dotting both sides with  givesk i� , k
� g cos� � gz

Dotting both sides with  givesi
g i � i�sin� � gx

But i � i � cos i , i � � cos�
� gx � gsin� cos�

Dotting both sides with  givesj
g j � i� sin� � gy

But j � i� � cos j , i� � cos �/2 � � � � sin�
� gy � � g sin� sin�

Since  we obtain frompc � �g�c , Ixy � 0, Iy � BH 3/12 , Ix � B 3H /12 and A � BH ,
(3.18 a, b)

 xcp �
�

�g�c BH
gsin� cos� BH 3/12 �

H 2

12�c

sin� cos�

 ycp �
�

�g�c BH
�g sin� sin� B 3H /12 � �

B 2

12�c

sin� sin�

Several partial checks can be made on these answers. First, the dimensions are correct. Second,
if we set  we get  which agrees with the� � 0 and �c � H /2 sin� , ycp � 0 and xcp � H /6 ,
result obtained for Example 3.5. Finally, if we set  and  we get� � �/2 �c � B /2 sin� ,

 which also agrees with the result obtained for Example 3.5. Alsoxcp � 0 and ycp � �B /6 ,
note that  both vanish as  becomes infinite.xcp and ycp �c
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Figure 3.4  Calculation of forces and moments on the left side of the
curved surface de .

FH � Fef (3.19)

FV � Fdf � �g � (3.20)

Forces and Moments on Curved Surfaces

The problem of calculating forces and moments on a curved surface can always be reduced to
an equivalent system consisting of a vertical force acting through the centroid of a volume and
vertical and horizontal forces on plane areas acting through the centre of pressure for each plane
area. For example, consider the problem of calculating the force and moment from the pressure
acting on the left side of the curved area shown in Figure 3.4(a).

Figure 3.4(b) shows an imaginary closed surface  within the same fluid, which is everywheredef
at rest. The pressure forces on the curved surfaces  in Figures 3.4(a) and 3.4(b) will obviouslyde
be identical provided that the surface  has the same geometry and orientation and is locatedde
at the same depth in both cases. However, if in Figure 3.4(b) we consider the closed surface def ,
we must have both the summation of external forces and the summation of moments equal to
zero since the fluid within  is in equilibrium. The external forces consist of (a) the verticaldef
and horizontal components, , of the pressure force on  (b) the weight of fluidFV and FH de ,

 within  that acts through the volume centroid of  (c) the horizontal pressure force�g� def def ,
 that acts through the centre of pressure of the vertical plane surface  and  the verticalFef e f d

pressure force  that acts through the centre of pressure of the horizontal plane surface Fdf d f .
Summing horizontal forces gives

and summing vertical forces gives

The line of action of the horizontal force  can be found by considering horizontal forces FH F1
and  on the horizontal element shown in Figure 3.5.F2



Chapter 3 — Fluid Statics 3.15

Figure 3.5  Horizontal forces F1
and  on a horizontal fluidF2
element in Figure 3.4(b).

Figure 3.6  Calculation of  and its line of action whenFv
the horizontal surface  coincides with a free surface.hf

Since the sum of horizontal forces on this element must
vanish,  must be equal. When we consider theF1 and F2
contributions of all horizontal elements that occur in def ,
it becomes evident that the horizontal pressure forces

 create moments about any point in space thatFH and Fef
are equal in magnitude but opposite in direction.
Therefore, we conclude that the horizontal forces

 in Figure 3.4(b) have the same magnitude andFH and Fef
line of action but opposite directions.

Since the horizontal forces  have the same magnitude and line of action, and sinceFH and Fef
the summation of all moments acting on  must vanish, it is evident that the line of action of def FV
must be such that the moment created about any point in space by the vertical forces must vanish.
When three vertical forces are involved, as in Figure 3.4(b), these three forces will not be
collinear. However, if the horizontal surface coincides with a free surface, as shown in
Figure 3.6, then only two forces are involved and they must be collinear. Thus, in Figure 3.6 the
vertical force  and the weight of fluid  must both pass through the volumetric centroidFV �g�
of defh .

If the volume  in Figure 3.6 is also used to calculate the horizontal force  then  willdefh FH , FH
equal the difference between the horizontal forces on  and  However, summing momentshd ef .
to determine a line of action for either  or  can always be avoided, if desired, by choosingFV FH
different geometries for the calculation of  and  For example Figure 3.4(b) could be usedFV FH .
to calculate  and its line of action, and Figure 3.6 could be used to calculate  and its lineFH FV
of action. In fact, the geometry of Figure 3.6 can always be used to calculate  and its line ofFV
action, even if a free surface does not exist in the stated problem. In this case, an equivalent
problem is used with a free surface placed at an elevation that creates the same pressures on the
curved surface as existed in the original problem. The extension of these ideas to three
dimensions is obvious and will not be discussed.
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Example 3.8

Given: � , R , H , and B .

Calculate: The vertical and horizontal pressure forces and their lines of action for the quarter
circular cylinder ab .

Solution: We will solve this problem by considering the following problem:

The forces acting on  are as follows:abd

The forces  have the same line of action, which can be calculatedFH and �g H � R /2 BR
from Eq. (3.18 a, b).
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Iy �
1
12

BR 3, Ixy � 0, gx � g , gy � 0

    and   � ycp � 0 xcp �
�

pc A
gx Iy �

�g BR 3/12
�g H � R /2 BR

�
R 2

12 H � R /2

Calculation of the  coordinate of the volume centroid for  follows:x abd

xc� � �
~

x d� � xc �R 2/4 B � �
A

x B dA � B �
A

x dA

The constant values of  cancel, and switching to polar coordinates in which  givesB x � rcos�

xc �R 2/4 � �

%

2

0
�
R

0

rcos� r dr d� � �

%

2

0

cos� d� �
R

0

r 2 dr

Calculation of the integrals gives

xc �
4

3�
R

Since the pressure distribution over  is uniform, the volumetric centroid of the pressure prismad
is easily located by symmetry midway between points  Thus, the vertical forces havea and d .
the following magnitudes and lines of action:
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Example 3.9

Check the calculations for the vertical force  in Example 3.8 by using the volume shownFV
below:

Summing forces in the vertical direction gives

� FV � �g�R 2 B/4 � �gHBR � 0

 � FV � �gBR H � �R/4

Summing moments about  gives, since moments of the horizontal forces cancel,d

�gH BR R/2 � �g�R 2 B/4
4

3�
R � �FV � 0

Substituting the calculated value of  and solving for � givesFV

� = 

H
2

�
R
3

H �
�R
4

R

The expressions for all forces and lengths have the correct dimensions, which gives a partial
check on the calculations. 

The only vertical forces acting on  are the weight of fluid within  and the verticalabde abde
component of force on  Thus, these two forces have the same magnitude since the sum ofab .
vertical forces must vanish.

 � FV � �g� � �gB HR � �R 2/4 � �gBR H � �R/4

This agrees with the result calculated previously in Example 3.8.
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Since all moments created by the horizontal forces cancel, the moment of the vertical forces must
also cancel. Since only two forces act in the vertical direction, they must have the same line of
action through the volume centroid of abde .

The width  is constant and cancels out in the calculation of  so that  is identical with the B xc , xc x
coordinate of the area centroid of abde .

xc A � �
A
A1	A2

x dA � �
A1

x dA � �
A2

x dA � xc1
A1 � xc2

A2

� xc HR � �R 2/4 � R/2 HR �
4

3�
R �R 2/4

Solution for  givesxc

 xc �

H
2
�

R
3

H �
�R
4

R

This value agrees with the value calculated previously for � in Example 3.8.

Buoyancy Forces

A buoyancy force is defined to be the net force from fluid pressure acting on the surface of an
object that is either completely or partially submerged in a fluid at rest. The buoyancy force and
its line of action can always be found by the principles just introduced for the calculation of
forces on curved surfaces. For example, if the object is completely submerged so that its entire
surface is wetted, then we consider a body of fluid at rest that is submerged at the same depth and
that has the same geometry and orientation as the surface of the submerged body. The fluid body
has only two external forces acting upon it: its weight, which acts downward through its mass
centroid, and the pressure or buoyancy force acting on its surface. Since the vector sum of these
external forces must vanish, and since the fluid weight is in the vertical direction, the buoyancy
force must have zero horizontal components and a vertical component equal to the weight of
fluid displaced by the physical object (Archimedes' buoyancy principle). Since there are only two
forces acting on the body of fluid, and since these two external forces must create a zero net
moment, these forces must also be collinear. If the fluid is homogeneous so that � is constant
everywhere, then the mass centroid and volume centroid of the body of fluid coincide. In
conclusion, this means that the net buoyancy or pressure force on a submerged physical object
is vertical with a magnitude equal to the weight of displaced fluid and has a line of action that
passes through the volume centroid of the displaced fluid. This result is shown in Figure 3.7.
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Figure 3.7  Buoyancy forces on (a) a submerged physical object and (b) a
volume of fluid with the same pressure distribution around its surface.

Figure 3.8  Forces acting on an object tethered by a single rope.

An equilibrium configuration or position for the submerged object is determined by considering
all of the external forces acting on the object. These forces include the buoyancy force (which
is upward with a vertical line of action that passes through the volume centroid of the displaced
fluid), the object weight (which is downward with a vertical line of action that passes through
the mass centroid,  of the object) plus all other external forces acting on the object. If thecg ,
system of forces is statically determinate, then setting the sum of forces and moments equal to
zero will be sufficient to determine all unknown forces plus the body orientation in equilibrium.
If the system is statically indeterminate, then elastic considerations must be used to close the
system of equations. An example is shown in Figure 3.8, where an object is tethered by a single
rope. Since the rope is capable of carrying only a single tensile force in the direction of its
longitudinal axis, the tensile force in the rope must equal the difference between the upward
buoyancy force and the downward object weight. All three of these forces are vertical (the rope
force must be vertical since the weight and buoyancy force are both vertical), and setting the
summation of moments equal to zero will give the relative positions of  and the point atc , cg
which the rope is attached to the body. For instance, if the object is homogeneous, then  and c cg
and the point of rope attachment all lie along the same vertical line.
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Figure 3.9  Forces on (a) a floating object and (b) the volume of fluid used to
calculate the corresponding buoyancy force on the floating object.

The problem for an object floating on a free surface differs from the problem for a completely
submerged object in two ways. First, the object weight and the buoyancy force are usually the
only two external forces acting on the floating body. This means that these two forces must be
equal in magnitude, opposite in direction and have the same line of action in order to ensure that
the resultant force and moment both vanish. Second, the volume of fluid that is used to calculate
the buoyancy force and its line of action has the same geometry as the wetted surface of the
floating object when closed with a plane of zero fluid pressure that coincides with the free
surface. An example is shown in Figure 3.9.

Example 3.10

It is believed that Archimedes discovered the buoyancy laws about 200 B.C. when asked by
King Hiero of Syracuyse to determine if his new crown contained the stipulated amount of gold.
Show how this could be done for pure gold by first weighing the crown in air, which has a
density small enough relative to gold to be neglected, and then in water, which has a density
relative to gold of 0.052.

Solution: The weight of the crown in any fluid is identical with the tension in a string when the
crown is suspended in the fluid by the string. If we denote the string tension in air and water by Ta
and  respectively, and if we consider the buoyancy force in air small enough to be neglected,Tw ,
then free body diagrams for the crown in air and water are as follows:
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Example 3.11

Summing forces in air and then in water gives

Ta � �c g �

Tw � �c g � � �w g �

Elimination of  from these two equations givesg�

Tw

Ta

� 1 �

�w

�c

Thus, a measured value of  allows the calculation of  which could then beTw /Ta �w /�c ,
compared with the value of 0.052 that is known for gold.

Given: � , �c , a and H .

Calculate: �

Solution: Since the volume of a right circular cone with a base radius  and height  is r h �r 2h /3 ,
and since the buoyancy is calculated by using a cone of height � while the cone weight is
calculated for a cone of height  we obtain the following free body diagram:H ,
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Figure 3.10  An example of stable equilibrium.

where  is the cone radius in the plane of the free surface.a � H

Summing forces in the vertical direction gives

�g� a
H

�

2

� /3 � �c g�a 2H /3

from which we calculate

 � � �c /� 1/3 H

We will see in the next section that the cone may or may not be stable in this position.

Stability of Floating Bodies

Not all equilibrium configurations are stable. As in all stability theory, the stability of a floating
body is tested by subjecting the body to a small disturbance. This disturbance, which takes the
form of a small rotation, creates a change in the system of forces acting on the body. If this new
system of forces acts to force the body back into its initial configuration, then the initial
configuration is said to be stable. However, if the new system of forces acts to further increase
the disturbance, then the initial configuration is unstable.

As an example of stable equilibrium, consider the body shown in Figure 3.10(a). The volume
centroid of the displaced fluid,  has the force  acting through it. This is the resultant ofc , �g�
pressure stresses acting over the wetted surface area of the body and is the buoyancy force. The
mass centroid,  of the floating body has the body weight,  acting through it. Both  and cg , Mg , c cg
lie along the same vertical line, and, since  Figure 3.10(a) is an equilibrium�g� � Mg ,
configuration.
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Figure 3.11  An example of unstable equilibrium.

Figure 3.12  A floating body shown (a) in plan view and (b) in elevation view.

To test the configuration in Figure 3.10(a) for stability, the body is given a small angular
displacement, as shown in Figure 3.10(b). The mass centroid,  is fixed in the body and,cg ,
therefore, rotates with it. However, the volume centroid,  of the displaced fluid moves leftwardc ,
as a result in the change in geometry of  The resulting couple from the forces shown in� .
Figure 3.10(b) would act to cause the body to rotate in the clockwise direction back toward the
initial configuration shown in Figure 3.10(a). Thus, Figure 3.10(a) shows an example of stable
equilibrium. In general, any floating object that has  below  will be in stable equilibrium.cg c

An example of unstable equilibrium is shown in Figure 3.11. An equilibrium configuration is
shown in Figure 3.11(a) since  and  lie along the same vertical line and since c cg �g� � Mg .
In this case, a small rotation creates the force system shown in Figure 3.11(b). Since  lies to thec
right of  in Figure 3.11(b), the couple created by  and  is in the counterclockwisecg �g� Mg
direction and acts to cause the body to rotate further from the equilibrium configuration shown
in Figure 3.11(a). Thus, Figure 3.11(a) shows an unstable equilibrium configuration.

The example considered in Figure 3.11 might tempt a student to conclude that all equilibrium
configurations in which  lies above  are unstable. Figures 3.12 and 3.13, however can becg c
used to show that this is incorrect. Figure 3.12 shows a floating body in which  lies above cg c .
Figure 3.13 shows the same body after being rotated a small angle, �. If  lies to the left of c cg
when the rotation is counterclockwise, as shown in Figure 3.13(a), then the resulting couple will
be in the clockwise direction and the equilibrium configuration shown in Figure 3.12(b) will be
stable. This is quantified by calculating the distance � in Figure 3.13(a) and comparing � with the
vertical distance between  and  in Figure 3.12(b).cg c
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Figure 3.13  The object in Figure 3.12 after rotating a small angle, �.

�xc � �� (3.21)

0 � �
~1

x d �
(3.22)

�2 �xc � �
~2

x d �
(3.23)

�2�xc � �
~2

x d � � �
~1

x d � � �
~2 	 ~1

x d �
(3.24)

The difference between � and the vertical distance between  and  is called the metacentriccg c
height. A positive metacentric height indicates stability, and a negative metacentric height
indicates instability.

Since � is very small, the distance  that the volume centroid,  moves when the body is�xc c ,
rotated is seen from Figure 3.13(a) to be

But  can also be calculated by considering the location of  before and after rotation. Before�xc c
rotation,  coincides with the coordinate origin in Figure 3.12 andc

in which  = volume of displaced fluid before rotation. After rotation,  in Figure 3.13(a)�1 �xc
is the new  coordinate of  in the displaced fluid and is given byx c

in which  = volume of displaced fluid after rotation. Subtracting (3.22) from (3.23) gives�2

in which  is the shaded region near the free surface that is shown in Figure 3.13(b). In�2 � �1
this region  is given byd�
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d � � �x dA (3.25)

� �
1
�2

�
A

x 2 dA (3.26)

� � Iy /� (3.27)

mc � � � 	 � Iy /� � 	 (3.28)

I �

Ix Ixy

Ixy Iy

(3.29)

in which  is the area of a small element in the  plane that is shown in Figures 3.12(a)dA x , y
and 3.13(b). Substituting (3.25) into (3.24) and then eliminating  between the result and�xc
(3.21) gives

Although  have different geometries, their magnitudes are identical. Furthermore, the�1 and �2
integral in (3.26) is the moment of inertia denoted by  Therefore (3.26) can be written moreIy .
compactly as

where  is calculated in the plane of the free surface when Iy � � 0.

If 	 = vertical distance between  and  then the metacentric height,  is given byc cg , mc ,

A positive value for  denotes stability, and a negative value denotes instability.mc

The  plane, which is the plane in which  is calculated in (3.28), coincides with the planex , y Iy
of the free surface, and the value of  calculated from (3.28) is a quantitative measure of themc
stability of a floating body for a small rotation about the  axis. However, there was nothing iny
the derivation of (3.28) which determined the direction that the  axis must point. Clearly, they
worst case occurs when the  axis points in a direction that makes  a minimum. The momentsy Iy
and product of inertia are components of a two-dimensional matrix or tensor, I .

A mathematical development like the one used by Fung (1969) for the two-dimensional stress
matrix can be used to show that  has its minimum value when (1) the   axes are a set ofIy x , y
principal axes so that  and (2) the  axis parallels the direction of the largest dimensionIxy � 0 y
of  Then (3.28) will give the smallest value for A . mc .
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Example 3.12

The homogeneous body shown above has a mass density  in which � = fluid mass density. If
�
� and the dimensions � and  are given, calculate the range of values for 
 that will allow theL
body to float with its lateral faces vertical.

Solution: If the bottom of the body is a depth ��
below the free surface, then equating the object
weight to the pressure force gives


�gL �2 � �gL��2

� � � 


From this we see that the volume of displaced fluid is

� � L � � � � 
L �
2

The body will be stable if  Thus, (3.28) givesmc > 0.

Iy /� � 	 > 0

Since 	 = vertical distance between  and  we havecg c ,

	 � � /2 � � � /2 � � /2 � 
 � /2 � 1 � 
 � /2

� Iy > � 	 � 
L �
2 1 � 
 � /2

We want the minimum value for  This means that we must choose a set of centroidal axesIy .
with the  axis parallel to the direction of largest dimension of the  as shown below.y A ,
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Figure 3.14  Three floating cubes. Values of 
, from left to right, are 0.03, 0.39 and 0.82.
The cubes were originally constructed for teaching purposes by Professor Frank Henderson.

Iy � �
A

x 2 dA �
1
12

L �
3

�
1
12

L �
3 > 
L �

3 1 � 
 /2

Dividing an inequality by a positive constant does not change its sense. Thus, dividing by L �
3/2

gives

1
6

> 
 1 � 


Since the body will only float if its density is less than the fluid density, we must also have the
restriction

0 < 
 < 1

Simultaneous solution of these inequalities gives

  and  0 < 
 <
1
2

1 �
1

3

1
2

1 �
1

3
< 
 < 1

Thus, the body will only float with its lateral faces vertical for values of 
 in either of the
ranges  For values of 
 in the range 0.211 < 
 < 0.789 the0 < 
 < 0.211 or 0.789 < 
 < 1.
equilibrium configuration under consideration is unstable, and some other configuration will
occur. An experimental confirmation of this result is shown in Figure 3.14.
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Example 3.13

Calculate the relationship between  and � for the cone in Example 3.11 that must be satisfied�c
in order that the equilibirum configuration shown in Example 3.11 be stable.

Solution: Equation (3.28) gives the requirement for stability as

Iy /� � 	 > 0

 are given byIy and �

Iy � �r 4 /4 � �
a
H
�

4

4

� � �r 2 h /3 � �
a
H
�

2

� /3

The mass centroid of a right circular cone of height  is a distance  above its base. Thus,H H 4
	 is given by

	 � H � � � � /4 � H /4 � 3 H � � /4

Substituting  in the inequality givesIy , � and 	

3
4

a
H

�

2 1
�
�

3
4

H � � > 0

This inequality can be manipulated into the form

�

H
>

1

1 � a H 2

Inserting the solution for  from Example 3.11 gives� /H

�c

�
> 1

1 � a H 2 3

Since the cone will only float if  we have the stability requirement�c /� < 1,

1

1 � a H 2 3
<

�c

�
< 1

Thus, a cone that is too light will violate this inequality, and a different (stable) equilibrium
configuration will be found. Also note that a light cone can be made stable by increasing a H
to a sufficiently large value.
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� �p � �g � �a (3.30)

�p � �G (3.31)

G � g � a (3.32)

G � � G � � gx � ax
2
� gy � ay

2
� gz � az

2 (3.33)

Rigid Body Fluid Acceleration

When a container of fluid is accelerated so that no relative motion occurs between fluid particles,
we say that the fluid is being accelerated as a rigid body. In this case the viscous stress vector, f ,
vanishes in Eq. (2.18) to give

in which  = fluid acceleration. We will consider two cases. When the container isa � DV /Dt
moving along a straight line,  will be given as the same constant vector for every fluid particle.a
When the container is rotated about a fixed axis,  will be given as the vector  in which a �r �2 en r
= radical coordinate, � = angular velocity of rotation and  = unit vector normal to the circularen
pathlines and pointing toward the axis of rotation, as defined in Eq. (1.24). In either case, the
vector  in (3.30) is specified, and (3.30) can be put in the forma

in which the vector  is given byG

If  and  then (3.32) givesg � gx i � gy j � gz k a � ax i � ay j � az k ,

In applications it will be more convenient to calculate  directly from (3.32) rather than (3.33)G
since numerous components of  and  are usually zero.g a

Since  is normal to surfaces of constant  and points in the direction of increasing �p p p ,
Eq. (3.31) shows that surfaces of constant  are normal to  and that  increases in thep G p
direction of  When motion is along a straight line and  is the same constant vector for everyG . a
fluid particle, then  is a constant vector and surfaces of constant  are planes perpendicularG p
to  In this case (3.31) and (3.1) are identical if we substitute  for  This means thatG . G g .
pressure variations and pressure forces on plane and curved surfaces can be calculated by using
the same results obtained for a static fluid reservoir provided that  and  are substituted for G G g and g
and provided that � in (3.6) is measured perpendicular to surfaces of constant  in the directionp
of G .

When the container of fluid is rotated about a fixed axis with a constant angular velocity �, we
have  and Eq. (1.24) shows that  is a function of  In this case surfaces of constant V � r � G r . p
will no longer be plane surfaces, and pressures and forces within the fluid must be calculated by
integrating (3.31).
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Example 3.14

Example 3.15

A cylindrical container of liquid (mass density = �) has a radius  and fluid depth  CalculateR H .
the pressure force on the container bottom if the container is given an acceleration  in thea0
upward direction.

Solution: If  is a unit vector in the downward direction, then  and .k a � �a0 k g � g k

� G � g � a � g � a0 k

Surfaces of constant  are normal to  and, therefore, are horizontal surfaces. Since � in (3.6)p G
is measured perpendicular to these surfaces and in the direction of  we will measure �G ,
downward from the horizontal free surface. Since the equations of statics apply if we replace g
with  we obtainG � g � a0 ,

pc � � g � a0 H

for the pressure at the area centroid of the circular container bottom. The resulting force is

 F � pc Ak � � g � a0 H �R 2 k

In this particular case  may vary with  without changing the essentially rigid body motiona0 t
of the fluid.
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The rectangular container of liquid shown above is given a constant horizontal acceleration a0 i .
Calculate the depth of the liquid along  to ensure that liquid is not lost, and the force createdAB ,
on  if the tank has a width AB W .

Solution: Using the unit base vectors  shown in the sketch, we obtaini and j

  and  G � g � a � g j � a0 i G � g 2
� a 2

0

Surfaces of constant  are perpendicular to  and are shown in the following sketch withp G
dashed lines:

A vector tangent to surfaces of constant  isp

e t � i cos� � j sin�

Since we must have  we obtainG � e t � 0,

� a0 cos� � g sin� � 0

or tan� �

a0

g

The configuration shown in the sketch only applies if  In this case, since wetan� � a0 /g � � /L .
must always have the same volume of fluid that we started with, and since the free surface tilts
as a plane surface, the distance � between  and  isA B

 � � H � L /2 tan� � H � L /2 a0 /g

The pressure on the area centroid of  isAB

pc � �G �c � � g 2
� a 2

0 � /2 cos�

But cos� � g g 2
� a 2

0

� pc � �g � /2 � �g H � L /2 a0 /g /2

 FAB � �pc A i � �pc �W i � ��gW H � L /2 a0 /g 2 2
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When accelerations are large enough to satisfy  the geometry of the freetan� � a0 /g � � /L ,
surface and surfaces of constant pressure change to those shown in the sketch. In this case,
equating the volume of accelerated liquid to its volume at rest gives

1
2

�
2W

tan�
� HLW

 � � � 2HL tan� � 2HLa0 /g

As before, the pressure on the area centroid is

pc � �G �c � � g 2
� a 2

0 � /2 cos�

in which cos� � g g 2
� a 2

0

� pc � �g � /2

FAB � �pc A i � �pc �W i � � �gW �
2 2 i

 � FAB � ��WHL a0 i

This result is not surprising. Since  is the only vertical surface that can create a force in the AB i
direction on the fluid, this pressure force is simply the product of the total mass of fluid with its
horizontal acceleration.



3.34 Chapter 3 — Fluid Statics

Example 3.16

Example 3.17

An enclosed tank of liquid has  at its top when the tank and fluid are motionless. Give ap � p0
qualitative description of the pressure distribution after the tank is given a horizontal acceleration
a � a0 i .

Solution: Since  surfaces of constant pressure are as shown in theG � g � a � �a0 i � g j ,
following sketch:

Since pressures increase in the direction of  pressures are a minimum at the upper right-handG ,
corner and a maximum at the lower left-hand corner. The integration of (3.31) to calculate unique
values for pressures requires specification of pressure as a function of time at one point in the
fluid. This is accomplished in most instances by either including a free surface or else by venting
the tank to the atmosphere at one point. If no free surface or vent exists, a unique answer for the
pressure distribution can be calculated only by including elastic effects in the fluid and tank
walls. This procedure, which is carried out in Chapter 13 for unsteady pipe flow, introduces time
derivatives of pressure into the problem and allows future pressure distributions to be calculated
from specification of the initial hydrostatic distribution that exists when motion starts.

A cylindrical tank of liquid is spun with a
constant angular velocity, �, about a vertical
axis through its centre. Calculate the equation
of the free surface and the pressure distribution
within the tank if the fluid rotates with the tank
as a rigid
b o d y
V � r� .

Solution:
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If we use the cylindrical coordinate system shown in the sketch, then Eq. (1.24) gives

a � �
V 2

r
e r � � r �2 e r

� G � g � a � �ge z � �r�2 e r � r�2 e r � g e z

The components of  in cylindrical coordinates are shown by Hildebrand (1976) to be� p

� p �
�p
�r

e r �
1
r

�p
��

e
�
�

�p
�z

e z

Since  surfaces of constant  are not plane surfaces. Putting the equations for  andG � G (r ) , p G
 into Eq. (3.31) and dotting both sides of the equation with  gives three scalar� p e r , e

�
and e z

equations.

�p
�r

� �r�2

1
r

�p
��

� 0

�p
�z

� ��g

The second equation shows that  only, and the first and second equations have ap � p (r , z )
solution for  sincep

�
2p

�z�r
�

�
2 p

�r�z

This condition is identical with the compatibility requirement that  as discussed� × � p � 0,
at the end of Chapter 1.

Integration of the first equation gives

p �
�

2
r 2�2

� F (z )

Substitution of this result for  into the third equation gives an equation for p F (z ) .

dF (z )
�z

� � �g

� F (z ) � ��gz � C

and p �
�

2
r 2�2

� �gz � C
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The equation of the free surface is obtained by setting p � 0.

0 �
�

2
r 2�2

� �gz � C

Thus, the free surface is a parabola of revolution, and  is determined by requiring that theC
volumes in the motionless and spinning fluid be identical.

�R 2H � �
2%

0
�
R

0
�

z (r )

0

dz r dr d�

in which  Integration givesz (r) �
C
�g

�
r 2�2

2g
.

�R 2H �
CR 2

2�g
�

R 4�2

8g
2�

� C � �gH �
�

4
R 2�2
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Chapter 4

Control Volume Methods

This chapter uses control volume forms of the governing equations to solve problems involving
fluid motion. These equations are relatively few in number and include the continuity equation,
(2.1),

the momentum equation, (2.33),

and the Bernoulli equation, (2.40),

in which the piezometric head,  is defined by (2.22) and Figure 3.1 to be

The variable > is a vertical coordinate that is positive in the downward direction. If it is decided
instead to define > as positive in the upward direction, then the minus sign in front of > in (4.4)
must be replaced with a plus sign. In many texts  points upward and  becomes 

Although the equations that are used in control volume analysis are few in number, the effective
use of these equations in applications requires a subtle blend of mathematical skill and physical
insight. This combination of talents, which makes the study of fluid mechanics both interesting
and challenging, is probably best taught by using a combination of worked examples and student
homework problems. However, there are a few general points that can be discussed before
working a series of specific examples.

We will only apply control volume equations to problems in steady flow. It was pointed out in
Chapter 1 that steady flow occurs when the vector velocity field does not change with time. One
consequence of this assumption, which has already been made in the derivation of (4.3), is that
streamlines and fluid particle pathlines coincide. The  terms that appear in both (4.1) and
(4.2) vanish along any portions of  that coincide with streamlines or stream surfaces (since 
is tangent to these lines and surfaces). A second important consequence is that the last term in
(4.2) vanishes, and the momentum equation reduces to
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(4.5)

(4.6)

Figure 4.1  A sketch of a Pitot tube and surrounding streamlines.

One of the keys to developing skill in working control volume problems is to make a neat and
qualitatively correct sketch of both the control volume and internal streamline pattern. The
control volume boundary,  is often chosen so that it is a combination of streamlines or stream
surfaces, along which  and surfaces normal to the streamlines in regions of uniform
flow, where  can be approximated with a vector that has both a constant magnitude and
direction. An example of this is shown in Figure 4.2. Furthermore, since the acceleration is
shown by (1.24) to have a zero component normal to streamlines in uniform flow, dotting both
sides of (2.27) with  and using the directional derivative (1.44) shows that

in which  = arc length normal to the streamlines in a region of uniform flow. Thus,  is not
changing in the direction of  when streamlines have zero curvature. In other words, pressures
are distributed hydrostatically across streamlines in regions of uniform flow, and the principles
that were covered in Chapter 3 can be used to calculate pressure forces on portions of  that lie
within these regions.

The deceptively simple looking Bernoulli equation, (4.3), has sometimes been described as the
most misused equation in fluid mechanics. Its derivation, which was given in Chapter 2, assumes
that the flow is steady and that points 1 and 2 lie on the same streamline. One classical case of
its correct use is shown in Figure 4.1, in which a Pitot tube is used to measure the velocity at
point 1.
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(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Point 2 lies on the same streamline as point 1 and is directly in front of the stagnation opening,
where the velocity is zero. (The flow on the Pitot tube nose is radial and away from point 2, and
symmetry requires that the velocity stagnate or vanish at point 2.) Thus, an application of (4.3)
with  gives

The static openings are located far enough downstream from the Pitot tube nose to be in a region
of uniform flow. Therefore, (4.6) applies and the value of  at the static opening equals the
value of  in the undisturbed flow. Thus, the static tube measures  and connecting the
stagnation tube,  and the static tube,  to piezometers allows  to be measured and
inserted in (4.7) to calculate  This principle is probably the simplest, most direct, most
accurate and most used method for measuring flow velocities. For example, stagnation tubes are
sometimes placed in low speed airplanes for measuring air speeds. In this case, a flow that is
unsteady when viewed from a fixed point on the ground becomes steady when viewed from the
moving cockpit, where the stagnation and static values of  are read.

By substituting (4.4) into (4.3) and multiplying both sides of the resulting equation by  we
obtain the following alternative form of the Bernoulli equation:

In many flows gravity is neglected  by omitting the  terms in (4.8). Formal
justification for this can be obtained by manipulating (4.8) into the following form:

The last two terms in (4.9) show that we may omit the term containing  if, and only if,

This usually occurs for high speed flows of a gas or liquid when changes in > are not too large.
For example, along a free streamline of a high speed jet we might have  and

 Then we calculate

Since this number is small compared with unity, we would be justified in setting  in either
(4.8) or (4.9). Since pressures are also constant along a free streamline (a line or surface of
atmospheric pressure), either (4.8) or (4.9) shows that velocities are constant along a free
streamline  when gravity is neglected. This approximation is often made in working
control volume problems involving high speed liquid jets.
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Figure 4.2  Flow in a streamlined constriction. The control volume surface, 
is shown with a dashed line.

(4.12)

(4.13)

Flow through the streamlined constriction shown in Figure 4.2 is a simple but typical example
of a flow in which control volume methods are used routinely. Boundary surfaces of the control
volume either coincide with streamlines or are located at the two end sections in regions of
uniform flow, where the streamlines are straight and parallel. Equation (4.6) shows that
hydrostatic pressure distributions occur at each of the two end cross sections. Therefore, the
pressure force on each end cross section is the product of the centreline pressure [  in
Eq. (3.14)] with the area of the cross section. We also assume constant, or uniform, velocity
distributions at each of these two end cross sections, an approximation that is often called a “one-
dimensional flow approximation”. Thus, since  and  are both constant across each cross
section located in uniform flow, the application of (4.3) along any of the streamlines joining
these two cross sections gives exactly the same result. If instead we apply (4.8), then  will vary
across each cross section as  varies, but the sum  will be the same constant for any
point in the cross section because of the hydrostatic pressure distribution indicated by Eq. (4.6).

Finally, it remains to discuss the occurrence of energy losses in flows. Equations (4.3) and (4.8)
can be described as work-energy equations in which the sum of work done by pressure and
gravity in moving a fluid particle from point 1 to point 2 equals the change in kinetic energy
between these same two points. Work done by tangential stresses has been ignored. Thus, if
work done by tangential stresses becomes relatively large, then Eqs. (4.3) and (4.8) either cannot
be used or else must be modified to account for this work. These modifications take the
following forms:
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* Turbulence is a highly disorganized state of flow that occurs when a flow becomes unstable. Looked at closely,
it consists of many vortices of differing sizes and intensities superimposed on the main flow pattern. The net
effect of turbulence is to create both lateral mixing of the flow and energy dissipation. Turbulence will be
studied in more detail later in the text.

Figure 4.3  Flow in an expansion.

in which  are described as a head-loss term and an energy-loss term,
respectively. Point 2 is downstream from point 1, so that  and  are always positive. This
is because the tangential stresses being considered are passive stresses that can only subtract
energy from a flow as it proceeds downstream.

There are two instances in which  and  often become too large to ignore. In the first
instance, tangential stresses may be small but the work done by these stresses accumulates to a
sizeable value within a control volume that has a large length to width ratio. Examples of this
occur in flow through pipes and flow in rivers and canals where control volume length to width
ratios may be of the order of 100, 1000 or more. The second instance usually occurs in
decelerating flow, where streamlines diverge and flow separation and highly turbulent flow exist.
For example, if the direction of flow in Figure 4.2 is reversed, flow is likely to separate from the
diverging boundaries and the flow tends to become highly turbulent,* as shown in Figure 4.3. A
transfer of energy from the main flow into the many vortices creates an energy loss in the main
flow. These energy losses, which occur over relatively short distances, are often called “local”
or “minor” losses. (Although they may not be minor in the sense of being relatively small.) The
first type of loss, which occurs within relatively long control volumes, is often referred to either
as a “resistance” or “friction” loss.

Energy losses do not have a direct influence upon the use of either the continuity equation, (4.1),
or the momentum equation, (4.2). In fact we will use these two equations to calculate energy
losses in a few flows. However, energy losses can have an indirect influence on the accuracy of
approximation when the continuity and momentum equations are applied. This is because large
local losses invariably occur as a result of fluid decelerations, and fluid decelerations usually
cause increased departures from the one-dimensional velocity distributions that are assumed in
evaluating the surface integrals in (4.1) and (4.2). For example, behaviours for experimental
velocity distributions in Figures 4.2 and 4.3 are shown in Figures 4.4 and 4.5, respectively. In
these sketches it is seen that the rapid accelerations that occur in Figure 4.4 create a downstream
velocity distribution that is relatively close to the one-dimensional approximation pictures in
Figure 4.2. The decelerating flow in Figure 4.5, however, has a downstream velocity distribution
that departs much more markedly from its one-dimensional approximation.
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Figure 4.4  A sketch of experimental velocity distributions that occur for
highly accelerated flow through a streamlined constriction.

Figure 4.5  A sketch of experimental velocity distributions that occur for
decelerated flow through an expansion.

Example 4.1

Suppose that the flow in Figure 4.2 has known values for the flow rate,  the cross sectional
areas  and  and the pressure  at the intersection of the centre streamline with the area 
We will calculate the velocities  and  the pressure  at the intersection of the centre
streamline with the area  and the force that the conduit walls exert upon the flow. This force,
of course, is equal in magnitude and opposite in direction to the force that the flow exerts upon
the conduit walls, and the conduit walls and joints must be designed to withstand the stresses
created by this force.

Solution: Since  along the conduit boundary, and since  on  and
 on  an application of the continuity equation (4.1) to the control volume shown

with a dashed line in Figure 4.2 gives
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Since the flow rate,  is the product of an area with the velocity component normal to the area,
this equation can be written as

from which we obtain

  and  

in which  is the known flow rate that is usually measured in units of m3/s.

We will assume that the centre streamline passes through the area centroids of  and  which
will be true if the conduit is either an axisymmetric pipe or a rectangular duct. Then  and 
are pressures at two points of the same streamline, and an application of the Bernoulli equation,
(4.3) or (4.8), gives

in which it has been assumed either that the conduit is horizontal, in which case the gravitational
potential terms  cancel on both sides of the equation, or else that velocities are so large that
gravity can be neglected, as illustrated by (4.10). In either case, the pressure  is given by

in which all quantities on the right side have either been given or calculated previously.

Since the momentum equation, (4.2) or (4.5), requires a sum of forces on its left side, use of the
momentum equation should always be preceded by a sketch of a free body diagram of the control
volume and coordinate system, as shown next.

Since the end sections  and  are in regions of uniform flow, where streamlines have zero
curvature, pressures are distributed hydrostatically across the streamlines and pressure forces are
given by the product of pressures at area centroids with the corresponding areas. 
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The curved streamlines along the conduit boundaries have rapidly varying, non-hydrostatic
pressure distributions, and we can only replace the integral of these pressures with the unknown
resultant force,  The weight of fluid in the control volume,  is important only for low
speed flows in which the pressure forces and fluid weight are of comparable magnitude. An
application of (4.5) to the control volume shown both in Figure 4.2 and in the free body diagram
gives the following result:

Solution for the unknown value of  gives

in which all values on the right side have either been given or calculated previously.

Example 4.2

Flow in the abrupt expansion shown in the sketch has relatively large energy losses as a result
of flow separation and turbulence. We will neglect gravity to calculate an expression for this
energy loss.

Solution: Students should form the habit of sketching streamlines within control volumes when
solving problems. This shows regions of uniform and curvilinear flow and helps immensely in
selecting boundary locations for control volume analysis. It also helps locate regions of diverging
streamlines and separated flow, where energy losses become relatively large and one-
dimensional velocity approximations become less accurate. Streamlines for this flow are shown
in the sketch.

Control volume boundaries for this problem are shown with a dashed line in the sketch. An
application of the continuity equation (4.1) gives

and an application of the Bernoulli equation with an energy loss term and zero gravitational
potential, (4.13), gives
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This last equation can be solved for 

The pressure difference,  can be calculated by an application of the momentum equation.
A free body diagram for the control volume follows:

Notable points about this free body diagram
are that (1) the net boundary pressure force
in a direction normal to the axis of
symmetry is zero because of symmetry and
the neglect of gravity and (2) the pressure
force on the upstream cross section is
calculated over the area  rather than 
This is possible because pressures are
distributed hydrostatically over the entire

upstream cross section. (Pressures across  are hydrostatic since the streamlines there have no
curvature, and velocities and accelerations within any zone of separated flow are known from
experimental evidence to be small enough to give hydrostatic pressure distributions across the
separated flow region.) Thus, an application of (4.2) or (4.5) gives

Dotting both sides of this vector equation with  and solving the resulting scalar equation for 
gives

Substituting this expression for  into the expression for  gives

The result from the continuity equation can be used to put the expression for  in any one of
the following three forms:

Decelerating flow within the control volume creates larger differences between experimental and
one-dimensional velocity approximations at the downstream cross section than for the
accelerated flow considered in Example 1. Thus, the results from Example 1 can be expected to
describe experimental flows more closely than the results from Example 2. Nevertheless, the
results from Example 2 are useful and are the basis for representing local or minor energy losses
for less mathematically tractable flows in any one of the following forms:

in which values for the loss coefficients,  are determined experimentally.
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Example 4.3

The high-speed two-dimensional jet shown in the sketch strikes a rigid horizontal surface and
divides in two. The velocity  the jet dimension,  and the angle 2 are known. We will
calculate the depths  and  and the force per unit width that the rigid surface exerts against
the jet. Both gravity and tangential boundary stresses will be neglected.

Solution: Since velocities are assumed to be large, application of the Bernoulli equation along
each of the two free streamlines shows that the velocity magnitude equals  at every point on
both free streamlines, as explained following equation (4.8). Thus, the uniform velocities at cross
sections 2 and 3 both have magnitudes of  and an application of the continuity equation to
a unit width control volume gives

Division by  gives the following equation with unknown values of  and 

Since gravity has been neglected, we can dot both sides of (2.20) with  in the regions of
uniform flow that exist at cross sections 1, 2 and 3 to obtain

in which  is normal to the straight, parallel streamlines. Thus, the directional derivative (1.44)
allows this result to be written as

Since this shows that  is not changing in a direction normal to the streamlines, and since 
on each of the two free streamlines, we see that  across each of the three cross sections
1, 2 and 3. Thus, the only force acting on the control volume of fluid is a normal pressure force
exerted by the rigid horizontal surface, as shown in the following free body diagram:
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An application of the momentum equation gives

Dotting both sides of this vector equation with  and then  gives the following two scalar
equations:

The second equation gives the required force per unit width, and the first equation can be solved
simultaneously with  to obtain

For a partial check on these results, we see that  when  (which must be
true from considerations of symmetry) and that  and  when 

Example 4.4
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Flow exits with a high velocity through either a circular orifice or a slot in a plate covering the
end of either a pipe or two-dimensional conduit. The jet downstream from the orifice or slot
contracts so that its cross sectional area,  is less than the orifice or slot area,  The
contraction coefficient,  is defined to be the ratio of jet to orifice or slot areas.

It will be shown in a later chapter that  is a function of  and values of  will be given
in that chapter for axisymmetric and two-dimensional high speed jets. In this problem we will
assume that  are known, and this will allow us to calculate a relationship between
the pressure  and the flow rate  and also an expression for the pressure force that the orifice
plate exerts upon the flow. Gravity and tangential boundary stresses will be neglected.

Solution: An application of the continuity equation between cross sections 1 and 2 gives

which can be rewritten in terms of the flow rate, 

Since the jet has high enough velocities to allow the neglect of gravity, the discussion in
Example 3 with regard to the lateral pressure gradient in regions of uniform flow applies to this
problem as well. Thus, the pressure across  is zero, and the pressure across  is a positive
constant. This means that application of (4.8), with  along any streamline that connects 
gives

The continuity result can be used to rewrite  in terms of  and solution of the
resulting equation for  gives

This result is often used to measure flow rates in civil engineering applications.
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The free body diagram has only a horizontal pressure force over the area  and a horizontal
pressure force,  exerted by the orifice plate upon the flow. The resultant pressure force normal
to the axis of symmetry vanishes since gravity has been neglected. Thus, the momentum equation
gives

Dotting both sides of this equation with  gives

The Bernoulli equation can be used to eliminate  to obtain

and use of the continuity equation to rewrite  in terms of  ultimately leads to the
result

The orifice plate and welds must be strong enough to withstand the force 

Example 4.5

Water flows through an orifice in the side of a large reservoir. The orifice centreline is a vertical
distance  below the reservoir free surface. Calculate the flow rate through the orifice and the
jet trajectory if the orifice area,  and contraction coefficient,  are known. The downward
curvature of the free jet is caused by gravity, so that gravity will be included in our calculations.
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Solution: The Bernoulli equation, (4.3), can be applied along a streamline that starts on the
reservoir free surface, where  and passes through the free surface in the contracted part
of the jet to obtain

in which  = free surface velocity at the jet vena contracta. If  is large compared to the
orifice diameter, then the velocity distribution in the vena contracta is nearly uniform and the
flow rate is given by

since the area of the contracted jet cross section is 

Downstream from the vena contracta pressures are atmospheric throughout the jet. Thus, if
tangential stresses on the jet free surface are neglected, and if the jet does not break apart into
droplets of spray from turbulence, then a free body diagram of a fluid particle in the jet has its
weight,  as the only external force.

Newton's second law,
 gives

Dotting both sides with  and  gives two scalar equations.

Integrating each equation once gives

in which  and  were determined by requiring  and  in the
vena contracta at  A second integration gives
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in which  since  at  in the vena contracta. Time,  plays the role
of a parameter in these equations, and elimination of this parameter by solving the first equation
for  and substituting the result into the second equation gives an equation for the jet trajectory.

This equation can be put in the following dimensionless form:

This is the equation of a parabola with its vertex at the coordinate origin in the vena contracta.

If a number of orifices with different values for  are present in the reservoir side walls, as
shown in the following sketch, then points in an experimental plot of  versus  for each
jet should all lie along the same curve, which is obtained from a plot of 
This type of solution, in which results for a number of different experiments collapse onto a
single curve, is often encountered in fluid mechanics and is known as a similarity solution. A
plot of some experimental data obtained by students in an actual laboratory exercise is also
shown.
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Example 4.6

Flow in an open channel exits beneath a sluice gate, which has an opening or slot height of 
The initial depth,  slot height,  and contraction coefficient,  are known. We will
calculate the flow rate per unit width,  (in units of m2/s), and the pressure force exerted by the
gate upon the flow. Values of  for a sluice gate of this type will be given in a later chapter.

Solution: Since cross sections 1 and 2 are in regions of uniform flow, an application of the
continuity equation to a flow of unit width gives

This equation can be rewritten as

in which  = flow rate per unit width.
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An application of the Bernoulli equation, (4.3), between points on the free surface at cross
sections 1 and 2 (both points are on the same streamline) gives

in which  in (4.4) has been used in the form  Substitution for  in
terms of  from the continuity result gives

This equation can be solved for  in the following form:

Velocities in this type of flow are too small to allow the neglect of gravity. However, the control
volume is relatively short so that tangential boundary forces are small compared with normal
pressure forces. Thus, a free body diagram includes only pressure forces on the two end sections,
the gate and the channel bottom together with the weight of fluid in the control volume.

Since uniform flow exists at cross sections 1 and 2, Eq. (4.6) shows that pressures are distributed
hydrostatically in the vertical direction at each end cross section. Thus, hydrostatic pressure
forces at the end cross sections are the products of pressures at area centroids with cross sectional
areas. Use of the momentum equation, (4.2) or (4.5), gives
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Dotting both sides of this vector equation with  and  gives two scalar component equations.

The second equation states that the pressure force on the channel bottom equals the weight of
fluid in the control volume. If  are written in terms of  from the continuity equation,
the first equation gives the gate force as

Use of the previously calculated expression for  and a bit of algebra allows this to be
simplified.

Example 4.7

A hydraulic jump often forms downstream from structures such as dam spillways or sluice gates.
In these flows a high velocity flow with a relatively small depth suddenly increases its depth with
a corresponding decrease in velocity. When changes in depth and velocity are relatively large,
the jump contains a great deal of turbulence and a large roller, as shown in the sketch. Thus,
energy losses can be considerable and should not be ignored. In this example we will calculate
expressions for the change in depth and the head loss across the jump.

Solution: An application of the continuity equation to a flow of unit width gives

which can be rewritten in terms of the flow rate per unit width, 

An application of the Bernoulli equation with a head-loss term gives
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Use of the continuity result allows this to be rewritten in terms of 

A free body diagram for the control volume contains pressure forces at the two end cross
sections and along the channel bottom together with the weight of fluid within the control
volume.

This allows application of the momentum equation to obtain

The  components of this equation give

The second equation states that the pressure force on the channel bottom equals the weight of
fluid within the control volume. The first equation, however, leads to a more interesting result
that can be obtained by rewriting  in terms of 

Since  is not a root that is of interest, division by  gives

This equation is a quadratic equation for  that has the classical solution

in which the Froude number,  is defined as
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The Froude number is dimensionless and has great significance in open channel flow
calculations.

If the expression for  is substituted into the expression for the head loss,  we obtain

This result can be manipulated into a much simpler and more significant form.

Since  this result shows that  must be greater than  (Only an increase in depth
across a jump is possible.) It also shows that  increases as  increases, and the
expression for  shows that this is caused by an increase in  In other words, an increase
in Froude number for the approaching flow increases both the change in depth and the energy
loss across the jump. Engineers often design stilling basins below spillways so that hydraulic
jumps form within these basins. This is to ensure that high velocity flows from the lower part of
the spillway exit from the stilling basin with a smaller velocity and larger depth in order to
prevent erosion near the spillway base.

In some design problems the upstream depth must be calculated for a given downstream depth
and Froude number. In that case the solution can be written in the following form:

The following figure, which has been replotted from a figure in Rouse (1946), shows a
comparison between calculated and measured depths in a hydraulic jump together with a curve
that gives the length,  of the jump. This curve, which was obtained from laboratory
measurements, is useful when designing the length of a stilling basin.
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(4.14)

(4.15)

(4.16)

(4.17)

Figure 4.6  Position vectors in a moving 
coordinate system and a fixed  coordinate system.

Extensions for Control Volume Applications

The methods that we have used so far can be extended in two different ways. First, techniques
used in the study of particle and rigid body dynamics can be used to obtain equations for moving
control volumes that are both translating and rotating. Second, moment of momentum equations
can be obtained for both stationary and moving control volumes. Applications of these equations
include fluid motion through rotating machinery, such as pumps and turbines, and calculation
of lines of action for control volume forces. Shames (1962) gave what was probably the first and
most complete derivation of these equations. We will consider only the relatively simple case
of a translating control volume.

Figure 4.6 shows an  coordinate system that is fixed in space and an 
coordinate system that is translating. Since the moving coordinate system is not rotating, we can
use the same base vectors  for both coordinate systems by choosing the coordinate axes
of the two systems to be parallel. Thus, if  is the position vector of a fluid particle relative to
the fixed coordinate system, we can write

in which

Equation (4.14) shows that the position of the fluid particle relative to the fixed coordinate
system equals the sum of the position vector of the translating origin and the position of the fluid
particle relative to the translating coordinate system. Since the  base vectors are not
rotating, they have zero time derivatives. Thus, differentiation of (4.14) gives
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(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

in which

Equations (4.18) – (4.20) show that the absolute velocity of the fluid particle equals the vector
sum of the absolute velocity of the translating origin and the velocity relative to the moving
coordinate system.

Newton's second law is only valid for the absolute acceleration of a particle, and differentiation
of (4.18) to obtain this absolute acceleration gives

in which

Equations (4.21) – (4.23) show that the absolute acceleration of the fluid particle equals the
vector sum of the absolute acceleration of the translating origin and the acceleration relative to
the moving coordinate system.

The equations of motion in the translating coordinate system can be obtained by substituting
 in (4.21) for  in (2.18). The end result is that  in all of the governing

equations, including the continuity equations, is the velocity relative to the moving coordinate
system, and a term  given by the right side of (4.22) must be added to (2.20) and
(2.27). Since this additive term is a function of  but not of the spacial coordinates, the control
volume form of the momentum equation contains a corresponding function of time added to the
right side of (2.33).
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

If the flow is steady when viewed from the moving coordinate system, then (2.34) becomes

in which the last term is a function only of  The sketch shown in Figure 1.6 can be used to
show that

so that a series of steps similar to those followed in the derivation of (2.40) shows that (2.39) is
replaced with

and (2.40) is replaced with

in which  are velocities relative to the moving coordinate system. The question of
whether it is possible to have a flow that appears steady in a coordinate system that is
accelerating will not be discussed.

We will only consider applications in which the moving control volume and coordinate system
are translating with a constant velocity. Then  and
all of the governing equations become identical with the equations for a fixed control volume
except that velocities are now measured relative to the translating coordinate system. The
following examples should help make this clear.
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Example 4.8

If an obstruction, such as a sluice gate, is suddenly lowered into an open channel flow, a shock
or surge will move upstream with a constant speed that we will call  (The  stands for
celerity.) This surge has the appearance of the hydraulic jump considered in Example 4.7 except
that it is moving upstream, as shown in the following sketch:

in which  are absolute velocities. If we choose a control volume and coordinate
system that move with the surge and write velocities relative to the moving control volume, we
obtain the result shown in the following sketch:

This flow, from the viewpoint of an observer in the translating control volume and coordinate
system, appears to be the same steady flow considered in Example 4.7 except that 
are replaced with the relative velocities  and  Thus, from the results calculated in
Example 4.7, we have

in which

In addition, the continuity equation gives

The two circled equations contain five variables:  Any three of these
variables can be specified, and the remaining two can be found from these equations. For
example, if a sluice gate is lowered all the way to the channel floor, then  and  and 
would be the known velocity and depth that existed before the gate entered the flow. Then these
two equations could be solved for  and  For a second example, we might generate the surge
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in a reservoir of still water by moving the sluice gate leftward with a specified velocity. Then
 is the undisturbed water depth and  is a negative number equal to the speed at

which the sluice gate moves. Again, the circled equations could be solved for  and 

Surges exist naturally in some river estuaries as a result of an interaction between the river flow
and a rising tide. They can also occur in rivers as a result of blockage by an avalanche, or they
can travel down a river as a result of a sudden increase in flow caused, for example, by a dam
bursting or a sudden release of flow from a reservoir.

Example 4.9
A high speed jet directed against a moving curved blade is often used as the basis for

understanding the fluid mechanics of a Pelton wheel. (The Pelton wheel is an impulse turbine
in which curved blades or buckets are mounted along the periphery of a large diameter wheel.
A high speed water jet directed against the blades, tangential to the wheel periphery, spins the
wheel. The spinning wheel is used either to generate electric power or to do other useful work.)
We will assume that  are known, and this will allow us to calculate the force
vector that the moving blade exerts on the flow, the absolute velocity vector for the flow as it
leaves the blade and the power extracted from the flow by the moving blade.

Solution: We will choose a control volume and coordinate system that moves with the blade.
Since the flow is steady when viewed from this moving control volume, and since the jet speed
is large enough to allow us to neglect gravity, the relative flow speed on the free surface is
constant. Thus, streamlines and relative velocities are as shown in the following sketch:
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Since pressures are atmospheric on the free surfaces and across uniform flow streamlines at the
entrance and exit of the control volume, and since the weight of fluid within the control volume
is relatively small, a free body diagram of the control volume has the pressure force between the
blade surface and fluid as the only external force.

Equation (4.18) shows that the absolute velocity at the control volume exit is the sum of the
control volume velocity and the relative velocity.

The force exerted by the blade on the flow can be calculated from the momentum equation,

in which use has been made of the continuity equation to show that the cross sectional areas of
the jet at its exit and entrance are both equal to  The expression for  simplifies to

Power has units of  abbreviated  and is computed from the dot product of
a force with the velocity at the point of force application. (If the velocity is the product of an
angular velocity with a radial distance from a centre of rotation to the point of force application,
this dot product also equals the product of the angular velocity with the torque or moment
created by the force about the centre of rotation.) Thus, since the force exerted by the fluid upon
the blade is  the power imparted to the blade is
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This shows that the fluid imparts zero power to the blade if  This
suggests that the power reaches a maximum when  is somewhere in the range 
Differentiation of  with respect to  gives

Thus,  when  which is not of interest since  attains a minimum value
of zero then, and when

This gives a maximum power extraction of

When viewed as a function of  the power extraction is also maximized by making 
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Chapter 5

Differential Equation Methods

Pressure and velocity variations at points within a control volume can be found only from the
solution of the partial differential equations of fluid motion. An example of this has already
occurred in Chapter 3 when we integrated these equations to calculate pressures in motionless
bodies of fluid. Now we will be concerned with integrating the equations for problems involving
fluid motion. This chapter will give a general overview of the problem, and the following
chapters will fill in more details.

The governing equations for homogeneous, incompressible, steady, two-dimensional flow are
the continuity equation, (2.4),

and two components of the Navier-Stokes equations, (2.20),

in which gravity has been neglected. If gravity is included, then (2.28) shows that  is replacedp /�
with gh .

The exact solution of (5.1) – (5.2) is extremely difficult, largely because of the nonlinear
acceleration terms on the right side of (5.2). Numerical techniques considerably increase the
number of problems for which (5.1) – (5.2) can be solved, but even then there remain many
problems for which neither mathematical nor numerical solutions of (5.1) – (5.2) are possible.
Thus, in many problems it becomes necessary to use mathematical and physical insight to obtain
approximate solutions of (5.1) – (5.2).

The most important technique for finding approximate solutions of (5.1) – (5.2) uses order of
magnitude estimates for terms that appear in these equations. An order of magnitude is a factor
of ten. Thus, two orders of magnitude are 100, three orders of magnitude are 1000, etc. To say
that a term is of order 1 does not mean that its magnitude is exactly 1. Rather, it means that its
absolute magnitude is not likely to exceed 1, 2 or 3 rather than 10, 20 or 30. The technique
consists of choosing suitable estimates for maximum values of terms in Eqs. (5.1) – (5.2). Then
the relative importance of terms are compared to see which, if any, are small enough to be
neglected.
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For example, if maximum changes in u and v are denoted by  respectively, and if theseU and V ,
changes occur over distances  in the  directions, respectively, then order of�x and �y x and y
magnitude estimates for �u/�x and �v/�y are given by

in which � is read “of the order of”. If either (5.3 a) or (5.3 b) is known to be nonzero, then (5.1)
shows that

(Signs do not matter in scale analysis.) Thus, (5.4) gives an estimate for  if  areV U , �x and �y
known.

If  is an estimate for the maximum change in  then using  and the estimate for P p , P , U , �x , �y V
from (5.5) gives the following estimates for terms in (5.2):

Division of (5.6 a) by  and (5.6 b) by  gives dimensionless estimates for the relativeU 2/ �x U 2/ �y
magnitude of each term.
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Figure 5.1  Flow through a streamlined constriction.
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P � �U 2 (5.10)

The dimensionless ratios  are important parameters in fluid mechanics andP / �U 2 and U �x /�
are known as an Euler number and Reynolds number, respectively. Because of the way in which
the Euler and Reynolds numbers were obtained in (5.7), authors frequently state that Euler and
Reynolds numbers are dimensionless ratios of a pressure force to an acceleration and an
acceleration to a viscous force, respectively. The reader is cautioned, however, that this physical
interpretation is not always possible. For example, the Reynolds number also makes its
appearance when considering flow resistance and energy losses for fully-developed laminar pipe
flow. Velocity distributions in this flow do not change from one cross section to the next. Thus,
fluid accelerations are zero everywhere, yet the Reynolds number still appears in the expression
for the Darcy-Weisbach friction factor.

Consider flow through the streamlined constriction shown in Figure 5.1. The boundary geometry
and velocity  would be specified for this two-dimensional flow, and control volumeU1
techniques would allow us to calculate  In this case we take  andU � U2 � U1 . �x � �y � B1 ,
(5.7) becomes

If, for example, the fluid is oil with  and  then� � 10	5 m 2 /s , U � 2 mm/s B1 � 5 mm,

In this case all terms are of equal importance, and the following estimate is obtained for P :
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u � v � 0 on ab and cd (5.11)

u � U1 y and v � 0 on ad (5.12)

u � U2 y and v � 0 on bc (5.13)

p � p1 for one point in the flow (5.14)
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V � e n � 0 on ab and cd

� U1 y on ad

� U2 y on bc

(5.17)

p � p1 for one point in the flow (5.18)

More importantly, all terms in (5.1) – (5.2) would have to be retained, and it would be necessary
to impose the following boundary conditions:

The requirement that  and v be specified on all boundaries is equivalent to specifying bothu
normal and tangential velocity components and is necessary in order that the solution of
(5.1) – (5.2) be unique. The solution would undoubtedly have to be obtained by using numerical
techniques, and the flow would be described as viscous and laminar, a topic that will be
discussed briefly in a following chapter.

In a more likely civil engineering application involving the flow of water, we could take
  and  to obtain� � 10	6 m 2 /s , U � 1 m/s B1 � 100 mm

In this case (5.8) shows that the viscous terms are negligible, and an estimate for  is againP
given by (5.10). This flow would be termed inviscid, and (5.1) – (5.2) would be approximated
with

Since the second derivatives in (5.2) have been dropped, uniqueness requires that only normal
velocity components be specified around the boundary.
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Since the tangential component of  cannot be specified (because of the loss of secondV
derivatives of  and v in the approximation), the flow will slip along boundaries  and u ab cd .
A particular type of inviscid flow, known as either potential or irrotational flow, will be discussed
at length in the following chapter.

The inviscid flow just described would be a good description of experiment throughout most of
the control volume. However, slippage of the flow along boundaries  and  is unrealistic,ab cd
and the inviscid flow approximation breaks down near these boundaries. The reason for this is
that our scaling estimates were incorrect for the boundary region. This boundary region in which
an inviscid flow approximation breaks down along a physical boundary is called a boundary
layer. If we denote its thickness by  in which  are now coordinates measured�y � � x and y
along and normal, respectively, to the physical boundary, then a boundary layer is characterised
by the statement

In this case the largest viscous term in (5.7 a) must be of order one (since at least one viscous
term must be retained if we want to specify both normal and tangential velocity components on
the boundary), and we obtain the estimate

which becomes

Using our estimates of  and  with  gives� � 10	6 m 2/s , U � 1 m/s B1 � 100 mm �x � B1
 which suggests that the boundary layer is so thin compared to control volume� /B1 � 0.003,

dimensions that an accurate numerical solution of (5.1) – (5.2) for the entire control volume
would be impossible to obtain.

Using (5.21) to eliminate the Reynolds number from (5.7) gives

Since  comparison of (5.2) and (5.22) shows that the boundary layer equations are� / �x « 1,
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Figure 5.2  Boundary layer development along boundary  of Figure 5.1.ab

in which  are now curvilinear coordinates measured along and normal to the boundary,x and y
as shown in Figure 5.2. Equation (5.23 c) shows that  does not change across the boundaryp
layer, and this very important result means that  is first calculated along the boundary from thep
inviscid solution of (5.16) – (5.18) and then substituted into the first term of (5.23 b) to calculate
velocities and shear stresses near boundaries  and  This boundary layer approximationab cd .
was first suggested by the German engineer L. Prandtl in 1904, and it marks a milestone in the
understanding of both fluid mechanics and applied mathematics. Boundary layer flows will be
treated at some length in a later chapter.

The only remaining topic to mention is turbulence. Turbulence appears in flows when a
disturbance, in the form of a small vortex, becomes amplified into an unsteady pattern of large
and small vortices superimposed upon both themselves and the main flow pattern. This is flow
instability in which an otherwise one or two-dimensional steady flow suddenly becomes three-
dimensional and unsteady. A mathematical or numerical solution of a problem involving
turbulence requires the solution of the unsteady, three-dimensional form of the Navier-Stokes
equations with extremely small spacial and time resolutions. This has never been accomplished.
Thus, the study of turbulence relies heavily upon laboratory observation and ad hoc hypotheses
and theories that have little hope of being useful for general applications. We will discuss
turbulence briefly in one of the following chapters.
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In summary, order of magnitude estimates have been used to suggest that all terms multiplied
by the kinematic viscosity, �, in Eqs. (5.2a, b) can be neglected throughout most of the flow
when Reynolds numbers are large. This inviscid flow approximation works well for many
civil engineering applications, although it is not valid when flows are highly turbulent or
when Reynolds numbers are of order one or smaller (for example, submerged turbulent jets,
groundwater flow or very fine sediment particles falling slowly through water). The most
commonly used inviscid flow approximation is called irrotational flow and is discussed in
chapter 6. Examples of flows that are closely approximated with irrotational flow include
flow under sluice gates, free jets exiting through orifices, flow over spillways and weirs and
unsteady wave motion. However, at large Reynolds numbers, all inviscid flow
approximations break down in very thin regions next to boundaries. In these regions, which
are called boundary layers, pressures are calculated from an inviscid flow approximation but
velocities and tangential stresses are calculated by including one of the viscous terms on the
left side of Eq. (5.2a). Boundary-layer approximations are discussed in chapter 8. Finally,
some very important engineering applications that require an understanding of both
irrotational flow and boundary-layer approximations are covered in chapter 9, which is
concerned with drag and lift forces on objects that are submerged in flows.
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* The discussion in this section parallels similar arguments that are often made in particle dynamics when
introducing the concept of work done on a particle by conservative forces.

� � V � 0 (6.1)
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(6.2)

� � �
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V � dr (6.3)

V � dr � V � e t d s (6.4)

Chapter 6

Irrotational Flow

In this chapter we will consider the inviscid flow approximation that is known as either
irrotational or potential flow. This approximation assumes that Reynolds numbers are sufficiently
large to allow the neglect of all viscous terms in the Navier-Stokes equations. It also assumes that
boundary layer thicknesses along physical boundaries are small relative to control volume
dimensions. In general, boundary layer thicknesses remain small when Reynolds numbers are
large and when fluid particles are highly accelerated as they move with the flow. In steady flow
this requirement means that streamlines must converge rapidly in the direction of motion.

The governing equations for an inviscid, incompressible flow are the continuity equation, (2.3),

and the inviscid form of the Navier-Stokes equations, (2.27)

The three scalar components of (6.2) are usually referred to as Euler's equations.

Circulation and the Velocity Potential Function

Not all inviscid flows are irrotational, and it is important to understand when a flow can be
approximated as both inviscid and irrotational. Further understanding can be obtained by
introducing the definition of circulation,* �,

in which  = displacement vector along a path or curved line joining points  Thedr a and b .
integrand  in (6.3) is the projection of the velocity vector,  upon  multiplied byV � dr V , dr

 and can be written as�dr � � ds

in which  = unit tangent to the curve joining points e t a and b .
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If � is calculated along a material curve that is defined by joining the same fluid particles as they
move with the flow, then  and the time derivative of (6.3) isdr � dr ( t )

But  and  can be replaced with the left side of (6.2) to obtaindr /dt � V , dV /dt � DV /Dt

Since  is a constant, the integrand of (6.6) can be written as an exact differential.g

Thus, if the integration path is closed so that points  coincide, and if we only considera and b
flows in which  and  are single valued, we obtain a result known as Kelvin's circulationh V
theorem.

Equation (6.8) shows that the circulation calculated around a closed material path of fluid
particles remains constant with time as this path moves with the flow provided that the flow is
inviscid.

There are two very important cases in which the constant value of  for a closed material path�
is zero. The first case is when the material path starts from rest. Then  and theV � 0 at t � 0,
constant value of  computed from (6.3) at  obviously vanishes. The second case occurs� t � 0
when  = constant vector at  ThenV t � 0.

since points  coincide. Thus, any closed material path that starts out either in a regiona and b
of zero motion or of uniform flow will have a zero value for  as the path moves with the flow.�
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Figure 6.1  Circulation calculated
around a closed material path for
an inviscid flow.

� � 0 � �
b

a

V � d r � �
c

a

V � dr � �
b

c

V � dr (6.10)

�
c

a

V � d r � �
c

b

V � d r (6.11)

V � dr � d � � � � � d r (6.12)

V � � � (6.13)

u �
��

�x

v �
��

�y

w �
��

�z

(6.14 a, b, c)

Now consider a third point,  on a closed material pathc ,
that has a zero circulation, as shown in Figure 6.1. 

Then (6.3) gives

Since points  coincide, and since reversing thea and b
order of limits reverses the sign in front of an integral,
(6.10) is equivalent to

Equation (6.11) shows that the circulation calculated along all paths joining points  isa and c
exactly the same, and this is only possible if  is the exact differential of a scalar functionV � d r
that we will call � .

Since (6.12) must hold for an arbitrary choice for  Eq. (6.12) shows that the velocity vectordr ,
must be calculated from the gradient of a potential function, � .

Clearly, we could have placed a minus sign in front of  on the right side of (6.12)d� and ��
and (6.13), and some authors choose to do so. The potential function,  has no physical� ,
meaning beyond the fact that its first derivatives give velocity components in the three coordinate
directions.
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In summary, we can now say that any highly accelerated flow in which motion starts either
from a state of rest or a state of uniform flow can be approximated with a velocity field
generated from the gradient of a potential function. Since this velocity field is shown by
Equation (1.59) to have a zero curl, and since the average angular velocity of a fluid element
is shown by Equation (1.58) to be proportional to the curl of  we also see that a potentialV ,
flow is irrotational.

Figure 6.2  Vorticity for irrotational motion in (a) uniform flow and (b) curvilinear flow.

Thus, any streamline in steady irrotational flow can be replaced with a
fixed physical boundary, and vice versa.

�
2� � 0 (6.15)

It is now worth reviewing the physical interpretation of vorticity and irrotationality that was
introduced in the first chapter. If we consider the uniform flow shown in Figure 6.2(a), then the
angular velocities of the two dashed lines must be equal in magnitude and opposite in direction.
Since  this means that  Thus, velocities parallel to the physicalv1 � v2 � 0, u4 � u3 .
boundary must remain constant all the way to the boundary, and there can be no boundary layer.
The curvilinear flow in Figure 6.2(b) has  This means that the dashed line parallelv2 � �v1.
to the curved boundary has an angular velocity in the clockwise direction. Thus, the dashed line
normal to the boundary must have the same angular velocity in the counterclockwise direction,
which means that  In other words, the irrotational velocity must increase as we moveu3 > u4 .
toward the centre of curvature, and this rate of velocity increase must be maintained right to the
physical boundary. Again, we see that fluid must slip along the physical boundary in irrotational
flow, and no boundary layer can exist. This means that the definitions of a streamline and a fixed
physical boundary are identical for steady irrotational motion: the normal velocity component,
and only the normal velocity component, vanishes along both surfaces. 

Simplification of the Governing Equations

Equations (6.1) � (6.2) simplify considerably with the introduction of (6.13). For example,
substitution for  from (6.13) in (6.1) shows that  satisfies the Laplace equation.V �
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(6.18 a, b, c)
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(6.19)

The unabbreviated form of (6.15) is

This effectively uncouples (6.1) - (6.2) since (6.16) contains  as its only unknown.�
Furthermore, (6.15) is linear with constant coefficients and is one of the simplest and most
studied partial differential equations in mathematical physics.

Boundary conditions for (6.15) require that we specify normal velocity components along all
boundaries. Thus, if we replace  in (1.45) with  respectively, then boundarye t and s en and n ,
conditions take the form

in which  = arc length normal to a boundary and  is a prescribed function that may or mayn F
not be zero. For example,  along boundaries  and  in Figure 5.1. However, F � 0 ab cd F
would be non-zero constants along  and  given by  and  for  and ad bc F � U1 F � U1 B1 /B2 ad bc ,
respectively. Thus, the function  cannot be prescribed in a completely arbitrary way on allF
boundaries of a flow region; it must be constant along boundaries that lie in uniform flow, and
it must also satisfy the control volume form of the continuity equation, (3.1).

Equations (6.15) and (6.17) can be solved for  can in turn be used to calculate  in� , and � V
any part of the flow. The remaining unknown, the pressure,  or the piezometric head, p , h ,
(knowledge of  gives  and vice versa), must then be found by integration (6.2). However,h p ,
this can be done, once and for all, in a very general way. In particular, because of the identities

the acceleration component in the  direction can be rewritten asi
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* This argument fails in steady flow, where variables do not depend upon time. In this case,  in (6.22) is aH
constant that must be calculated for each problem.

� gh � V � V 2 �
��

� t
� 0 (6.20)

�

�x
h �

V 2

2g
�

1
g
��

� t
� 0

�

�y
h �

V 2

2g
�

1
g
��

� t
� 0

�

�z
h �

V 2

2g
�

1
g
��

� t
� 0

(6.21 a, b, c)

h �
V 2

2g
�

1
g
��

� t
� H (6.22)

� x , y , z , t � �� x , y , z, t � �
t

0

gH (t ) dt (6.23)

Similar expressions can be obtained for the  and  acceleration components, and this allowsj k
(6.2) to be rewritten as

After dividing by  Eq. (6.20) gives the following three component equations:g ,

Since the bracketed terms in (6.21) are not functions of  the most general solutionx , y and z ,
of (6.21) is

in which  is a function of  However,  is calculated from the spacial derivatives of �, andH t . V
neither  nor its time derivative have any physical meaning in this problem. Thus, we can�
always include in the definition of  an added function of  that has been determined so that its� t
time derivative gives gH (t ) .

Then  is replaced with  in (6.15), (6.17) and (6.22), and  on the right side of (6.22) is� �� H
replaced with a zero.* This means that  in Eq. (6.22) can always be chosen to be either zeroH
or a constant, and we will always do so.

Equation (6.22) is a general form of the Bernoulli equation that differs in two very important
respects from the Bernoulli equation (4.3) that we used for control volume analysis. First, it can
be used for unsteady as well as steady flow. Second, the sum of terms on the left side of (6.22)
is constant for each and every point in the flow and not just for points along the same streamline.
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Figure 6.3  Coordinates and unit base vectors in the Cartesian and polar coordinate systems.

� � Ux , U � constant (6.27)

V � U i (6.28)

Basic Irrotational Flow Solutions

Known solutions and solution techniques for the Laplace equation cover a vast quantity of
material. Therefore, we will limit our consideration to steady flow in two dimensions. Then the
Laplace equation has the form

which can also be written in the following polar coordinate form:

Velocity vectors in these coordinate systems are calculated from

A sketch of these two coordinate systems is shown in Figure 6.3.

Uniform flow in the positive  direction has the potentialx

in which  is positive for flow in the  direction and negative for flow in the  direction.U i � i
Direct substitution of (6.27) into (6.24) shows that (6.27) satisfies the Laplace equation, and
substitution into (6.26) gives the corresponding velocity field.
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� �
q

2�
ln r , (q � constant ) (6.29)

V �
q

2�r
e r (6.30)

� �

�0

2�
� , �0 � constant (6.31)

V �

�0

2�r
e
�

(6.32)

� � �
b

a

V � dr � �
b

a

� � � dr � �
b

a

d � � �b � �a (6.33)

A solution of (6.25) with radial symmetry is easily seen to be given by

Substitution of (6.29) into (6.26) gives

Equation (6.30) shows that  is radially outward for  and inward for  SinceV q > 0 q < 0.
  and since  = circumference of a circle of radius  we see that  = flow�V � � �q � 2�r , 2�r r , q

rate per unit width emitted by a source  or absorbed by a sink  Note that q > 0 q < 0 . V
becomes singular as r � 0.

Since (6.25) contains only a second derivative with respect to  a solution of (6.25) is also� ,
given by a linear function of � .

Substitution of (6.31) into (6.26) gives

Since  is in the  direction and changes only with  (6.31) is the solution for an irrotationalV e
�

r ,
vortex. As noted earlier,  increases as  decreases, and we see again the  becomes singular�V � r V
as  The velocity is in the  direction for  and in the  direction for r � 0. e

�
�0 > 0 �e

�
�0 < 0 .

Furthermore, calculation of the circulation around any closed path that includes  in itsr � 0
interior shows that the constant  in (6.31) - (6.32) is the circulation  defined in (6.3). The�0 �
circulation calculated from (6.3) for any closed path that does not include the point  in itsr � 0
interior can also be shown to be zero. (This does not violate Kelvin's constant circulation theorem
since any closed material path that surrounds  will also include  at laterr � 0 at t � 0 r � 0
times. Thus, the circulation will remain constant for any closed material path.)

The easiest way to calculate the circulation from (6.3) for any irrotational flow is to substitute
(6.13) into (6.3) to obtain

Thus, (6.31) and (6.33) show for an irrotational vortex that the circulation about any closed path
that surrounds the origin, since  is�b � �a � 2� ,
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� �

�0

2�
�b � �a � �0 (6.34)

� �

�0

2�
�b � �a � 0 (6.35)

r � x � � 2
� y � � 2 (6.36)

� � tan	1 y � �

x � �
(6.37)

Figure 6.4  Superposition of a source
at point 2 and a sink at point 1 to
obtain a doublet.

� �
q

2�
ln r2 �

q
2�

ln r1 (6.38)

� �
q�s
2�

ln r2 � ln r1

�s
(6.39)

� �
�

2�
d
ds

ln r �
�

2�
�!! ,�� ln r � e t (6.40)

and that any closed path that excludes  from its interior has  so thatr � 0 �b � �a

Since the coefficients in (6.24) are constant, replacing  in any solution of (6.24) withx and y
 and  will still give a solution of (6.24) provided that  do not depend upon x � � y � � � and � x and y .

Thus, in any of our basic solutions we can replace  and  withr �

in which  now have the interpretations of radial distance and angular displacement inr and �
a local coordinate system with its origin at the point  Since (6.24) is also linear, we can� , � .
add or subtract any number of these basic solutions to obtain other solutions. This is a process
known as superposition.

An example of the superposition process can be used to
obtain the basic potential for flow from a doublet. If a
source and sink are placed at points 2 and 1,
respectively, in Figure 6.4, the potential is

Multiplying the right side of (6.38) by  in which�s /�s
 distance between points 1 and 2 gives�s�

If we now set  constant and take the limit  we obtainq�s � � � �s � 0
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� � �
�

2�r
e r � e t � �

�

2�r
cos � � 	 (6.41)

V �
�

2�r 2
cos � � 	 e r � sin � � 	 e

� (6.42)

Figure 6.5  Streamline patterns for some basic flows.

in which  is the gradient calculated with respect to the  coordinates and  = unit�
!! ,�� � ,� e t

vector along the doublet axis 1 - 2. Since  is given by (6.36), the gradients with respect to r � ,�
and  differ by a minus sign. Thus, we can set  and use the polar coordinatex , y �

!! ,// � � �x ,y
form of (6.26) to calculate  This gives�x ,y .

The velocity field calculated from (6.26) and (6.41) is

The superposition principle applies not only to velocity potential functions but also to velocity
vector fields generated from the potentials. Streamline geometries for uniform flow, a source and
sink, a vortex and a doublet are shown in Figure 6.5.
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Example 6.1

Flow past a circle of radius  surrounding the origin can be obtained by adding the potentialsR
and velocity fields for uniform flow and a doublet at the origin with 	 � � .

� � U0 x �
�

2�r
cos�

V � U0 i �
�

2�r 2
�cos� e r � sin� e

�

Set  in the expression for  to obtaini � cos� e r � sin� e
�

V

V � U0 �
�

2�r 2
cos� e r � U0 �

�

2�r 2
sin� e

�

Since the normal velocity component must vanish on the cylinder surface  we must setr � R ,

U0 �
�

2�R 2
� 0

to obtain  and� � 2�R 2 U0

V � U0 1 �
R
r

2

cos� e r � U0 1 �
R
r

2

sin� e
�

At  we see that  and on  we haver � � V � U0 cos� e r � U0 sin� e
�
� U0 i , r � R

 which proves that this is the solution for flow past the circular cylinder. On theV � e r � 0,
cylinder surface the tangential velocity vector is

V � � 2U0 sin� e
�

The pressure on the cylinder surface is calculated from the Bernoulli equation

p � 
V 2 2 � constant � 
U 2
0 2
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in which we have neglected gravity and the integration constant has been evaluated at infinity,
where  and  Setting  on the cylinder surface givesV 2

� U 2
0 p � 0. V 2

� 4U 2
0 sin2�

pr 
R � 1 � 4sin2� 
U 2
0 2

A dimensionless plot of this pressure distribution is shown below.

It is evident from the symmetry of pressure distribution that there is no net pressure force on the
cylinder in any direction. The fact that the drag force (the force in the direction of the
approaching flow) is zero is known as D'Alembert's paradox, a result that is true for any object
submerged in an irrotational flow without separation.

Example 6.2

Since an irrotational vortex has a zero radial component of velocity and an  velocitye
�

component that vanishes as  we can add the potential and velocity fields for a vortex tor � � ,
the potential and velocity fields in Example 6.1 to obtain a solution for flow past a cylinder with
circulation.

� � U0 x �
R 2

r
cos� �

�0

2�
�

V � U0 1 �
R
r

2

cos� e r � U0 1 �
R
r

2

sin� e
�
�

�0

2�r
e
�

Since velocity vector components add near the cylinder bottom and subtract near the top, this
increases  and decreases  near the bottom and decreases  and increases  near the top. AV p V p
sketch of the streamline pattern is shown below.
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Symmetry shows that the drag force is still zero, but the increased pressures on top and decreased
pressures below obviously lead to a downward "lift" force. Since  on the cylinder surface isV 2

given by

V 2
� �2U0 sin� �

�0

2�R

2

the pressure on the cylinder surface is

p � 
U 2
0 2 � 
 �2U0 sin� �

�

2�R

2

2

The pressure force on the cylinder is

F � � � p e r ds � � �
%

	%

p i cos� � j sin� R d �

Substitution for  and integration givesp

F � � 
U0 �0 j

It can be shown that this expression for a lift force holds for irrotational flow past any object. An
approximation to this flow field can be generated in the laboratory by placing a spinning cylinder
in a uniform flow. In this case viscosity forces the fluid to "stick" to the spinning boundary and
generates a circulation pattern around the cylinder. In three dimensions this same process creates
the side thrust that causes a spinning golf ball, tennis ball, cricket ball or baseball to curve.

Example 6.3

The previous two examples were concerned with flow exterior to the surface of a circular
cylinder  However, a mathematical flow also occurs within the cylinder boundary evenr > R .
though the region  lies outside the region of physical interest for this particularr < R
application. A sketch of the internal streamline pattern for Example 6.1 is shown below:
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Thus, a streamline has been used to replace a physical boundary.

Flow past a circular cylinder was generated in Examples 6.1 and 6.2 by placing singularities
within the circular streamline that modelled the boundary. This suggests that flow past more
generally shaped boundaries might be modelled by adding potential and velocity fields for
numerous sources, sinks, doublets and vortices that have been placed within the streamline that
coincides with the physical boundary. For example, the following velocity potential

� � Ux �
q

2�
ln r1 �

q
2�

ln r2

might be used to approximate flow past the elliptical boundary shown below.

The potential function is the sum of the potentials for uniform flow, a source of strength  atq
point 1 and a sink of strength  at point 2. The source and sink must be of equal strength sinceq
no flow can pass through the closed streamline that models the physical boundary, and the
undetermined constant  can be found by requiring that the normal velocity component vanishq
at one point on the boundary streamline.

A better approximation for this flow could be obtained by placing a number of sources along the x
axis and determining the strengths of these singularities by requiring zero normal velocity
components at a number of different points along the boundary. In particular, we might set

� � Ux � �
N

i 
1

qi

2�
ln ri

and determine the constants  by requiringqi



Chapter 6 — Irrotational Flow 6.15

�u
�x

�
�v
�y

� 0 (6.43)

u �
��

�y

v � �
��

�x

(6.44 a, b)

0 � � � � en � U
dxj

dn
� �

N

i 
1

qi

2�
xj � xi

dxj

dn
� yj

dyj

dn
r 2

i j

in which  is a point on the ellipse boundary,  is a point on the  axis inside thexj , yj xi , 0 x
ellipse boundary,  = distance between points  and  andri j xi , 0 xj , yj

en �

dxj

dn
i �

dyj

dn
j

is the boundary unit normal at  By choosing point  at  different points along thexj , yj . j N
boundary we could obtain  simultaneous equations to solve for the  unknown values of N N qi .
Solution of these equations would give positive values for some 's and negative values forqi
others. In general, we would find that

�
N

i 
1
qi � 0

since no flow passes through the boundary. The use of doublets instead of sources would obviate
this last requirement since a doublet is the result of combining a source and sink of equal
strength.

Even more accurate results could be obtained by using definite integrals to distribute singular
solutions over the boundary surface. This method leads to the solution of singular integral
equations, a technique that is known in most present day engineering literature as the boundary
element method.

Stream functions

In many applications it is helpful to be able to plot streamlines for a flow. This can be done
relatively easily for two-dimensional and axisymmetric flows by introducing a stream function,
which we will denote by  For example, in two dimensions the continuity equation� .

can be satisfied for all flows, inviscid or viscid, by calculating  and  from the followingu v
equations:

Substitution of (6.44) into (6.43) shows that all choices for  will generate values for and � u v
that satisfy (6.43).
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* Do not try to extrapolate this result to axisymmetric flows. A similar procedure for axisymmetric flows easily
leads to the equation satisfied by  but it is not the Laplace equation.5 ,
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(6.45 a, b)
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(6.46)

�
2�

�x 2
�

�
2�

�y 2
� 0 (6.47)

0 � � v dx � u dy �
��

�x
dx �

��

�y
dy � d� (6.48)

Thus, integration of (6.48) shows that the equation of a streamline is
obtained by setting  equal to a constant.�

� x , y � constant (6.49)

q � �
2

1

u dy � �
2

1

��

�y
dy � �2 � �1 (6.50)

If we also require that a flow be irrotational (i.e. flow generated from a velocity potential
function, ), then (6.14) and (6.44) require that�

Elimination of  from (6.45) gives�

This shows that the stream function,  is also a solution of the Laplace equation.* � ,

The physical significance of  is found by substituting for  and  from (6.44) into the� u v
equation for a streamline, which is given by Eq. (1.20).

Every streamline in a flow will have a different value for the integration constant in (6.49).

The integration constant in (6.49) has a very important physical meaning that can be found by
calculating the flow rate contained between any two streamlines. For example, the flow rate
passing through any line parallel to the  axis that connects point 1 on the streamliney

 with point 2 on the streamline  is� x , y � �1 � x , y � �2
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(6.51 a, b)

� � f y (6.52)

df y
dy

� U (6.53)

� � Uy � C (6.54)

� � Uy (6.55)
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1
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��

��

1
r

��

��
� �

��

�r

(6.56 a, b)

Equation (6.50) shows that the difference between two numerical values of  on any two�
streamlines gives the flow rate contained between the two streamlines. Of course there is also a
sign associated with  in (6.50), and this sign will depend upon whether  is in the directionq u

 and whether  The same result can be obtained by integrating alongi or � i y2 > y1 or y2 < y1 .
a line parallel to the  axis, and a little more effort can produce the same result by integratingx
along any curved line joining points 1 and 2. One important consequence of (6.50) is that the
integration constant in (6.49) may be chosen arbitrarily on one streamline in a flow, and
numerical values for the remaining constants will be fixed by (6.50) for all other streamlines.

The stream function for a uniform flow in the  direction is obtained by using (6.27) and (6.45).x

Integration of (6.51 b) gives

and substitution of (6.52) into (6.51 a) gives an ordinary differential equation for f y .

Integration of (6.53) and substitution of the result into (6.52) gives

Choosing  on the streamline  gives  Thus, the stream function for uniform� � 0 y � 0 C � 0.
flow in the  direction isx

Since streamlines for this flow are shown by (6.55) to be lines of constant  it is obvious thaty ,
(6.55) satisfies (6.50).

Stream functions for the remaining basic solutions are most easily obtained by writing the polar
coordinate form of (6.45).
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(6.57 a, b)

� �
q

2�
� (6.58)

� � �

�0

2�
ln r (6.59)

� �
�

2�
sin � � 	

r
(6.60)

� � U0 y �
�

2�
sin�

r
, � � 2�R 2 U0 (6.61)

� � U0 r �
R 2

r
sin� (6.62)

Thus, the stream function for a source is found from (6.28) and (6.56) as the integral of

The solution of (6.57) is

with  for a source and  for a sink. Equation (6.58) shows that streamlines for aq > 0 q < 0
source are the radial lines  constant. Since numerical values of  on two adjacent� � �
streamlines differ by  after one complete circuit about the source, (6.58) also shows that 2� q
is the flow rate emitted by the source.

The stream function for a vortex is

in which  for counterclockwise circulation. The stream function for a doublet is�0 > 0

Streamlines for a vortex are seen from (6.58) to be circles about the vortex centre, while
streamlines for a doublet have a more complicated geometry that has been sketched in Figure 6.5
and Example 6.3.

The stream function,  satisfies a linear equation, (6.47). Thus, stream functions can also be� ,
superimposed by the algebraic addition and subtraction of stream functions for different flows.
For example, the stream function for Example 6.1 is

Streamlines are most conveniently plotted from (6.61) by setting  to obtainy � r sin�

In other problems it is sometimes easier to use Cartesian coordinates or to mix Cartesian and
polar coordinates in the same expression for  The values of � calculated in this section are� .
summarized in Figure 6.5.
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Example 6.4

Flow past a half body is obtained by placing a source in a uniform flow. A sketch of the flow
pattern is shown below.

Since all velocities, both within and outside the half body, approach  the flow rateU0 as r � � ,
emitted by the source at the coordinate origin is calculated at  within the half body asx � �

q � U0 W

which determines  in terms of the approach velocity and the asymptotic width. The potentialq
function, stream function and velocity field for this flow are

� � U0 x �
q

2�
ln r

� � U0 y �
q

2�
�

V � U0 i �
q

2�

e r

r

Flow past the rear half of a half body is obtained by placing a sink in a uniform flow field. The
flow pattern is identical with the above sketch except that both  and the  axis have theirU0 x
directions reversed.

Example 6.5

Steady groundwater flow is a very important application area for potential flow in civil and
environmental engineering. If an aquifer is homogeneous, and if streamlines are horizontal, then
these flows are solutions of a continuity equation

�u
�x

�
�v
�y

� 0

and Darcy's law

u �
��

�x
and v �

��

�y
with � � � Kh
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in which  coefficient of permeability and  = piezometric head = water table elevation ifK � h
the aquifer is unconfined. These equations are identical with the equations used to treat two-
dimensional irrotational flow. Thus, a stream function can be defined in the same way and
solutions for irrotational flow can be used for groundwater flow.

The half body solution considered in Example 6.4 is important in groundwater pollution
problems since it describes the streamlines for flow from a point source of contamination. If
contaminant scattering is neglected, then the contaminant is contained entirely within the half
body boundary. Flow past the rear half of the half body becomes important if a well is placed
downstream from a contaminated area to abstract the contaminated groundwater for treatment.
Then the half body interior becomes what is known as the "zone of capture". If the well abstracts
a total flow of  m3/s, and if the aquifer has a saturated thickness of  then  Thus,Q B , q � Q /B .
if the polluted area has a horizontal width  across the streamlines, then the well must abstractW
a minimum flow of

Q � B U0W

in order to keep the polluted area entirely within the zone of capture. A sketch of this case is
shown below.

Flow Net Solutions

Flow nets provide a graphical technique for solving steady two-dimensional problems. Numerical
techniques, such as the boundary element method mentioned at the end of Example 6.3, are
considerably more accurate, efficient and versatile and are used for almost all modern
applications of irrotational flow theory. Flow nets, however, have one great advantage over any
other solution technique: they provide an easily grasped method for obtaining a physical
understanding of irrotational flow behaviour. For this reason it can be argued that flow net
methods are more important for an introductory course on fluid mechanics than the method of
superposition of basic flows, which forms the basis for boundary element techniques.
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�q � �
2

1

V � e t dn (6.63)

�� � �
2

1

d�
ds

dn (6.64)

�� �
��

�s
�n (6.65)

It was explained in Chapter One, following Eq. (1.44), that the velocity vector is perpendicular
to curves of constant �. Since curves of constant � were shown by Eq. (6.49) to be tangent to the
velocity vector, we immediately see that the curves  = constant and   = constant� x, y � x, y
meet at right angles. This is true for all points in a flow except at isolated points where  either��
vanishes or becomes infinite. A flow net is simply a freehand sketch of these curves of constant
� and �. An example is shown in Figure 6.6 for flow through the streamlined constriction shown
in Figure 4.2. Since flow in Figure 4.2 is symmetrical about the conduit centreline, and since any
streamline can be replaced with a boundary in irrotational flow, the flow net in Figure 6.6 has
been drawn only for the lower half of the flow shown in Figure 4.2.

Flow net construction starts by sketching a guessed pattern of streamlines. Then the potential
lines are sketched in at right angles to check the guessed streamline pattern. The check is
accomplished by ensuring that the continuity equation is satisfied at each point in the flow. More
specifically, along any streamtube bounded by two successive streamlines we can calculate the
flow rate

in which  is tangent to both  and the streamlines,  = distance normal to the streamlines, e t V n �q
= flow rate through the streamtube and points 1 and 2 are points on the two streamlines that
bound the streamtube. Since  from (6.50), and since  from�q � �2 � �1 � �� V � e t � d� /ds
(1.45), (6.63) becomes

A finite-difference approximation for the integral in (6.64) gives

in which  = change in  across two successive curves of constant   = distance�� � � , �s
between these two curves measured across the element mid-point,  = change in  across two�� �
successive curves of constant  and  = distance between these two curves measured across� �n
the element mid-point. A sketch of the geometry used to obtain (6.65) from (6.64) is shown in
Figure 6.7. Equation (6.65) is the basic equation that is used to see if a flow net has been
sketched so that continuity is satisfied across the mid-point of each flow net element.



Chapter 6 — Irrotational Flow 6.23

* We define a potential tube to be the region between two successive curves of constant � .

Figure 6.7  Geometry for a flow net element.

�� � �� (6.66)

V � V � e t �
��

�s
(6.67)

Vb

Va

�

�sa

�sb

(6.68)

The usual practice when sketching flow nets is to choose  across the mid-point of every�n � �s
flow net element and to refer to these elements as curvilinear squares. Then (6.65) shows that
across each element

Along a stream tube, however,  is the same constant for every element. Consequently, (6.66)��
shows that  must also be the same constant across every element in that stream tube.��
Similarly, along a potential tube*  is a constant, and (6.66) shows that  is the same�� ��
constant for every element in the potential tube. The end result is that by choosing �n � �s
in a flow net we ensure that  is the same constant for all stream tubes, that  is the same�� ��
constant for all potential tubes and that  for all elements in the flow net.�� � ��

The velocity at any point in a flow can be calculated by using a finite-difference approximation
of Eq. (1.45)

in which  = velocity at the mid-point of  Equation (6.67) can be written for two differentV �s .
points in the flow net, and, since  is the same constant at each point, the ratio of these two��
equations gives

Equation (6.68) allows velocities at points in the flow to be calculated in terms of one reference
velocity, say  in (6.68). Then specification of that single reference velocity will determine allVa
other velocities in the flow.
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Figure 6.8  Geometry used for the calculation of the velocity on a boundary.

hb �

V 2
b

2g
� ha �

V 2
a

2g
(6.69)

ha � hb

V 2
a 2g

�

Vb

Va

2

� 1 (6.70)

pa � pb


V 2
a 2

�

Vb

Va

2

� 1 (6.71)

Students often make the mistake of thinking that  in (6.67) and (6.68) must be measured�s
across the mid-point of a fluid element. This is not a requirement. In fact, most applications
require the calculation of velocities and pressures on a physical boundary. In this case  is�s
measured along the boundary between two curves of constant  to obtain the velocity on the�
boundary mid-way between these two equi-potential curves. The geometry for this type of
calculation is shown in Figure 6.8.

If (6.22) is applied between points  and  in steady flow, we obtaina b

Manipulations identical with those used to obtain Eq. (4.9) allow (6.69) to be rewritten in the
following dimensionless form:

If gravity is neglected, then we obtain

Since (6.68) gives a way of calculating the right side of either (6.70) or (6.71), we see that a flow
net enables us to calculate velocities and pressures at points throughout the flow once the velocity
and pressure are specified at one point in the flow. If a more general solution is desired in which

 are not specified in advance, then (6.68) can be used to calculate distributionsVa and ha or pa
of the dimensionless term on the left side of (6.70) or (6.71). This is done in Figure 6.9 for the
flow net shown in Figure 6.6.
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Figure 6.10  Flow net construction where streamlines form sharp corners.

1
r

�

�r
r
��

�r
�

1

r 2

�
2�

��2
� 0 (6.72)

� r , 0 � 0 for 0 < r < � (6.73)

� r , 	 � 0 for 0 < r < � (6.74)

It is worth commenting now on the requirements for a unique irrotational flow solution. A unique
velocity distribution for a given boundary geometry can be calculated if normal velocity
components are specified along all boundaries of the flow region. There are, however, some
restrictions on the way in which these normal velocity components can be specified: they must
be uniform distributions across regions in which streamlines are straight and parallel, and they
must satisfy the control volume form of the continuity equation. In addition to these
requirements, a unique calculation of  or  requires that  or  be specified at one point inh p h p
the flow.

The only exception to the orthogonality requirement for lines of constant  and  occurs at� �
points where streamlines form sharp corners. Examples of this are shown in Figure 6.10. In
Figure 6.10 a the interior angle, 	, is in the range  and the sharp corner is a point of0 < 	 < � ,
stagnation where  In Figure 6.10 b the interior angle is in the range  and�V � � 0. � < 	 < 2� ,
the sharp corner is a singularity where  The velocity remains finite, and lines of constant�V �� � .

 and constant  are orthogonal, only when � � 	 � � .

The behaviour of velocities at sharp corners can be shown rigorously by considering flow in the
sharp corner shown in Figure 6.11. The stream function for this flow must satisfy the Laplace
equation and be a constant, say zero, on the boundary. In polar coordinates these requirements
become
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� � A r % /� sin �� /	 (6.75)

V �
1
r

��

��
e r �

��

�r
e
� (6.76)

V � A cos �� /	 e r � sin �� /	 e
�

� /	 r % /� 	 1 (6.77)

�V � � 0 if 0 < 	 < �

� Finite Number if 	 � �

� � if � < 	 < 2�

(6.78)

Figure 6.11  Irrotational flow in a sharp corner.

A solution of (6.72) - (6.74) is readily seen to be given by

in which  is an undetermined constant. The velocity vector is obtained in polar coordinatesA
from

which gives the result

The velocity magnitude in (6.77) is zero, finite or infinite as  when the exponent of  isr � 0 r
positive, zero or negative, respectively. Thus, (6.77) gives the final result

An example of flow net construction with sharp corners is shown in Figure 6.12. Since a
streamline and a physical boundary can be interchanged in irrotational flow, this flow net can be
used to model either flow over a fence or the top half of flow past a flat plate. Points of
stagnation occur at points  and a singularity occurs at point  A viscid flow wouldA and C , B .
not tolerate either the infinite velocity or the corresponding negatively infinite pressure at point B .
Thus, a viscid flow separates at point  as shown in Figure 6.13 for flow past a flat plate.B ,
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Figure 6.12  Irrotational flow over a fence.

Figure 6.13  Viscid flow past a flat plate.

Free Streamline Problems

There are two important reasons for an engineer to study irrotational flow. First, irrotational flow
provides a basic foundation for the study of boundary layer theory. Second, irrotational flow
solutions give a close approximation for a number of flows that occur in practice. Many of the
problems in this category are problems that have free surfaces. Examples include free jet flows
through orifices and slots and open channel flows beneath sluice gates and over spillways and
weirs.

A free surface or free streamline has an unknown geometry that must be calculated as part of a
problem solution. This means that two boundary conditions must be prescribed along a free
streamline. The first boundary condition requires that the normal velocity component vanish
along the free streamline, which is equivalent to requiring that the free streamline be a line of
constant  The second boundary condition requires that the pressure be constant, say zero,� .
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ya � yb

V 2
a 2g

�

Vb

Va

2

� 1 (6.79)

along the free streamline. When dealing with a high speed jet in which gravity may be neglected,
this second requirement is shown by Eq. (6.71) to be equivalent to requiring a constant velocity
along the free streamline, as pointed out previously in Chapter 4. In open channel flows where
gravity cannot be neglected, Eq. (6.70) shows that a constant pressure along a free streamline
requires that 

in which points  are on the same free streamline.a and b

Complex variable methods have been used to calculate a few exact free streamline solutions for
problems in which gravity can be neglected. In most other problems, though, numerical solutions
have been calculated by using a method of trial and error. (An optimist would describe the
procedure as one of successive approximation!) This procedure consists of calculating the
irrotational flow solution for a guessed free streamline geometry. Then velocities are calculated
along the free streamline and used to see if pressures remain constant. It not, then the free
streamline geometry is adjusted and the procedure is repeated.

Tables and figures on the following pages give contraction coefficients and discharge coefficients
for some free streamline problems. The degree of approximation in these types of problems may
be judged by observing the comparison between calculated and measured free surface coordinates
for the axisymmetric jet shown in Figure 6.14. These measurements were made for a jet leaving
a 100 mm diameter orifice, and it is seen that the experimental jet diameter is slightly larger than
the irrotational jet diameter. This small difference is believed to be the result of a thin boundary
layer along the free surface. A boundary layer develops along the plate boundary before the jet
exits from the orifice. Although relatively thin in such a highly accelerated flow, this creates a
layer of lower velocity flow on the free surface. The effect of this boundary layer is to move the
free streamline radially outward if the discharge is to remain the same for both irrotational and
experimental jets. Generally, irrotational flow solutions describe experimental flows better as
both the scale and Reynolds number increase. This is because these conditions cause a decrease
in the ratio of boundary layer thickness to control volume dimensions, and irrotational flow
solutions have zero boundary layer thicknesses.
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Figure 6.14  Comparison between calculated and measured free streamline
geometries for an orifice in the wall of an infinite reservoir.
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FLOW THROUGH A SLOT

Values of Cc � Ajet Aslot � bj b

b /B � � 45� � � 90� � � 135� � � 180��

0 †    .746 .611 .537 .500

.1 .747 .612 .546 .513

.2 .747 .616 .555 .528

.3 .748 .622 .566 .544

.4 .749 .631 .580 .564

.5 .752 .644 .599 .586

.6 .758 .662 .620 .613

.7 .768 .687 .652 .646

.8 .789 .722 .698 .691

.9 .829 .781 .761 .760

1.0 1.000 1.000 1.000 1.000

* The limit  gives� � 180�
“Borda's mouthpiece”,
shown at left.

†   is interpreted as  for a fixed value of b /B � 0 B � � b .

Reference

Rouse, H. (1946). Elementary Mechanics of Fluids, John Wiley and Sons, New York,
p. 57.
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AXISYMMETRIC FLOW THROUGH AN ORIFICE

Gravity neglected and � � 90�

Aorifice

Apipe

�
b
B

2

Cc �

Ajet

Aorifice

�

bj

b

2

0 .578

.25 .594

.50 .624

.75 .691

1.00 1.000

Reference

Hunt, B. (1968) Numerical solution of an integral equation for flow from a circular
orifice, Jnl Fluid Mech., Vol. 31, Pt. 2, pp. 361-377. 
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FLOW BENEATH A SLUICE GATE

b
B

Cc �

Ajet

Aslot

�

bj

b

0 .611

.1 .605

.2 .600

.4 .595

.6 .594

Reference

Fangmeier, D.D. and T.S. Strelkoff. (1968). Solution for gravity flow under a sluice gate,
Jnl Engrg Mech. Div., ASCE, Vol. 94, No. EM1, pp. 153-176.
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TWO-DIMENSIONAL SHARP-CRESTED WEIR

Gravity included. Underside fully ventilated.

q �
2
3

Cd 2gh 3

 = flow rate/unit widthq
 = discharge coefficient.Cd

0 0.1 0.5 1.0 2.0 3.0h /W

.611 .618 .644 .677 .743 .809Cd

Reference

Strelkoff, T.S. (1964). Solution of highly curvilinear gravity flows, Jnl Engrg Mech. Div.,
ASCE, Vol. 90, No. EM3, pp. 195-221.
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Chapter 6 Summary

This chapter has been concerned with calculating solutions of Eqs. (6.1)–(6.2), which describe
inviscid flows. Generally, an inviscid flow approximation is most accurate when moderate to
large Reynolds number flows are accelerated rapidly. This is because boundary-layer thicknesses
decrease rapidly in accelerated flow, flow separation from boundary-layer development will not
occur unless sharp corners exist along boundaries and disturbances present in the flow are
damped rather than amplified into full-scale turbulence. Under these circumstances an inviscid-
flow approximation can be expected to give velocity distributions that are accurate everywhere
except within very thin layers next to physical boundaries, and pressure distributions both along
these boundaries and throughout the remainder of the flow field are closely approximated by the
inviscid-flow solution.

The irrotational or potential flow approximation is the simplest and most widely used inviscid-
flow approximation. Kelvin’s circulation theorem, which was proved and discussed in the first
part of this chapter, shows that the circulation, around a closed material path of fluid particles� ,
remains constant as this material path is convected with the flow. If this material path starts out
from a point where  such as a point where the flow is either at rest or in a state of uniform� � 0,
motion, then  for all time around this path and the velocity field is derivable from the� � 0
gradient of a potential function, as shown by Eq. (6.13). This chapter has been entirely concerned
with the treatment of these kinds of flows.

There are some flows for which an inviscid-flow approximation is appropriate but which also
have velocity fields that are not derivable from the gradient of a potential function. These are
flows that have moderate to large Reynolds numbers and are highly accelerated over relatively
short distances, but motion starts from an approaching velocity field that is non-uniform.
Examples include flow through a streamlined pipe construction when the velocity field of the
approaching flow is highly non-uniform, or flow around a building or other structure that lies
within an atmospheric boundary layer where the approaching velocity increases with distance
above the ground surface. There is no general body of the theory that can be used to treat these
kinds of flows, and analysis must usually proceed by obtaining numerical solutions of
Eqs. (6.1)–(6.2).
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Figure 7.1  Developing and fully developed laminar flow between two flat plates.

Chapter 7

Laminar and Turbulent Flow

Laminar flow derives its name from the experimental observation that different layers of fluid
appear to slide over each other in layers or laminae without the disorderly movement and mixing
that is characteristic of turbulent flow. A strict interpretation of this definition would include both
low Reynolds number, highly viscous flows and the high Reynolds number, highly accelerated
flows that were considered in the previous chapter. However, we will use the term laminar to
mean low Reynolds number flows in which viscous effects are important throughout most of the
flow region.

Laminar Flow Solutions

Figure 7.1 shows the two-dimensional laminar flow that occurs when fluid from a reservoir enters
the region between two parallel flat plates. Boundary layer thicknesses near the entrance are very
small compared to the plate spacing,  As flow proceeds downstream, however, boundary layerB .
thicknesses increase and cause a corresponding increase in uniform flow velocity near the centre
since total flow rates at each cross section are identical. At  in Figure 7.1 the top and bottomx � 0
boundary layers meet, and the flow is said to be fully developed for  In this fullyx � 0.
developed flow region  In other words, in the fully developed flow regionv � 0 and u � u (y) .
the velocity vector is parallel to the plate boundaries, and velocity distributions do not change
from one cross section to the next.

If we set  and  to obtain a solution for fully developed flow, the continuityv � 0 u � u (y)
equation (2.4) reduces to the identity  and the Navier-Stokes equations (2.28) reduce to0 � 0
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� g
�h
�x

� �
d 2 u (y )

dy 2
� 0

� g
�h
�y

� 0

(7.1 a, b)

g
dh (x )

dx
� �

d 2 u (y )

dy 2 (7.2)

g
dh (x )

dx
� C0

�
d 2 u (y )

dy 2
� C0

(7.3 a, b)

h (x ) � h (0) � C0 x g

u (y ) � C1 � C2 y � y 2 C0 2�
(7.4 a, b)

u (y ) � y 2
� B /2 2 C0 / (2� ) (7.5)

UB � �
B /2

	B /2

u (y ) dy (7.6)

U � �
2
3

B
2

2 C0

2�
(7.7)

Equation (7.1 b) shows that  and all terms in (7.1 a) can then be written as ordinaryh � h (x ) ,
derivatives.

However,  are independent variables, which means that one variable can change its valuex and y
without causing a corresponding change in the other. Thus, Eq. (7.2) only makes sense if each of
its two terms equals the same constant, C0 .

Integration of (7.3) gives

Since  we obtain u � 0 at y � B /2 and y � �B /2 , C2 � 0 and C1 � � B /2 2 C0 /(2� ) .
Thus, (7.4 b) becomes

If we define a discharge or flux velocity  byU

then inserting (7.5) in the right side of (7.6) allows us to calculate  fromC0
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u (y ) �
3
2

1 �
y

B /2

2

U (7.8)

Umax �
3
2

U (7.9)

h (x ) � h (0) � � 12
�xU

gB 2 (7.10)

h (0) � h (x ) � f
x
B

U 2

2g
(7.11)

f �
24
Re

, Re �
UB
�

(7.12)

Eliminating  between (7.5) and (7.7) givesC0

which shows that the velocity distribution is a parabola that is symmetrical about the centreline y � 0.
Since the maximum velocity,  occurs at  in (7.8) gives the relationshipUmax , y � 0, setting y � 0
between maximum and flux velocities.

Finally, eliminating  between (7.4 a) and (7.7) gives an expression for the change inC0
piezometric head.

Further manipulation can be used to put (7.10) in the following more significant form:

in which the dimensionless friction factor,  is given byf ,

There are several notable points about this solution. First, since velocities are not changing with x ,
the change in piezometric head given by the right side of (7.11) is also the change in total head.
In other words, (7.11) is an expression for an energy loss, and (7.10) shows that this energy loss
increases as  increase and  decreases. Second, the Reynolds number,  has made� , x and U B Re ,
its appearance in a flow that is not accelerating, and this is despite the statement that is sometimes
made that a Reynolds number is the ratio of an acceleration to a viscous force.

A similar result can be obtained for axisymmetric pipe flow. In this case, the corresponding results
are
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u (r ) � 2 1 �
r

D /2

2

U

Umax � 2U

h (0) � h (x ) � f x
D

U 2

2g

f �
64
Re

, Re �
UD
�

(7.13 a, b, c, d)

Figure 7.2  Experimental verification of (7.13). [Measurements
by Hagen, reproduced from Schlichting (1968).]

F � 3�µ DU (7.14)

F � CD A�
U 2

2
, A � �D 2/4 (7.15)

in which  = pipe diameter.D

Equation (7.13 a) shows that the velocity distribution is a parabola of revolution, and the results
differ from results for the two-dimensional flow only by the magnitude of some of the constants.
An experimental verification of (7.13) is shown in Figure 7.2.

An approximate solution for very slow motion past a sphere gives a drag force on the sphere of

in which  sphere diameter and  velocity of the approaching flow or the velocity of theD � U �

sphere when falling with a constant speed through a motionless fluid. Equation (7.14) can be put
in the standard form
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CD �
24
Re

, Re �
UD
�

(7.16)

Figure 7.3  Drag coefficients for some axisymmetric bodies. [Reproduced from Rouse (1946).]

in which the dimensionless drag coefficient,  is given byCD ,

Equation (7.14) was first obtained by Stokes in 1851. It neglects accelerations and is a reasonable
approximation when  flows which are sometimes termed "creeping flows". EquationsRe < 1,
(7.14) - (7.16) find civil engineering applications when calculating fall velocities for very fine
particles settling through water in both geomechanics and sediment transport. Experimental
verification of (7.16) and drag coefficients for some other axisymmetric bodies are shown in
Figure 7.3.

It is important to realise that (7.14) - (7.16) all neglect the effect of gravity. This is a valid
approximation when the sphere density is much greater than the fluid density. When this is not
the case, gravitational effects must be included by adding a vertical hydrostatic buoyancy force.
For example, the application of (7.14) to calculate the constant terminal velocity of a spherical
body uses the free body diagram shown in Figure 7.4. The only forces acting on the body are the
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�s g �D 3/6 � �f g �D 3/6 � 3�µ D U
�

� 0 (7.17)

U
�

�

g �s � �f D 2

18µ
(7.18)

Figure 7.4  The free body diagram for a
spherical body falling through a dense
fluid with a constant terminal velocity.

�s g�D 3/6 � �f g�D 3/6 � 3�µ DU � �s � k�f �D 3/6 dU /dt (7.19)

dU
dt

�
18µ

�s � k �f D 2
U � U

�

� 0 (7.20)

body weight, the drag force and the hydrostatic buoyancy force. Since the sphere has a zero
acceleration, setting the sum of vertical forces equal to zero gives the equation of motion.

in which  mass densities of the fluid and sphere, respectively, and  sphere�f and �s � U
�

�

terminal velocity. Solution for the terminal velocity gives

Equation (7.18) is shown by Figure 7.3 to apply only when Reynolds numbers are less than unity.

An additional force must be considered when a body
is accelerating. This force is written as a coefficient,

 multiplied by the displaced mass of fluid and thek ,
body acceleration. Because this additional term is
traditionally added to the acceleration term in
Newton's second law, it is called the "added mass
term", and  is called the "added mass coefficient".k
The value of  computed from irrotational flowk
theory for a sphere is 0.500, and some values for other
bodies are given by Robertson (1965). Although it
may be possible to make a physical interpretation of
this term, it is probably less confusing to simply think
of an added mass term as the difference between drag
forces in steady and unsteady flows.

If we consider the movement of a spherical body from the time when it is first released from rest,
Newton's second law becomes

in which the added mass term has been added to the right side. Equation (7.19) can be simplified
by using (7.17) to put it in the form
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dU
dt

�
dx
dt

dU
dx

� U
dU
dx

(7.21)

�
U (x )

0

U
U � U

�

dU � �
18µ

�s � k �f D 2 �
x

0

dx (7.22)

U (x ) � U
�

ln 1 � U (x ) /U
�

� �
18µ x

�s � k �f D 2 (7.23)

U (x )
U
�

� ln 1 �
U (x )

U
�

� � 18
x /D

�s �f � k Re
(7.24)

Figure 7.5  The approach to terminal velocity
when a sphere is released from rest.
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(7.25)

� � V � 0 (7.26)

It is easier to interpret the result if  is calculated as a function of distance,  from the point ofU x ,
release rather than  This can be done by settingt .

Inserting (7.21) in (7.20) and separating variables gives

in which the integration limits have been set by requiring  SinceU(x ) � 0 at x � 0.
 a straightforward integration givesU U � U

�

� 1 � U
�

U � U
�

,

Division of both sides of (7.23) by  gives the following result:U
�

in which the Reynolds number is given by

A dimensionless plot of (7.24) in Figure 7.5
shows that the terminal velocity,  isU

�

,
approached very quickly. For example if

 and  the sphereRe � 1, k � 0.5 �s /�f � 10,
reaches 99 per cent of its terminal velocity
after moving just over two sphere diameters
from its point of release x D � 2.10 .

Another civil engineering application of
laminar flow occurs when considering
seepage of water through the ground. If we
assume that control volume dimensions are
large compared to soil particle diameters,
then we can treat the flow as a continuum and
write a continuity equation in the form
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� � p � �g � � f � 0 (7.27)

� g � h � f � 0 (7.28)

f � �
µ

k0�
V (7.29)

V � �K � h (7.30)

K �

k0�g

µ
(7.31)

V � � � , � � � Kh (7.32)

in which  a flux velocity. (i.e. The product of an area with the normal component of  givesV � V
the flow rate through the area. This area includes the sum of the areas of solids and pores.) Since
particle diameters are of the order of 1 mm, velocities of the order of 1-10 m/day and the
kinematic viscosity for water is of the order of 10-6 m2/s, we see that the Reynolds number has an
order of magnitude between 1/100 and 1/10. This suggests, from Eq. (5.8), that viscous terms in
the Navier-Stokes equations are 10 to 100 times larger than acceleration terms and, consequently,
that acceleration terms can be neglected. Therefore, the momentum equation, (2.18), can be
approximated with

in which  viscous force per unit mass exerted on the fluid. If we assume that the flow isf �

homogeneous and incompressible, Eq. (2.22) allows (7.27) to be written as

in which the piezometric head,  is given by (2.22). However, Stoke's law, (7.14), suggests thath ,
the force per unit mass might be approximated with

in which  constant of proportionality that has units of m2. The negative sign on the right sidek0 �

of (7.29) reflects the fact that  are in opposite directions. Eliminating  between (7.28)f and V f
and (7.29) gives Darcy's law,

in which

The constant  is the intrinsic permeability and is a function only of the porous matrix geometry,k0
and  is the coefficient of permeability with units of a velocity (m/s).K

If the aquifer is homogeneous and isotropic, then  is a constant and (7.30) can be writtenK

Equations (7.26) and (7.32) are identical with Eqs. (6.1) and (6.13). This means that the equations
that describe groundwater flow, which is a flow dominated by viscous resistance, are identical
with the equations that describe inviscid irrotational flow.

Our final application of laminar flow theory will consider the Hele-Shaw approximation. Hele-
Shaw flows are very slow (creeping) viscous flows between two parallel plates, as shown in
Figure 7.6.
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Figure 7.6  A Hele-Shaw flow between two parallel plates.
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u �
3
2

1 �
z

B /2

2

U x , y , t

v �
3
2

1 �
z

B /2

2

V x , y , t

(7.35 a, b)

If we assume that accelerations can be neglected and that all velocities are parallel to the two
boundaries, then the Navier-Stokes equations, (2.28), reduce to

Equation (7.33 c) shows that  does not change with  and an order of magnitude analysish z ,
similar to the one carried out in Chapter 5 can be used to show that the second derivatives of u
and  are much larger in the  direction than in the  and  directions. Thus, (7.33) reduces tov z x y

Finally, Eq. (7.8) suggests that we might approximate  and  withu v
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* A prototype is a flow in the field that is approximated with a model flow.

U � � K
�h
�x

V � � K
�h
�y

(7.36 a, b)

K �
gB 2

12�
(7.37)

�U
�x

�
�V
�y

� 0 (7.38)

Elimination of and  from (7.34) - (7.35) gives the end resultu v

in which  are flux velocities in the  directions, respectively, and  is given byU and V x and y K

Since  are flux velocities, the continuity equationU and V

completes the description of the flow. Equations (7.36) and (7.38), which describe fluid
movement in directions parallel to the two plate boundaries in Figure 7.6, are identical with the
two-dimensional form of Eqs. (7.26) and either (7.30) or (7.32), which can be used to describe
either inviscid irrotational flow or groundwater flow. Thus, a Hele-Shaw experiment is an
experimental analogy that can be used to model either of these two types of flow.

Probably the most important practical use of a Hele-Shaw analogue models two-dimensional
groundwater flow in a vertical plane. Since  have the same physical meaning in bothh , U and V
model and prototype,* boundary conditions for a free surface or an interface between two fluids
with different densities are identical for model and prototype provided that the groundwater
aquifer porosity is taken as unity in the Hele-Shaw model. Thus, one of the great advantages of
a Hele-Shaw experiment is that it locates a free surface or interface experimentally without using
the trial and error procedure that is required when numerical methods are used.

Equation (7.37) shows that the "permeability" is directly proportional to the square of the plate
spacing. This means that changes in permeability can be modeled by a change in plate spacing,
which is easily accomplished by inserting a third plate, with its required thickness calculated from
(7.37), between the two boundaries shown in Figure 7.6. For example, if the permeabilities for
two different regions in the flow have the ratio  then (7.37) shows that the plateK1 /K2 � 1/5 ,
spacings in these two regions must have the ratio  A reservoir ofB1 /B2 � K1 /K2 � 1 5.
constant depth is modelled by making  for the reservoir very large compared to the value of B B
used for the aquifer. One implication that follows from this is that if  is either very largeK1 /K2
or very small, say 100 or 1/100, then the region of larger permeability will behave essentially as
a reservoir in which velocities are negligible and piezometric heads are nearly constant. In this
case it is better to model only the region of smaller permeability and to treat the region of larger
permeability as a reservoir.
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Figure 7.7  A Hele-Shaw model for seepage through a zoned embankment.

Figure 7.8  The flow that would occur in Figure 7.7 if K1 /K2 � 100.

An example of a vertical Hele-Shaw experiment used to model seepage through a zoned
embankment is shown in Figure 7.7. The embankment core has a low permeability,  to reduceK2 ,
seepage through the embankment. Embankment cores are typically constructed from fine silt or
clay, but these materials have very low structural strengths. Consequently, coarser material with
a permeability  is placed on both sides of the core to add structural strength and to preventK1
erosion of the core material from seepage (piping). The two reservoirs have plate spacings, B ,
which are much larger than plate spacings for the embankment (by a factor of at least 10), and the
plate spacing ratio  is calculated from  If this ratio is 10 or more, then itB1 /B2 B1 /B2 � K1 /K2 .
would be better to treat the outer material as reservoirs and to only model flow through the
homogeneous core. Figure 7.8 shows the flow that would result if  and if thisB1 /B2 � 10
procedure were not followed.

There are several practical problems to consider when constructing Hele-Shaw experiments. First,
since  is proportional to  it is very important to keep  constant in regions of constant K B 2, B K .
This is normally done by using plates constructed from relatively flexible material, such as
Perspex or Lucite, and by inserting numerous spacers throughout the region of flow. These
spacers are most conveniently constructed by drilling holes through both plates and inserting
small diameter bolts through larger diameter metal sleeves with lengths that have been machined
to the same length as the required plate spacing. Flow disturbances caused by these spacers are
localised and have negligible effects on the overall flow characteristics.
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Figure 7.9  Use of a vertical free jet to
measure the permeability in a Hele-Shaw
experiment.
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A second practical consideration concerns the choice of fluid and plate spacing. (The relative plate
spacings are determined from the permeability ratios, but a plate spacing must still be chosen for
one of the regions of constant ) Since the Hele-Shaw analogy assumes creeping laminarK .
motion, velocities must be very low. Velocities can be decreased by decreasing the plate spacing
and/or increasing the fluid viscosity. However, since a free surface occurs in the experiment,
decreasing the plate spacing too much causes errors from capillary climb. This is easily spotted
in a model by observing an apparent jump in free surface height where the plate spacing changes.
In the writer's experience it is better to keep plate spacings reasonably large to minimize capillary
effects and to increase the fluid viscosity to keep velocities at acceptably low values. For example,
the writer has used one experiment for a number of years in which oil flows between two Perspex
plates with a spacing of 3 mm.

A relatively high fluid viscosity causes the pump that is used to recirculate the oil to heat the oil
during the experiment. Since changing the oil temperature affects both the oil viscosity and the
permeability given by (7.37), it becomes necessary to know how the permeability varies with oil
temperature. This information is obtained by measuring the permeability at a number of different
temperatures with a "permeameter" that consists essentially of a vertical free jet between two
plates of Perspex, as shown in Figure 7.9. Since streamlines are vertical in this flow,  andU � 0
(7.36 a) shows that  is a function of  determined by its value along either of the two verticalh y
free streamlines, where  Thus,  everywhere within the jet, and this result togetherh � y . h � y
with Eq. (7.36 b) shows that the vertical flux velocity exactly equals the coefficient of
permeability,  Therefore, the permeability is measured by dividing the total flow rate by theK .
cross sectional area of the jet.

Finally the problem of scaling results from model to
prototype needs to be considered. The
recommended technique uses results from a
dimensional analysis for this purpose. In Figure 7.7,
for example, if  is the upstream reservoir depthH
and if  is a characteristic horizontal dimension ofL
the embankment (say its base width), then the flow
rate per unit length of embankment,  will be aq ,
function of the following group of dimensionless
variables:

in which model and prototype embankments are
geometrically similar. The function  is not known,f
but it is exactly the same function for both model
and prototype. Thus, if we require that
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Figure 7.10  Variation of velocity with time at a point in turbulent flow.

then we must also have

These three equations can be used to calculate  for the prototype from valuesH , K1 /K2 and q
measured for the model. Dimensional analysis techniques, which are used to obtain Eq. (7.39),
will be introduced in a later chapter.

Turbulence

In Chapter 4 it was stated that turbulence is a highly disorganised state of flow that occurs when
a flow becomes unstable. In detail, it consists of many vortices of differing sizes and intensities
superimposed upon the main flow pattern. This means that a flow that might otherwise be steady
and one or two-dimensional becomes unsteady and three-dimensional, although time averages of
velocities and pressures may still be steady and one or two-dimensional. For example, a typical
velocity measurement at a point in turbulent flow is shown in Figure 7.10, and it is seen in this
case that the velocity fluctuations caused by turbulence have a zero time average and
instantaneous magnitudes that are small compared to the time averaged velocity.

All turbulence starts as a disturbance that becomes unstable and is amplified throughout a larger
region as time proceeds. A very good example of this is shown in Figure 7.11 for flow along a flat
plate. Ludwig Prandtl took these photographs in 1933 by moving a camera with the flow after
sprinkling aluminium dust on the free surface to make the flow pattern visible. Osborne Reynolds
carried out the first systematic investigation of flow stability in 1883 by injecting a filament of
dye into flow through a glass tube. Reynolds defined a stability parameter, now known as the
Reynolds number, for these flows by using the average flux velocity and the tube diameter, as
shown in Eq. (7.13 d). He initially found that the flow became unstable for  but laterRe � 1400
changed this value to Re � 1900 � 2000.
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Figure 7.11  The amplification of a
disturbance into turbulence for flow along a
flat plate. [Photographs by Prandtl, reproduced
from Schlichting (1968).]

There is a tendency for students to think that the
transition from laminar to turbulent flow
depends entirely on the value of a characteristic
Reynolds number. Actually, this transition
depends upon a number of factors, including the
presence of an initial disturbance that has a
suitable scale (characteristic linear dimension)
and frequency, a large enough Reynolds number,
whether the flow is being accelerated or
decelerated and the presence or absence of steep
lateral velocity gradients. Each of these factors
will be discussed now in more detail.

Schlichting (1968) gives a brief discussion of
early experimental evidence which indicated that
the transition to turbulence can be delayed by
reducing the amount of disturbance present in a
flow. For example, V.W. Ekman in 1910
conducted experiments similar to Reynolds'
experiments in which laminar flow occurred for
Reynolds numbers as high as 40,000. This was
accomplished by avoiding, as far as possible, the
introduction of disturbances in the flow. Thus,
the figure of 2,000 must be regarded as a lower
limit of the Reynolds number for flow through a

pipe. Furthermore, Tollmien in 1929 showed mathematically that whether or not a disturbance is
amplified as time proceeds also depends upon both the wave length, or scale, and the frequency
of an introduced disturbance. This analysis was carried out by introducing a mathematical
disturbance into the Navier-Stokes equations and then determining values for parameters in the
resulting equation that allow this disturbance to grow with time. The curve of neutral stability,
which is the boundary between regions of stable and unstable flow, is shown in Figure 7.12 for
flow along a flat plate. (  is the disturbance frequency,  is the velocity at infinity,  is the�r U

�

�

kinematic viscosity and  is the boundary-layer displacement thickness for a laminar boundary�1
layer � about one third of the total boundary layer thickness.) Experimental confirmation of this
result was not obtained until 1943 when H.L. Dryden, G.B. Schubauer and H.K. Skramstad of the
U.S. National Bureau of Standards succeeded in constructing a wind tunnel with an extremely low
turbulence intensity in the approaching flow. Their experimental data is also shown in Figure
7.12.

Figure 7.12 shows that all flows along a flat plate with  will be laminar, which confirmsRe < 400
the intuitive notion that increases in viscosity tend to damp disturbances while increases in either
scale lengths or velocities hasten the approach to instability. For  flow along a flatRe > 400,
plate may be either laminar or turbulent � depending upon the disturbance frequency. Since the
disturbance frequency can be replaced with a velocity divided by the disturbance scale, it can be
concluded that disturbance scale also affects the transition to turbulence.
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Figure 7.12  The curve of neutral stability for flow along a
flat plate predicted from theory by Tollmien in 1929 and
verified with experiment by Schubauer and Skramstad in
1943. [Reproduced from Schlichting (1968).]

It must not be concluded from this
discussion that the same critical
Reynolds number applies for all
flows. As illustrated by Eqs.
(7.12), (7.13 d), (7.16) and
Fig. 7.12, Reynolds numbers are
d e f i n e d  w i t h  d i f f e r e n t
characteristic velocities and length
scales for different flows. As far as
the writer knows, there is no way
that different stability limits for

 in different flows can beRe
related, and it must be accepted
that the transition to turbulence
will occur at different values of Re
for different flows.

Fluid accelerations tend to damp
disturbances, while decelerations
rapidly amplify disturbances for
flows with moderate to large
Reynolds numbers. In steady flow
this means that flows with rapidly
converging streamlines are likely
to remain laminar, and flows with
diverging streamlines are likely to
be turbulent. As an example, a key feature of the low turbulence-intensity wind tunnel that was
used to obtain the experimental data in Figure 7.12 was a very large contraction ratio for the
approaching flow.

Steep lateral velocity gradients are seen from Eq. (1.1) to create large tangential stresses in a flow.
These tangential stresses introduce many disturbances, decelerate the flow and, at high enough
Reynolds numbers, lead to highly turbulent flows. The classic example of this type of flow occurs
where a submerged jet enters a reservoir of otherwise motionless fluid, as shown in Figure 7.13.
A free shear layer of highly turbulent flow starts at the nozzle edge, where the lateral gradient of
the velocity is nearly infinite. This free shear layer expands rapidly in size as it extends further
into the reservoir of fluid, and the rapidly decelerated flow becomes highly turbulent. Other
examples of this nature occur in wakes behind bluff bodies and along interfaces between two
fluids with different densities and velocities. An atmospheric example of this latter type of flow
is shown in Figure 7.14, in which clouds show the development of vortices along the boundary
between relatively dense fluid in a cold front below lighter warm air above.

Turbulence has two important effects on any flow: energy dissipation and mixing. The fact that
energy dissipation occurs at a greatly increased rate in turbulent flow as the result of energy
transfer from the main flow into the vortices has already been pointed out in Chapter 4. Ultimately
this transferred energy is dissipated in the form of heat, although temperature rises are so small
as to be almost unmeasurable. The submerged jet in Figure 7.13 provides an outstanding example
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Figure 7.13  Velocity distributions and the turbulent mixing region in a submerged jet.
[Reproduced from Albertson, Dai, Jensen and Rouse (1948).]

Figure 7.14  A free shear flow along the interface between cold and warm air in the atmosphere.
[Photograph by Paul E. Branstine, reproduced from Drazin and Reid (1981).]

of energy dissipation in a highly turbulent flow. It is an experimental fact that piezometric heads
are constant throughout a submerged jet if the reservoir of motionless receiving fluid is large
compared to the nozzle diameter,  It is also an experimental fact that centreline velocities decayD .
to zero as  becomes large. Thus, the Bernoulli sum  along the centre  streamlinez/D h � V 2 (2g )
decays from its maximum value at  to its minimum value of  in which  is thez � 0 h at z � � , h
same constant throughout the flow. In other words, the head loss and energy loss are exactly

 and  respectively.V 2 / (2g ) �V 2 /2 ,
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* n actually varies with the Reynolds number in smooth pipes. Schlichting (1968) gives an experimentally
measured variation from  n = 6 at Re = 4,000 to n = 10 at Re = 3,2000,000. The value n = 7 holds at Re = 110,000.
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The effects of turbulent mixing are usually most noticeable in directions that are normal to the
direction of main flow. This lateral mixing, which transports high velocity particles into regions
of lower velocity and vice versa, creates a redistribution of average longitudinal velocity and also
mixes or spreads contaminants and tracers across time averaged streamlines. For example,
Figure 7.13 shows that the lateral width of the central core of uniform velocity in the zone of flow
establishment is rapidly reduced through turbulent mixing to a value of zero at the start of the
zone of established flow. This occurs at just over six nozzle diameters from the point where the
jet first enters the reservoir. This lateral mixing then continues to spread the longitudinal velocity
distribution in the zone of established flow, and the longitudinal velocities are ultimately reduced
to zero everywhere as they are spread over larger and larger radial distances. If the jet contains a
contaminant or tracer, such as smoke, that is not present in the undisturbed receiving reservoir of
fluid, this tracer is mixed and spread laterally in the same way.

A second example of lateral mixing caused by turbulence concerns fully developed flow in pipes.
Laminar pipe flow with an average or flux velocity  is seen from (7.13 a) to be a parabola ofU
revolution.

An empirical expression that is often used to describe turbulent flow in smooth pipes is given by
the following power law:

in which  distance from the pipe wall =  is an exponent that depends upon y � D /2 � r and n Re .

An integration of (7.44) over the pipe cross section gives the following relationship between
average and maximum (centreline) velocities:

Typically,  is taken as 7 and (7.44) is referred to as the one seventh power law.* In this case,n
(7.44) becomes
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Figure 7.15  Velocity distributions in laminar and turbulent pipe flow.

Since Eqs. (7.43) and (7.46) both measure  relative to the same flux velocity,  theseu U ,
equations can be plotted upon the same graph and compared, as shown in Figure 7.15. This plot,
which keeps the flow rate constant for the two flows, shows that lateral mixing creates a much
more uniform velocity distribution in the turbulent flow.

Turbulence Solutions

There is no general analytical technique that can be used to obtain solutions for problems with
turbulent flow. Various methods have been used in the past and have provided some answers for
specific types of problems. These include mixing length techniques, statistical methods and more
recent  computer modelling methods. None of these techniques, however, are generallyk � �

applicable, and experimental methods have undoubtedly provided the most useful general method
for obtaining turbulent flow solutions. We will consider only two of these solutions: flow in pipes
and flow in the submerged jet shown in Figure 7.13.

The solution for laminar pipe flow was given in Eqs. (7.13 a, b, c, d), and it is important to notice
that the roughness of the pipe wall boundary does not appear in these equations. Thus, the friction
factor,  in laminar flow depends only upon the Reynolds number and not upon the pipe wallf ,
roughness. When turbulence first appears in the flow, it occurs in central portions of the flow
away from the boundary, as shown in Figure 7.16. Thus, a layer of laminar flow, called the
laminar sublayer, exists next to the boundary. As long as this sublayer has a thickness that is
sufficient to submerge the pipe wall roughness, this laminar sublayer will exist and the pipe is
described as "hydraulically smooth". This is because boundary shear forces are calculated from
Newton's law of viscosity, Eq. (1.1), and boundary roughness has no influence in laminar flow.
Thus, boundary shear forces in smooth pipes depend only upon the Reynolds number, but they
are considerably larger than corresponding stresses in completely laminar flow because of the
much steeper velocity gradient created on the pipe boundary from turbulent mixing in the central
portion of the flow.
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Figure 7.16  Zones occupied by turbulent and laminar flow for turbulent flow through a
hydraulically smooth pipe.

� � 	�U 2 /2 (7.47)

p1 A � p2 A � Pw L	�U 2 /2 � 0 (7.48)

The thickness of the laminar sublayer decreases as the Reynolds number increases. When the
sublayer thickness decreases to about the same value as the roughness element height, the sublayer
disappears and turbulent flow exists all the way to the boundary. At this point the tangential
boundary force consists almost entirely of pressure forces acting on the roughness elements
(pressure or form drag), and the Bernoulli equation suggests that the tangential boundary stress
might be approximated with

in which  is a characteristic velocity that we will take as the flux velocity,  and  is anU Q /A , 	

experimental coefficient known as the Fanning friction factor. In this case  can be expected to	

depend only upon the relative roughness height,  and not upon the viscosity. The pipe is now� /D ,
described as "hydraulically rough". Thus, the same pipe can be either smooth or rough, depending
upon relative dimensions of the roughness elements and laminar sublayer.

A free body diagram showing horizontal control volume forces for fully developed turbulent flow
through a horizontal pipe is shown in Figure 7.17. The only horizontal forces are pressure forces
on the two end sections and the tangential boundary force given by the product of  in (7.47) with�

surface area  in which  is the wetted perimeter,  and  is the control volume length.Pw L Pw �D , L
Since the fluxes of momentum out of and into the control volume are identical, the momentum
equation requires that the sum of these horizontal forces vanish.
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Figure 7.17  Horizontal control volume forces for turbulent flow through a
horizontal pipe. (  cross sectional area and  wetted perimeter.)A � Pw �

p1 � p2 � 	
Pw
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Solution of (7.48) for the pressure difference gives

The ratio  is called the "hydraulic radius" and has an important significance for non-circularA /Pw
cross sections and open channel flow. For a pipe, this ratio is  Thus, Eq. (7.49) becomesD /4.

in which  Darcy-Weisbach friction factor that is related to the Fanning friction factor,  byf � 	 ,

There are several important points about Eq. (7.50). First, since the flow velocity is the same at
both cross sections, Eqs. (4.12) and (4.13) show that head and energy losses are given by

in which there has been an obvious switch in notation from  for the flux velocity. Second,V to U
our development suggests that  depends upon  but not  for completely turbulent flowf � /D Re
through a rough pipe but that  depends upon  and not  either for completely laminar flowf Re � /D
or for turbulent flow through a smooth pipe. This suggests that a transition zone must exist in
which  depends upon both  and  for turbulent flow in a pipe that is neither completelyf Re � /D
smooth nor completely rough.
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HL �
f
4

L
A /Pw

U 2

2g

EL �
f
4

L
A /Pw

�
U 2

2

(7.53 a, b)

All of the features just discussed are illustrated in the Moody diagram for  that is shown inf
Figure 7.18. This plot, which is essential for the engineering solution of pipe flow problems,
shows that  is given by (7.13 d) for  A critical zone, shown by cross hatching, existsf Re < 2000.
for  It is in this zone that a disturbance first becomes amplified into2000 < Re < 4000.
turbulence. Turbulent flow in smooth pipes is shown by the bottom curve for  AlongRe > 4000.
this curve  depends upon  but not upon  The horizontal lines to the right of the dashedf Re � /D .
curve are for complete turbulence in rough pipes, when  depends upon  but not upon f � /D Re .
The curved lines joining the smooth pipe curve to the family of rough pipe curves lie in a
transition zone where  depends upon both  Thus, as stated previously, the samef Re and � /D .
pipe may be either smooth or rough, depending upon  values � which determine theRe and � /D
relative dimensions of the laminar sublayer and roughness heights. At this point the writer
suggests that students might profit from rereading this section on turbulence solutions while
referring back to Figure 7.18 for an illustration of the various points raised in the discussion.

Problems involving flow through conduits with non-circular cross sections are usually solved with
(7.49) and (7.51) provided that cross section width to height ratios are not too different from unity.
Thus, head and energy losses for these flows are computed from

The Reynolds number and relative roughness for calculation of  in (7.53 a, b) are determinedf
by substituting four times the hydraulic radius,  for . Equations (7.53 a, b) reduce toA PW , D
(7.52 a, b) for circular cross sections.

The turbulent jet shown in Figure 7.13 will be considered in detail in a later chapter on
dimensional analysis. Since pressures are known from experimental measurements to be
hydrostatic throughout the flow, the momentum flux through any cross section normal to the flow
does not change with  This fact, together with a functional relationship obtained fromz .
dimensional analysis, greatly simplify the problem of fitting mathematical equations to
experimental data. The end result for an axisymmetric jet follows:
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Umax

U0

� 1 for 0 � z /D � 6.2

�
6.2
z /D

for 6.2 � z /D < �

(7.54)

u
Umax

� e 	77(r /z )2
for 6.2 � z /D < � (7.55)

Q
Q0

� 0.32
z
D

for 6.2 � z /D < � (7.56)

Cmax

C0

� 1 for 0 � z /D � 5.0

�
5.0
z /D

for 5.0 � z /D < �

(7.57)

c
Cmax

� e 	62(r /z )2
for 5.0 � z /D < � (7.58)

Umax

U0

� 1 for 0 � z /D � 5.2

�
2.28

z /D
for 5.2 � z /D < �

(7.59)

u
Umax

� e 	42(y /z )2
for 5.2 � z /D < � (7.60)

Q
Q0

� 0.62
z
D

for 5.2 � z /D < � (7.61)

in which  are concentrations for a neutrally buoyant tracer or contaminant thatc , C0 and Cmax
are usually expressed in units of mg/litre. Corresponding results for the two-dimensional jet (flow
from a slot) follow:
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Cmax

C0

� 1 for 0 � z /D < 5.6

�
2.38

z /D
for 5.6 � z /D < �

(7.62)

c
Cmax

� e 	40(y /z )2
for 5.6 � z /D < � (7.63)

in which  slot width and  replaces the radial coordinate of the axisymmetric jet. EquationsD � y
(7.54) - (7.56) and (7.59) - (7.61) were obtained by Albertson, Dai, Jensen and Rouse (1948), and
(7.57) - (7.58) and (7.62) - (7.63) were abstracted from Fischer, List, Koh, Imberger and Brooks
(1979).

Equations (7.54) - (7.63) show that turbulence mixes the time averaged velocity distribution and
a tracer in similar, but not completely identical, ways. All velocities decay as  which meansz � � ,
that a head loss of  occurs along the centre streamline. Finally, Eqs. (7.56) and (7.61)U 2

0 (2g )
show that the volume flux past any cross section increases with  as a result of entrainment fromz
turbulent mixing. Entrainment from mixing is another characteristic of highly turbulent flow, and
entrainment from turbulent mixing even occurs across an air-water interface in hydraulic jumps
or high velocity flows down spillways.
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Figure 8.1  Boundary-layer development along a flat plate.

Chapter 8

Boundary-Layer Flow

It was shown in Chapter 5 that many flows with large Reynold numbers have viscous effects that
become important only near physical boundaries. If  is a curvilinear coordinate measured alongx
such a boundary from the start of the layer of retarded flow, then Eq. (5.21) estimates that the
thickness,  of a laminar boundary layer has the following order of magnitude:� ,

in which  is the velocity at the outer edge of the boundary layer. Equation (8.1) implies thatU
the relevant Reynolds number for boundary-layer calculations uses the velocity at the outer edge
of the boundary layer and distance along the boundary for the characteristic velocity and length
in the Reynolds number. It also shows that an increase in the Reynolds number causes a decrease
in the relative boundary layer thickness. [The relative thickness,  is shown by (8.1) to� x,
decrease inversely with  However, the absolute thickness,  is shown by this same equationx. �,
to increase directly with ] The strict definition of a boundary layer requires that  be veryx. �/x
small  which implies that � /x << 1 , Rex >> 1.

The simplest example of boundary-layer development occurs for flow along a flat plate, which
is illustrated in Figure 8.1. The coordinate origin is chosen at the leading edge of the plate, and x
is measured along the plate surface in the direction of flow. The plate has a zero thickness, and
the boundary-layer thickness,  is the  coordinate of the point where the velocity is within one� , y
per cent of the approach velocity,  If the flow were inviscid, the constant velocity  wouldU . U
be maintained all the way to the plate boundary  Thus,  marks the outer edgey � 0. y � � (x )
of the region which is affected by viscous shear next to the plate surface. The surface y � � (x )
must not be confused with a streamline, since flow actually crosses through this mathematical
surface.

The boundary layer starts with zero thickness at  and increases its thickness with distancex � 0
downstream. Flow within the boundary layer is initially laminar, and tangential stresses on the
plate surface are unaffected by plate roughness. However, the Reynolds number defined in (8.1)
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Figure 8.2  Horizontal forces on a control volume in the boundary layer.

increases its magnitude with distance downstream. Thus, if  becomes large enough, and ifRex
a disturbance of the correct magnitude and frequency is present, the boundary layer becomes
turbulent at  Then a viscous sublayer forms next to the boundary, and the plate behavesx � xc .
as a smooth surface provided that the roughness elements are completely submerged in the
laminar sublayer. In this case, plate roughness has no effect upon tangential plate stresses.
However, if the sublayer thickness and roughness element height have the same order of
magnitude, the sublayer vanishes. Then turbulent flow exists right up to the plate surface, and
the plate becomes a hydraulically rough surface. 

Tangential stresses along a plate surface can, in theory, be calculated from Eq. (1.1) as long as
the plate surface remains smooth. Over the front portion of the plate, where the boundary layer
is completely laminar, the velocity gradient on the plate surface decreases with  Thus,x .
tangential stresses decrease with  until  Downstream from  turbulent mixingx x � xc . x � xc
creates much steeper velocity gradients, and tangential stresses on the plate surface increase. If
the laminar sublayer vanishes and the plate surface becomes hydraulically rough, pressure drag
on the roughness elements becomes the dominant source of tangential stress, a stress that is larger
than the tangential boundary stress for either a completely laminar boundary layer or a turbulent
boundary layer along a smooth boundary. Thus, tangential boundary stresses increase as flow in
the boundary layer goes from completely laminar flow to turbulent flow along a smooth boundary
to turbulent flow along a rough boundary.

Boundary Layer Analysis

The fundamental ideas of boundary layer theory were first published by the German engineer
Ludwig Prandtl in a paper given at a mathematics conference in Heidelberg, Germany in 1904.
Although Prandtl had exceptional insight into the physics of fluid motion and was particularly
skilful in applying this insight to remove relatively small terms from the governing partial
differential equations, he was unable to solve these equations by himself. The first solution of
the boundary layer equations was published in 1908 by Blasius, a young student of Prandtl's.
Blasius obtained a mathematical solution of Eqs. (5.23 a, b, c), which describe flow in a laminar
boundary layer. However, we will illustrate the fundamental ideas of boundary layer calculations
by using an approximate method that was first proposed by K. Pohlhausen in 1921. This method
is far simpler than obtaining direct solutions of the partial differential equations for a laminar
boundary layer, and it also has the great advantage of providing an approximate method for the
calculation of turbulent boundary layers.
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p� x � p� x��x � p � x � �x � � x � �0 � x �

�
 x � �x

0

�u 2 dy � �
 (x )

0

�u 2 dy � �
y
 (x )

�u V � en ds
(8.2)

�
y 
  (x )

�u V � e n ds � �U �
y 
  (x )

V � en ds � �U �
 (x )

0

u dy � �
 (x��x )

0

u dy (8.3)

�

p� x��x � p� x

�x
� p � x � �x � � (x )

�x
� �0 �

�
�

 (x��x )

0

u 2 dy � �
 (x )

0

u 2 dy

�x
� �U

�
 (x��x )

0

u dy � �
 (x )

0

u dy

�x

(8.4)

�
d (p� )

dx
� p d�

dx
� �0 � �

d
dx �



0

u 2 dy � �U d
dx �



0

u dy (8.5)

�

�

dp
dx

�

�0

�
� U d

dx �


0

u dy �
d

dx �


0

u 2 dy (8.6)

The Pohlhausen integral equation can be obtained by applying the horizontal component of the
momentum equation to the control volume shown in Figure 8.2. Since  gravitational� /x << 1,
forces are neglected in boundary layer calculations. Thus, pressure and boundary shear create the
only horizontal forces on the control volume. Equation (5.23 c) shows that pressures are constant
at any cross section in the boundary layer, which in turn shows that  within a boundary layerp
is determined from its irrotational value on the boundary. (Since  irrotational flow� /x << 1,
pressures are calculated along the boundary by neglecting the presence of a boundary layer.)
Thus, the momentum equation gives

in which the last integral does not vanish since  along  However,V � en � 0 y � � (x ) .
 along  in which  is the irrotational flow velocity on the plate surface,u � U (x ) y � � (x ) U (x )

and the last integral can be rewritten as

in which the continuity equation has been used to calculate the flux through  as the y � � (x )
difference between the flux through the cross sections at  Substituting (8.3) intox and x � �x .
(8.2) and dividing by  gives�x

Letting  in (8.4) gives the end result.�x � 0

Expansion of the first term and division by the constant  puts (8.5) in the following simpler��
form:
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�0

�
�

d
dx �



0

U � u u dy , U � constant (8.7)

F � �
L

0

�0 dx (8.8)

F � � �
 (L )

0

U � u u dy (8.9)

in which  are functions of  that have been calculated previously from andp /dx and U x
irrotational flow solution that disregards the presence of the boundary layer.

Equation (8.6) can be shown to be the exact result of integrating the boundary layer equation
(5.23 a, b, c), across the boundary. The approximation comes in the method that must be used
to solve (8.6). This method uses the following steps:

1 Values of  are calculated from an irrotational flow solution and substituteddp /dx and U
into (8.6).

2 A physically realistic assumption is made for the variation of  within the boundary layeru
and is substituted into the integrals on the right side of (8.6).

3 An expression for  is substituted into the left side of (8.6). For a laminar boundary�0
layer,  is calculated from Eq. (1.1) and the assumed variation of  For turbulent�0 u .
boundary layers, empirical pipe flow equations are used to approximate �0 .

4 The resulting first-order ordinary differential equation for  is integrated. The� (x )
integration constant is calculated by requiring � (0) � 0.

For the simplest problem of a flat plate of zero thickness aligned with the flow, the irrotational
flow solution is  constant and  Then (8.6) simplifies toU � dp /dx � 0.

The drag force on one side of the plate is obtained from

in which  plate length and the plate has a unit width. Using (8.7) in (8.8) and making use ofL �

the initial condition  gives � (0) � 0

in which  constant.u � u L , y and U �
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Example 8.1

We will use (8.7) and (8.9) to calculate the solution for a laminar boundary layer along a flat
plate. Since fully developed laminar flow between two flat plates has a velocity distribution given
by a parabola, we will assume that

u x , y � a x � b x y � c x y 2

Physics requires the boundary conditions

u x , 0 � 0 , u x , � � U ,
�u x , �

�y
� 0

These three equations determine  and lead to the resulta , b and c

u x , y � U 2� � �2 in which � �
y

� x

Thus, the integral on the right sides of (8.7) and (8.9) is

  
�


0

U � u u dy � U 2

�


0

1 � 2� � �2 2� � �2 dy � U 2� �
1

0

2� � 5�2
� 4�3

� �4 d�

�
2
15

U 2 � x

(The integral on the right side of (8.7) can always be calculated most easily by changing the
integration variable from ) The shear stress on the left side of (8.7) is calculated byy to � .
inserting the expression for  into Eq. (1.1) to obtainu x , y

�0 � µ �u x , 0
�y

� µ du
d�

! 
 0

��

�y
� µ

2U
�

Thus, Eq. (8.7) becomes

µ
�

2U
�

�
2
15

U 2 d�
dx

Separating variables gives

�
 x

0

� d� � 15 �

U �
x

0

dx

and integration gives

1
2
�2

� 15 �

U
x
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Figure 8.3  Comparison between measured and calculated velocity distributions within a laminar
boundary layer on a flat plate. [Measurements by Hansen, reproduced from Rouse (1961).]

This can be written dimensionlessly as

�

x
�

30
Ux /�

�
5.48

Rex

The force per unit width on one side of the plate is calculated from (8.9).

F � � �
 L

0

U � u u dy � �
2
15

U 2 � L � �
2
15

U 2 5.48

ReL

L

This can be put in the more significant form

F � CD A�
U 2

2
, A � L × 1 , CD �

1.46

ReL

, ReL �
UL
�

The exact solution of (5.23 a, b, c) that was obtained by Blasius gave

�

x
�

5.0

Rex

, CD �
1.33

ReL

Thus, the error of approximation in our solution is about 10 per cent. A comparison between
experiment, the approximate solution and the Blasius solution is shown in Figure 8.3 for the
velocity distribution within a laminar boundary layer.
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Example 8.2

We will use (8.7) and (8.9) to calculate an approximate solution for a turbulent boundary layer
along a smooth flat plate. We will use the one seventh power law given by Eq. (7.43)

u x , y � U �1/7 , � �
y

� x

Thus, the integral on the right sides of (8.7) and (8.9) is

�


0

U � u u dy � U 2� �
1

0

1 � �1/7 �1/7 d� �
7
72

U 2 � x

Although the boundary is covered by a laminar sublayer that allows the use of Eq. (1.1) for
calculating  our assumed velocity distribution is too inaccurate to give a good approximation�0 ,
for  from (1.1). (In fact,  if we use the power law.) Thus,  must be�0 �u /�y � � on y � 0 �0
approximated with an empirical expression from pipe flow measurements. A reasonable
approximation has been found to be

�0 � 0.0225 �

U �

1/4

�U 2

Thus, (8.7) becomes

0.0225 �

U �

1/4

U 2
�

7
72

U 2 d�
dx

Integration of this differential equation gives

�

x
�

0.37

Re 1/5
x

This allows the drag force to be computed from (8.9).

F � � �
 L

0

U � u u dy � �
7
72

U 2 � L � �
7
72

U 2 0.37

Re 1/5
L

L

This result can be rewritten in the following standard form:

F � CD A�
U 2

2
, A � L × 1 , CD �

0.072

Re 1/5
L

, ReL �
UL
�

In practice, experimental data shows that this holds for  when 0.072 is5 × 105 < ReL < 107

changed to 0.074 in the formula for CD .
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Example 8.3

The results from examples 8.1 and 8.2 assume that the boundary layer is either entirely laminar
or entirely turbulent from the leading edge of the flat plate. More generally, the boundary layer
will change from laminar to turbulent at  It is possible to calculate ax � xc when 0 < xc < L .
solution for this case using the same techniques that were used in examples 8.1 and 8.2. In
practice, a simpler approximation suggested by Prandtl is used in which the laminar drag force
for  is added to the turbulent drag force for  Prandtl's approximation0 < x < xc xc < x < L .
assumes that the forces on each of these two intervals are identical with the forces that would
occur if the boundary layer were entirely laminar or entirely turbulent, respectively, from the
leading edge. Thus, if we set

Rec �

Uxc

�

then the total drag force is approximated with

F �
1.33

Rec

xc �
U 2

2
�

0.074

Re 1/5
L

L �
U 2

2
�

0.074

Re 1/5
c

xc �
U 2

2

in which the first term is the laminar drag for  and the turbulent drag for 0 < x < xc xc < x < L
is computed from the last two terms by subtracting the turbulent contribution for 0 < x < xc
from the turbulent drag for  Since  this result can be rewritten in the form0 < x < L . A � L × 1,

F � CD A �
U 2

2

in which

CD �
1/33

Rec

xc

L
�

0.074

Re 1/5
L

�
0.074

Re 1/5
c

xc

L

However,  and this becomesxc /L � Rec /ReL

CD �
0.074

Re 1/5
L

�

C1

ReL

in which

C1 � Rec
0.074

Re 1/5
c

�
1.33

Rec

An average value of  is usually used to calculate  in applications.Rec � 5 × 105 C1 � 1741
However, there is always some uncertainty about which value of  to use since the transitionRec
to turbulence depends upon more than just a Reynolds number. Therefore, when a more precise
value for drag is needed in an experiment, the leading edge of the plate is usually roughened to
ensure that the boundary layer is turbulent from the leading edge.



Chapter 8 — Boundary-Layer Flow 8.9

Figure 8.4 shows a plot of the solutions calculated in examples 8.1–8.3 together with some
experimental data. The solution for Example 8.2 holds for a more limited range of  than theReL
range shown in Figure 8.4. Thus, it is recommended that Figure 8.4 be used to obtain values
for  in all calculations for either a laminar boundary layer or a turbulent boundary layerCD
along a smooth plate. This plot makes obvious the fact that, at the same value of  aReL ,
turbulent boundary layer creates a much larger drag than a laminar boundary layer.

The similarity between Figure 8.4 and the Moody diagram for pipe flow, Figure 7.18, suggest
that another family of curves should be appended to Figure 8.4 for a rough plate. These
calculations were published in 1934 by Prandtl and Schlichting and are plotted in Figure 8.5.
Values for the roughness height,  are given in Figure 7.18 for some different surfaces.� ,
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Example 8.4

Wind blowing across a relatively shallow reservoir of water causes the reservoir free surface to
tilt. The increase in water depth at the downwind end of the reservoir is known as “wind setup”
and must be considered when determining freeboard requirements for a dam design. For a first
approximation, the free surface can be assumed to tilt as a plane, and boundary layer theory can
be used to calculate the drag force created on the free surface by the wind. The principal
horizontal forces involved are the free surface wind drag and hydrostatic pressure forces on the
two end sections, as shown in the following sketch for a cross section of unit width.

Setting the sum of horizontal forces equal to zero gives

�w gh 2
2 2 � �w gh 2

1 2 � CD L �a U 2 2 � 0

in which  are water and air mass densities, respectively.�w and �a

This equation can be manipulated into the form

1
2

h 2
2 � h 2

1 �
1
2

h2 � h1 h2 � h1 � CD L U 2

2g

�a

�w

Since the free surface has been assumed to tilt as a plane,

1
2

h2 � h1 � h0

in which  is the depth before the wind started to blow. Thus, the difference in water depthh0
between the two ends is

h2 � h1 � CD
L
h0

U 2

2g

�a

�w

in which  is known as the “fetch”. This shows that wind setup is increased by increasing  L L /h0
and  Thus, wind setup is greatest for shallow reservoirs. Lake Ellesmere, a shallow lake southU .
of Christchurch has a fetch of about 25 km and an average depth of about 2 m. Values of h2 � h1
of a metre or more often occur on this lake as a result of storms.
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Wind stresses on the reservoir free surface create surface water velocities in the downwind
direction. However, if the ends are enclosed so that zero flow occurs across both end sections,
then the continuity equation requires that there be a zero net flow past any vertical cross section.
Thus, a region of return flow near the reservoir bottom must balance the downwind flow near the
free surface, as shown with the velocity distribution in the sketch.

Example 8.5

Now consider a three-dimensional flow that results when wind blows across a reservoir that is
shallow on one side and deeper on the other, as in the following plan view:

Since wind setup is greater for the shallow side than for the deep side, the free surface elevation
at  is lower than at  and the elevation at  is higher than at  Thus, pressure gradients inA D B C .
the form of a sloping free surface are created in the directions from  and from D to A B to C .
Since no other horizontal forces occur in these directions, the water must be accelerated from

 and from  and a depth-averaged counterclockwise pattern of circulation must beD to A B to C
created, as shown in the following sketch:
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Water velocities near the free surface must all be in the downwind direction, but return flows
near the bottom no longer balance with these surface flows since there must be a net flow at any
vertical cross section in the direction of the circulation cell. If sides  are bothAB and CD
shallow, and if deeper water occurs in the reservoir centre, then two circulation cells are created,
as shown in the sketch. The writer is indebted to Dr R. Spigel for this example.

Pressure Gradient Effects in a Boundary Layer

Equation (5.23 c) shows that pressures within a boundary layer are fixed by inviscid flow
pressures calculated on the boundary. Thus, flow within a boundary layer reacts to pressure
gradients that are imposed externally by an inviscid flow. Boundary layer development along a
flat plate was particularly simple to analyse because this pressure gradient is zero. Now we will
consider flow along boundaries where pressure gradients are non-zero and can cause important
effects.

A pressure gradient causes a net force on a fluid particle in the direction of decreasing pressure.
Thus, if pressures decrease in the direction of flow along a boundary, then Newton's law shows
that a fluid particle will be accelerated in the direction of motion. This is called a favourable
pressure gradient, and it is characterized by irrotational flow streamlines that converge as flow
moves along the boundary. If pressures increase in the direction of flow along a boundary, then
pressure forces oppose motion and create a deceleration. This is called an adverse pressure
gradient, and it is characterized by irrotational flow streamlines that diverge as flow moves along
a boundary.

Since a favourable pressure gradient accelerates a fluid particle within a boundary layer, we
would expect velocity distributions within the boundary layer to become more uniform when
irrotational flow streamlines converge in the direction of flow. Conversely, we would expect an
adverse pressure gradient to decelerate flow and create less uniform velocity distributions within
a boundary layer when irrotational flow streamlines diverge in the direction of flow. This is
shown with sketches in Figure 8.6, in which it is also shown that boundary layer thicknesses
decrease with  for a favourable pressure gradient and thicken with  for an adverse pressurex x
gradient.
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Figure 8.6  Typical velocity distributions and boundary-layer thicknesses that result from
(a) favourable, (b) zero and (c) adverse pressure gradients.

Mathematical proof that boundary layers react to pressure gradients in the way shown in
Figure 8.6 is provided by the Falkner-Skan laminar boundary-layer solution for flow past a wedge
plotted in Figure 8.7. The interior wedge half angle is  and the inviscid boundary velocity�	/2 ,
is given by  in which  are constants and  This velocity is usedU x � u1 x m u1 and m 0 < x < � .
to calculate boundary pressures, so that positive and negative values of  correspond tom
favourable and adverse pressure gradients, respectively, and  corresponds to flow alongm � 0
a flat plate. Boundary-layer thicknesses decrease and velocity gradients on the boundary increase
as  increases from 0, while exactly the opposite happens for an adverse pressure gradient as m m
becomes negative.

Flow in a boundary layer can withstand only a very limited amount of deceleration from an
adverse pressure gradient before separating from the boundary. A sketch showing the stream-line
pattern and velocity distribution near a point of flow separation is shown in Figure 8.8. The
separating streamline is defined as the streamline that leaves the boundary at the point where the
boundary shear,  vanishes. [  at this point since velocities and boundary shear forces�0 , �0 � 0
are in opposite directions on either side of the separation point. In laminar flow Eq. (1.1) shows
that this is equivalent to requiring  at the separation point.] Flow outside the�u x , 0 /�y � 0
separating streamline can still be approximated as inviscid, while flow between the boundary and
separating streamline is highly rotational. However, calculation of the separating streamline
geometry is extremely difficult since its existence modifies the inviscid flow velocity and
pressure distribution both upstream and downstream from the separation point, and it is this
unknown pressure distribution that must be inserted into the viscous flow equations to determine
the point at which  Furthermore, the boundary- layer equations are probably invalid near�0 � 0.
the separation point since the term  is unlikely to remain negligible there. Thus, the�

2u /�x 2

general problem of calculating a mathematical solution that is valid near a point of flow
separation has, at present, no satisfactory solution.

Despite the mathematical difficulty of calculating valid solutions near points of flow separation,
experimental and mathematical considerations allow us to make several important observations
about these flows. First, boundary-layer separation has two important requirements that must both
be met before separation can occur: the presence of a retarded layer of fluid next to a boundary
(a boundary layer) and the presence of an adverse pressure gradient. The classical experimental
evidence for this conclusion is shown in Figure 8.9, which shows flow normal to a flat plate both
without and with a splitter plate extending into the flow on the upstream side of the plate.
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Figure 8.7  The Falkner-Skan solution for flow past a wedge with
 [Reproduced from Schlichting (1968).]U x � u1 x m .

Figure 8.8  Streamline pattern and velocity distribution near a point of flow separation.



Chapter 8 — Boundary-Layer Flow 8.17

Figure 8.9  Flow normal to a flat plate, (a) without and (b) with a splitter plate. [Photographed
by Foettinger, reproduced from Schlichting (1968).]

The same adverse pressure gradient is present for both flows, but flow separation only occurs with
the splitter plate because this also provides a boundary layer for the approaching flow. Similar
flows can be observed through the movement of dust in a trapped vortex when a dry hot wind
blows against a building corner or in front of a large hill or mountain when flow at low levels in
front of the mountain is observed to be in a direction opposite to the approaching flow.

A second experimentally observed characteristic of flow in zones of flow separation is that
pressures, or piezometric heads if gravity is important, remain nearly constant in cross sections
normal to the boundary. Thus, flow separation creates large and important modification of
boundary pressure distributions. In fact, the net boundary pressure component of a drag force is
known to be zero if flow separation is not present in an irrotational flow (D'Alembert's paradox).
Thus, control of boundary-layer separation is important if one wants to control the boundary
pressure component of a drag force. This control, when practical, is accomplished by speeding up
flow within the boundary layer to counteract the effects of an adverse pressure gradient. The most
common example uses roughness elements (dimples on a golf ball, roughness elements on top of
airplane wings, etc.) to create a turbulent boundary layer, which has higher velocities close to the
boundary as a result of turbulent mixing. However, moving a boundary in the direction of flow,
injecting higher velocity flow into a boundary layer or sucking lower velocity fluid out of the
boundary layer can all be used to speed up flow in the boundary layer and either delay or prevent
separation. The two volumes edited by Lachmann give extensive consideration to methods of
controlling boundary-layer separation.

Another form of flow separation occurs at sharp corners. The cause of this type of separation can
be attributed either to an infinite velocity and negatively infinite pressure calculated from
irrotational flow theory, neither of which can be tolerated by a viscous fluid, or else an extreme
form of boundary-layer separation, which results from an infinite adverse pressure gradient on the
downstream side of the  sharp corner. Regardless of which of these two explanations is accepted
as a reason, the important fact is that flow separation always occurs at a sharp corner.
Furthermore, while the location of the separation point can, and usually does, change with
Reynolds number along a more gently curving boundary, the separation point at a sharp corner
remains fixed at the sharp corner for all Reynolds numbers.
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(a)

(b)

(c)

Figure 8.10  Some additional examples of flow separation. All flows are from left to right.
[Reproduced from Rouse (1961).]
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Figure 8.11  Secondary flow currents in a stirred cup of tea (a) immediately after
stirring has stopped and (b) after all motion has stopped with tea leaves deposited
in the centre by the secondary flow.

Some additional examples of flow separation are shown in Figure 8.10. In Fig. 8.10 a, which
resembles flow past an orifice plate inserted in a pipe, separation similar to the separation shown
in Fig. 8.9 b occurs in the corner on the upstream side of the plate, and a second separation point
occurs at the protruding sharp corner. Figure 8.10 b shows separation at the sharp corner formed
by the junction of the two conduits, and Fig. 8.10 c shows separation both in the corner stagnation
point and at the protruding sharp corner. Figures 8.10 b and 8.10 c also show the difference
between flow patterns in an abrupt expansion and an abrupt contraction. Energy losses from a
transfer of energy into the regions of separated flow occur in both instances. Intuition suggests that
these losses increase as the size of the zone of separated flow increases, which suggests that losses
will be larger for Figure 8.10 b than for Figure 8.10 c.

Secondary Flows

In some instances pressure gradients are at right angles to the direction of primary flow outside
the boundary layer, and these transverse pressure gradients cause a component of fluid motion
perpendicular to the direction of primary flow. Because of this, the motion is referred to as
secondary. In general, secondary flows create energy losses, redistribute longitudinal velocities
and cause sediment erosion and transport in erodible channels.

A commonly encountered example of secondary flow occurs after a cup of tea has been stirred,
as shown in Fig. 8.11 a. Immediately after stirring has stopped, the primary flow has circular
streamlines with a centripetal acceleration component,  given by the radial component ofV 2/R ,
Eq. (1.24). This radial acceleration is directed toward the vertical axis of symmetry and, from
Newton's second law, is accompanied by a pressure gradient that causes pressures to decrease in
the same direction. Since vertical accelerations are relatively small, pressures are hydrostatic along
vertical lines. Thus, the radial pressure decrease results in a free surface that slopes downward
toward the centre of the cup, as shown in Figure 8.11 a. Since this same pressure gradient exists
in the boundary layer along the bottom, slowly moving fluid particles on the bottom are
accelerated toward the cup centre. This results in the two circulation cells shown in Figure 8.11
a, although the actual motion in these cells is three-dimensional with a velocity component in
the direction as well. The pile of tea leaves deposited in the centre after all motion has ceasede

�

gives evidence of the earlier existence of the secondary flow.
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Figure 8.12  Secondary flow in a curved pipe showing (a) streamlines in the boundary layer zone,
(b) the circulation cell flow pattern and (c) contours of constant velocity (isovels).

EL � K �
U 2

2
(8.10)

The teacup principle just described creates secondary flows in a number of applications that are
of interest to civil engineers. One example occurs in pipe flow through a bend, as shown in Figure
8.12. The primary flow has circular streamlines and a radial acceleration,  directed towardV 2/R ,
the centre of streamline curvature at point 0 in Figure 8.12 a. The acceleration is accompanied by
a decrease in pressure toward point 0 in both the primary flow and the boundary layer next to the
pipe walls. Thus, a convective acceleration is created along the pipe boundaries from

 in Figure 8.12 b as a result of the pressure gradient imposed by the primarya to b and c to d
flow. The circulation cell motion is shown in Figure 8.12 b, but this motion is highly three-
dimensional. In fact, streamlines in the boundary layer zone follow the spiral pattern shown in
Figure 8.12 a.

There are two effects caused by the secondary flow shown in Figure 8.12. First, the secondary
flow carries low velocity flow from the boundary layer into the primary flow near the inside of
the bend and higher velocity flow near the pipe centre toward the pipe boundary on the outside
of the bend. This is shown by the isovels or contours of constant velocity sketched in Figure 8.12
c. Therefore, velocities in the primary flow are modified considerably from an irrotational flow
distribution, which would have maximum and minimum velocities on the inside and outside of
the bend, respectively. Second, the secondary flow creates an energy loss through a transfer of
energy from the primary flow into the spiral motion of the secondary flow. If separation also
occurs on the inside of the bend, then this energy loss is increased further. Thus, a “minor” or
“local” energy loss term of the form

is used for bends in the Bernoulli equation when working pipe flow problems.  is aK
dimensionless experimental coefficient that varies with both the angle of the bend and, to a lesser
extent, with the pipe wall roughness.

The teacup principle is also responsible for secondary flow in open channel bends, as shown in
Figure 8.13. Since no boundary layer exists along the free surface, only one circulation cell occurs,
with flow near the bottom boundary having both radially inward and longitudinal velocity
components. The end result, as in flow through a pipe bend, is a spiralled flow superimposed upon
the primary flow, increased energy losses and a shift in longitudinal velocity distribution with
larger velocities occurring near the outside of the bend and smaller velocities near the inside.
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Figure 8.13  Secondary flow in an open channel bend showing (a) streamlines in the bottom
boundary layer, (b) the circulation cell pattern and (c) isovel contours.

Figure 8.14  River bend geometry in erodible material showing (a) the flow cross section at the
bend and (b) the direction of channel migration caused by secondary flow.

Furthermore, when the open channel is lined with erodible material, larger velocities near the
outside of the bend cause erosion that deepens the channel and moves the outer boundary further
outward in the horizontal direction. At the same time the inward velocity component near the
channel bottom carries sediment toward the inside of the bend and deposits it on the channel
bottom in the region of smaller velocity. Thus, water depths become shallower on the inside of
the bend, and the inside bend boundary moves horizontally outward. When longitudinal river bed
slopes are small enough, this process continues until the bend migrates so far in the outward
direction that a flood cuts the bend off on the inside and forms an oxbow lake. This process is
sketched in Figure 8.14. 
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Figure 8.15  Erosion around a bridge pier caused by a horseshoe vortex.

Figure 8.16  Flow in a rectangular conduit showing (a) isovels measured by
Nikuradse and (b) secondary flow cells that influence the isovels near a corner.
[Measurements by Nikuradse, reproduced from Schlichting (1968).]

Another important example of secondary flow occurs in flow past a bridge pier and is shown
schematically in Figure 8.15. Boundary-layer separation occurs on the channel bottom along the
stagnation streamline at the front nose of the pier. This forms a vortex in the zone of separated
flow that wraps itself around the front of the pier and trails downstream on both sides in the shape
of a horseshoe. This horseshoe vortex has large enough velocities to create a scour hole in front
of the pier, and many bridge failures have occurred when the scour hole has become deep enough
to undermine a pier. There is an equilibrium depth that exists for a scour hole in each particular
set of circumstances, and a design engineer must ensure that the bridge pier extends far enough
below this equilibrium depth to avoid losing the pier in a flood.

Not all secondary flows are created by boundary-layer pressure gradients that originate from
curved streamlines in the primary flow. Figure 8.16 a shows a set of isovels that were determined
experimentally by Nikuradse for turbulent flow in a long straight conduit with a rectangular cross
section. Intuition suggests that velocities should be relatively small in the corners because of the
close proximity of two perpendicular boundaries. However, Fig. 8.16 a shows that isovels are
actually pushed into the corners so that longitudinal velocities remain relatively high in the
corners. The apparent explanation is that turbulent velocity fluctuations in the primary flow create
relatively high corner pressures and the secondary flow patterns shown in Fig. 8.16 b. These
secondary flows carry fluid with higher longitudinal velocities from the primary flow into the
corner and slower moving fluid from the boundary layer into the primary flow.
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Chapter 9

Drag and Lift

The resultant force that a flow exerts upon a body has, in general, one component parallel and
one component normal to the approaching flow. The force component parallel to the approaching
flow is called drag, and the normal component is called lift. Drag and lift forces are the result of
integrating pressure and shear stresses around the body surface, and an understanding of drag and
lift is important for an engineer who wants to design structures that will withstand these forces.

Drag

A drag force is expressed in the following way:

in which  dimensionless drag coefficient,  fluid mass density and CD � A � area , � � U
�
�

velocity of the approaching flow. The area,  is usually defined to be the projected area of theA ,
body on a plane normal to the approaching flow, although for a flat plate aligned with the flow
it becomes the surface area of the plate.

The drag coefficient,  is almost always measured experimentally. (Two exceptions to thisCD ,
occur for a flat plate aligned with the flow and creeping motion past a sphere, which allows the
use of Stokes solution.) In the most general case  varies with the geometry and orientation ofCD
the body, the Reynolds number and the relative surface roughness. In practice, the surface
roughness effect tends to be relatively small and is almost always neglected. (The drag on a flat
plate aligned with the flow is one example, however, in which surface roughness can be included.
See Figure 8.5.) Experimental drag coefficients for some axisymmetric bodies were given
previously in Figure 7.3 as a function of body geometry and orientation and the Reynolds
number.

A better understanding of drag can be obtained by considering the details of pressure and shear
stress distributions around boundary surfaces. Figure 7.3 suggests that  is a strong functionCD
of the Reynolds number when Reynolds numbers are low. Stokes solution for creeping flow past
a sphere gives a pressure drag that is one third of the total drag force and a tangential shear or
surface drag contribution that is two thirds of the total drag. (The pressure drag contribution is
sometimes called form drag, and surface drag is often called skin friction drag.) At higher
Reynolds numbers, however, the surface drag component only becomes important for well
streamlined bodies that have large length to width ratios. For this reason, most attempts to reduce
drag focus on modification of pressure distributions around bodies.
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Figure 9.1  Two-dimensional flow past a body.
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At larger Reynolds numbers, when boundary layers are thin, pressures around the surface of a
body are determined by inviscid flow pressures on the boundary. D'Alembert's paradox states that
any body submerged in a steady inviscid flow without separation has a zero drag force. A general
proof of this result in two dimensions can be given by using the fact that irrotational flow around
any body can be obtained by distributing sources, sinks, doublets and vortices either within or
on the boundary surface. Since the net flow emitted and absorbed by all the sources and sinks
must be zero for a closed body  as noted in example 6.3), the velocity on a large(�

N
i
1 qi � 0,

circle of radius  that surrounds the body has the asymptotic behaviourr

in which  velocity at infinity,  sum of the circulations from all vortices and U
�
� �0 � 0 1/r 2

means that the next term is bounded by a finite constant divided by  A sketch ofr 2 as r � � .
this flow is shown in Figure 9.1.

If gravity is neglected, then the momentum equation applied to Figure 9.1 gives

The Bernoulli equation gives

in which  are the pressure and velocity magnitudes on the large circle and the Bernoullip and V
constant,  has been obtained by setting  at infinity. Putting (9.2) and (9.4) into�U 2

�
/2 , p � 0

(9.3) gives, after rewriting  in terms of  (because  are functions of e r and e
�

i and j , e r and e
�

�
but  are constant unit vectors)i and j
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However, the integrals

allow (9.5) to be simplified to

Since the integrand in (9.7) is unity, letting  and evaluating the integral gives the followingr � �

significant result:

Equation (9.8) states that the drag force is zero but that a finite lift force exists if the flow is
uniform at infinity and if circulation occurs around the body. This same result was obtained in
Example 6.2 for the particular case of flow around a circular cylinder.

Since the pressure drag on a body submerged in irrotational flow is zero if no separation occurs,
and since pressure distributions on a surface are approximated closely by irrotational flow
pressures on the boundary for high Reynolds numbers, it becomes obvious that significant
pressure or form drag forces in high Reynolds number flows must be the result of flow
separation. This is shown very clearly in Figure 9.2 for flow past a sphere. Measured pressures
along the forward portion of the sphere boundary are very close to the irrotational flow pressure
distribution shown in Figure 9.2 a. However, experimental boundary pressures immediately
upstream from the separation point deviate from irrotational flow values, and the nearly constant
boundary pressure across the wake is fixed by the negative pressure that occurs at the point of
flow separation. This negative wake pressure often makes a larger contribution to the pressure
drag than the zone of positive pressure along the front boundary. All of these considerations
suggest that pressure drag at high Reynolds numbers can only be decreased by moving the
point of flow separation as far as possible toward the rear of the body.
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Figure 9.2  Irrotational and measured pressured distributions for flow past a sphere.
[Reproduced from Rouse (1948).]

Figure 9.3  The use of turbulence in the boundary layer to delay separation. (U.S. Navy
photographs.)
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Figure 9.4  Drag coefficients for some two-dimensional bodies. [Reproduced from Rouse
(1948).]

Some of the methods that can be used to delay or prevent boundary-layer separation were
discussed in Chapter 8. Probably the most commonly used method is to introduce turbulence into
the boundary layer. This increases velocities close to the boundary through turbulent mixing and
moves the separation point further downstream. Examples of this are shown in Figures 9.2 b and
9.2 c and in Figure 9.3 for a bowling ball dropped into water. In Figure 9.3 a the ball has a
smooth surface with a laminar boundary layer. In Figure 9.3 b the nose of the ball has been
covered with sandpaper to create a turbulent boundary layer, and the point of flow separation has
been moved further downstream. The end result is that the drag coefficient has been reduced
from about 0.5 in Figure 9.3 a to about 0.2 in Figure 9.3 b. Since the terminal velocity is
inversely proportional to the square root of  the sphere in Figure 9.3 b should have a terminalCD ,
velocity about 58 per cent greater than the sphere in Figure 9.3 a. The decrease in drag coefficient
that results from turbulence in the boundary layer is shown in Figure 7.3 to occur at a Reynolds
number of about 3 × 105 for a sphere, although the presence or lack of a correct disturbance
frequency and scale in the boundary layer can change this critical Reynolds number value.
Practical applications of this result include dimples on golf balls, roughness elements on the top
of airplane wings and the use of upraised seams on cricket balls and baseballs to cause turbulence
in the boundary layer on one side of the ball. This leads to an asymmetric pressure distribution
and causes the ball to curve during its flight.

When separation point locations are fixed by sharp corners at high Reynolds numbers, drag
coefficients become independent of the Reynolds number. This is why tables often give only one
value for  for unstreamlined angular bodies. Examples include circular disks and flat platesCD
normal to the flow, hemispheres, right circular cones and rods with rectangular cross sections.
For lower Reynolds numbers, however, Eqs. (5.7 a, b) show that pressures throughout a flow are
influenced by viscosity. This is one reason why drag coefficients in Figure 7.3 vary rapidly with
Reynolds numbers for smaller values of  Figure 9.4 shows the variation of drag coefficientRe .
with Reynolds number for some two-dimensional bodies, and Table 1 lists drag coefficients for
various bodies.
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Table 9.1  Drag coefficients for various bodies.

Form of Body L /D Re CD

Circular disk > 103 1.12

Tandem disks (  spacing) 0L �

1
2
3

> 103 1.12
0.93
1.04
1.54

Rectangular plate (  length,  width) 1L � D �

5
20
�

> 103 1.16
1.20
1.50
1.90

Circular cylinder (axis  to flow) 0�

1
2
4
7

> 103 1.12
0.91
0.85
0.87
0.99

Circular cylinder (axis  to flow) 1�

5
20
�

5
�

105

> 5 × 105

0.63
0.74
0.90
1.20
0.35
0.33

Streamlined foil (1:3 airplane strut) > 4 × 104 0.07�

Hemisphere: Hollow upstream
Hollow downstream

> 103 1.33
0.34

Sphere 105

> 3 × 105
0.50
0.20

Ellipsoid (1:2 major axis  to flow) > 2 × 105 0.07�

Airship hull (model) > 2 × 105 0.05

Half circular cylinder: Hollow upstream
Hollow downstream

> 104

> 104
2.30
1.20

Square rod (axis  to flow,�

faces  and  to flow)� �

> 104 2.00

Parachute > 105 1.20

Cube (faces  to flow) > 104 1.10� and �

Right circular cone (apex angle of 60�
pointing upstream)

> 104 0.50
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Drag Force in Unsteady Flow

The drag forces considered so far are for steady flow. However, Robertson (1965) notes that it
was found as early as 1786 that an additional mass of fluid has to be added to the mass of an
oscillating sphere in order to account for experimental differences in drag forces in steady and
unsteady flow. This added mass concept was introduced in Chapter 7 when studying the slow
movement of a sphere dropped from rest in a fluid. In that case the fluid motion was laminar, but
the same concept applies for all unsteady motions of a body through fluid.

Robertson (1965) gives an interesting discussion of the history and application of the added mass
concept. Added mass coefficients are usually calculated mathematically by using irrotational flow
approximations. However, these coefficients also depend, to a limited extent, upon viscosity and
the presence or absence of nearby boundaries. Furthermore, when the moment of momentum
equation of rigid body dynamics is applied to rotating bodies, then an added moment of inertia
must be used. The calculation of added mass and moment of inertia coefficients is relatively
difficult, and we will finish this section by simply stating that the added mass coefficients,  fork ,
a sphere and an infinitely long circular cylinder translating in an unbounded fluid are 0.5 and 1.0,
respectively. The added moment of inertia when these bodies are spinning is zero.

Example 9.1

Calculate the terminal velocity for a sphere falling through a fluid.

Solution:

The three forces acting on the sphere are the sphere weight, the buoyancy force (equal to the
weight of displaced fluid) and the drag force, as shown in the free body diagram. Since the sphere
at terminal velocity is translating with a constant speed, the sphere acceleration is zero.
Therefore, setting the sum of vertical forces equal to zero gives

� CD A � U 2
�

/2 � �g � � �s g � � 0

in which

A � �D 2 /4

� � �D 3 /6
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Solution for  givesU
�

U
�
�

4
3

�s /� � 1 gD

CD

If  then the sphere will rise and the direction of the drag force is reversed. This gives a�s < � ,
terminal velocity in the upward direction of

U
�
�

4
3

1 � �s /� gD

CD

In general,  changes with  This means that these expressions for  may have to beCD U
�

. U
�

solved by successive approximation.

Example 9.2

Calculate the unsteady motion of the sphere in Example 9.1 after it is released from rest. Assume
that  is constant.CD

Solution:

Using the free body diagram in Example 9.1, Newton's second law for the sphere becomes

� CD A�f U 2 2 � �f g � � �s g � � �s � k �f �
dU
dt

in which  added mass coefficient. The second and third terms on the left side can be rewrittenk �

in terms of the terminal velocity from Example 9.1 to obtain

� CD A �f U 2 2 � CD A �f U 2
�

2 � �s � k �f �
dU
dt

Use of the expressions for  allows this to be rewritten in the following form:� and A

dU
dt

�
3
4

CD

�s /�f � k D
U 2

�
� U 2

Since  does not appear on the right side of this equation, we can calculate  as a function of t U x
by using the chain rule to write

dU
dt

�
dU
dx

dx
dt

� U
dU
dx
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Substituting the previous expression for  and separating variables givesdU /dt

�
U

0

U dU

U 2
�
� U 2

�
3
4

CD

�s /�f � k D �
x

0

dx

in which we have required  in the corresponding lower integration limits.U � 0 at x � 0
Integration gives

� ln 1 � U 2 /U 2
�

�
3
2

CD
x /D

�s /�f � k

The qualitative behaviour of this solution is similar to the behaviour for the creeping flow case
shown in Figure 7.5. By setting  we find that 99 per cent of the terminal velocityU � 0.99U

�

is reached at

x /D
�s /�f � k

�
2.61
CD

If we take  and  which were used in the numerical example forCD � 0.5, �s /�f � 10 k � 0.5,
Stokes solution in Chapter 7, we find that terminal velocity is achieved at  Thisx /D � 54.8 .
compares with the value of  that we calculated for creeping flow in Chapter 7, andx /D � 2.10
it suggests that creeping flows achieve terminal velocity much more quickly. If we use a value
of  that occurs after the boundary layer becomes turbulent, we find that  increasesCD � 0.2 x /D
to 137.

Example 9.3

The drag force on a large structure can be measured in a laboratory with a greatly reduced scale
model. The model and prototype must be geometrically similar and must be orientated with
respect to the flow in the same way. Then the drag coefficient is a function only of the Reynolds
number and relative roughness

CD � f
UL
�

,
�

L

in which  approach velocity,  characteristic length,  kinematic viscosity and U � L � � � � �

roughness height. The unknown function  is to be determined from measurements, and it willf
be the same function for both model and prototype. Thus, if the Reynolds number and relative
roughness are the same for model and prototype,

UL
� m

�
UL
� p

and
�

L m

�
�

L p

then  will be the same for model and prototype.CD
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CD m
� CD p

or F /A

�U 2 /2 m

�
F /A

�U 2 /2 p

The Reynolds number similarity requirement can be rewritten in the form

Um

Up

�

Lp

Lm

�m

�p

in which  If the same fluid is used for model and prototype, then  and weLp /Lm > 1. �m /�p � 1
must have

Um

Up

�

Lp

Lm

> 1

This is not usually practical. For example, the drag force on a 50 m high building in a 20 m/s
wind could be measured in a wind tunnel with a 0.5 m high model only if

Um �

Lp

Lm

Up �
50
0.5

20 � 2,000 m/s

If water is used as the fluid for the model, then  and�m /�p 	 1/10

Um �

Lp

Lm

�m

�p

Up �
50
0.5

1
10

20 � 200 m/s

Neither of these possibilities is practical since the required velocities are too high to achieve.
(Even if these velocities could be obtained in a laboratory, fluid compressibility effects would
have to be considered for flows with such large velocities.)

Drag forces on buildings are in fact measured in laboratories, but this can only be done if CD
does not change with Reynolds number. The drag force on most buildings is almost entirely
pressure or form drag, and points of flow separation are almost always fixed at sharp corners and
do not change location with Reynolds number. Thus,  does not usually change with ReynoldsCD
number in these problems provided that Reynolds numbers are reasonably large.
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Example 9.4

The above figure, which is reproduced from Schlichting, shows drag coefficients that were
measured by E. Moeller in 1951 for a Volkswagon delivery van. Rounding the front corners of
the van moved the points of flow separation to the rear and decreased the drag coefficient by 45
per cent. The power required to overcome a drag force equals the product of the drag force with
the velocity. Thus, the power required to overcome wind drag at any particular speed for this van
was also decreased by 45 per cent with this simple change in body geometry.

Example 9.5
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FL � CL A �
U 2

�

2
(9.9)

A cylindrical pole of length  and radius  has an approaching wind velocity given by
 R

u � U y / 
 1/n

in which  are known constants. If we assume that the flow at any fixed value of  is twoU and n y
dimensional, then the total force and moment about the pole base caused by wind drag are given
approximately by

F � �
5

0

CD 2R �
u 2

2
dy

M � �
5

0

y CD 2R �
u 2

2
dy

in which we will take  as a constant and assume that  varies with  Using the power lawCD u y .
equation for  and evaluating the integrals givesu

F � CD R 
�U 2 1 � 1/n

M � CD R 
2�U 2 2 � 1/n

An estimate of the degree of approximation can be made for the case of a uniform approach
velocity, for which  Thenn � � .

F � CD R 
�U 2

in which  is given in Table 9.1 as 1.20 for  However, the correct value for CD L /D � � . CD
when  which takes into account end effects at the pole top, is also obtained fromn � � ,
Table 9.1 by setting  (We must use  since the ground boundaryL /D � 2
 / 2R � 
 /R . L � 2

is a streamline and, therefore, a line of symmetry for a pole of length  in an inviscid flow.)2

Table 9.1 shows how  varies with , and the end effect at the pole top is seen to becomeCD 
/R
relatively small as  increase.
/R and Re

Lift

Lift is the force component created on a body normal to the direction of an approaching flow. A
lift force is usually expressed in the following way:

in which  lift coefficient,  area,  fluid mass density and  velocity of theCL � A � � � U
�
�

approaching flow. The lift coefficient is usually measured experimentally, and the area,  forA ,
an aerofoil is usually defined to be the product of the wing chord with the wing length.
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Figure 9.5  Coefficients of lift and drag plotted as a function of attack angle
for a typical aerofoil. [Reproduced from Streeter and Wylie (1981).]

CL �

2�0


U
�

(9.10)

(The wing chord is the maximum straight line distance across the wing, in the direction of flow,
at a zero angle of attack.) The lift coefficient is a function of the aerofoil geometry and
orientation. Thus,  is usually plotted for a given aerofoil as a function of the angle of attack.CL
Typical plots of  for an aerofoil are shown in Figure 9.5.CL and CD

A better understanding of lift can be obtained by considering details of flow around an aerofoil.
Figure 9.6 shows photographs of two-dimensional flow around an aerofoil (a) at a low angle of
attack, when the aerofoil is an efficient lifting device, and (b) at a high angle of attack, when flow
separates from the top boundary and stall occurs. As shown in Figure 9.5,  increases as theCL
angle of attack increases until the angle of stall is reached. At the angle of stall the flow
separation point suddenly moves forward to the leading edge, lift decreases and drag increases.
Stall has been responsible for a large number of plane crashes.

The unseparated high Reynolds number flow shown in Figure 9.6 a can be modelled fairly
accurately with irrotational flow. It was shown both for a circular cylinder in Example 6.2 and
for flow about any two-dimensional body in this chapter that an irrotational lift force is given by
Eq. (9.8 b). Equating values of  in (9.8 b) and (9.9) givesFL

in which  chord length for a two-dimensional aerofoil. (We have set  for a foil of unit
 � A � 


length.)
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Figure 9.7  A flow net constructed for Figure 9.6 a.

�0 � �
�

	

V � dr � �
�

	

� � � dr � �
�

	

d� � �
�

� �
	

(9.11)

�0 � 10.1�� � 7.2�� � 2.9�� (9.12)

Figure 9.6  Flow past an aerofoil (a) at a low angle of attack and (b) at a high
angle of attack with flow separation. [Photograph by Prandtl and Tiejens,
reproduced from Schlichting (1968).]

A flow net constructed for the flow in Figure 9.6 a is shown in Figure 9.7. Since

in which the integration path is any closed curve that starts on the bottom side of the trailing
edge, encircles the aerofoil in the clockwise direction and finishes on top of the trailing edge.
Since there are 10.1 values of  along the top boundary and 7.2 values of  along the�� ��
bottom boundary, (9.11) gives
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�� � �	 � U
�
�n

� (9.13)


 � 7.7�n
� (9.14)

CL �
2(2.9)

7.7
� 0.75 (9.15)

in which  change in  between any two successive potential lines in Figure 9.7. Equation�� � �
(9.12) is significant because it shows that circulation occurs around the aerofoil in irrotational
flow, and this result is generally interpreted to mean that circulation occurs about the
experimental aerofoil in Figure 9.6 a as well. Since  in Figure 9.7 can be calculated from��
the flow net geometry as

in which  streamtube spacing in the approaching flow, and since direct measurement of�n
�
�

the chord length,  in Figure 9.7 gives
 ,

where  has been estimated from an upstream portion of the flow net that is not shown in Fig.�n
�

9.7, we obtain from (9.10) and (9.12) - (9.14) the following value forCL :

Thus,  has been calculated from a flow net whose construction required nothing more thanCL
specification of the aerofoil geometry and angle of attack. This is why  is normallyCL
considered to be a function only of the aerofoil geometry and orientation.

The flow net in Fig. 9.7 has one streamline that leaves the trailing edge of the aerofoil. This
requirement, which is necessary if the irrotational flow model is to give a physically realistic
description of the actual flow, is known as the Kutta condition. If this condition is not imposed,
then irrotational flow rounds the sharp trailing edge of the foil with an infinite velocity. The
Kutta condition also makes the mathematical solution unique by fixing a numerical value for the
circulation,  that is sufficient to move a stagnation point on the top foil surface to the sharp�,
trailing edge.

The previous discussion showed that circulation around an aerofoil exists in steady irrotational
flow and, therefore, probably exists for viscid flow. There is also an ingenious argument, based
on Kelvin's circulation theorem (proved in Chapter 6), which is used to show how circulation
becomes established around an aerofoil as it starts its motion from rest. Consider a large closed
material path that surrounds the aerofoil when the fluid and foil are both motionless, as shown
in Figure 9.8 a. The circulation around this path is zero before motion starts, and Kelvin's
theorem states that the circulation around this path remains constant, and therefore zero, as the
aerofoil and fluid start to move. However, experimental observation shows that a large “starting
vortex” together with a series of smaller vortices are shed from the trailing edge of the foil as it
starts its motion, as shown in Figure 9.8 b. Since each of these shed vortices has a
counterclockwise circulation, and since the sum of all circulation within the large material path
must be zero, there must be a clockwise circulation around the aerofoil that balances the
counterclockwise circulation of the shed vortices. The clockwise circulation around the aerofoil
is often referred to as a “bound vortex”, and if the experimental foil is suddenly stopped, this
bound vortex is released into the flow. A photograph showing this in an experimental flow
appears in Figure 9.9.
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Figure 9.8  The establishment of circulation around an aerofoil
as it starts motion.
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(b)

Figure 9.9  Photographs of (a) a starting vortex shed into the flow as the foil starts motion and
(b) a bound vortex shed into the flow beside the starting vortex when the foil suddenly stops
motion. [Reproduced from Prandtl and Tietjens (1934).]

(a)
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Figure 9.10  The location of wing-tip and starting vortices soon after
a plane has started its motion.

A secondary flow, known as a wing-tip vortex, occurs at the end of an aerofoil that has a finite
length. Positive pressures occur beneath the foil, and negative pressures occur on top. (Positive
and negative meaning pressures that are greater and less, respectively, than the pressure in the
undisturbed approaching flow.) At the wing tip the fluid in the high pressure zone beneath the
foil moves toward the low pressure zone on top of the foil and creates a vortex that trails from
the wing tip, as shown in Figure 9.10. The end result of this three-dimensional effect is that lift
is decreased and drag increased from values that would occur for two-dimensional flow. Wing-tip
vortices can persist for some minutes after a larger plane has passed, and pilots of smaller planes
must be careful not to land too closely behind a larger plane because of the danger of running into
a large wing-tip vortex.

There are numerous applications of the principles of lift. Bird wings, sails and kites all act as
aerofoils. Airplane propellers have cross sections in the shape of foils. In this case, since the
relative speed of the approaching flow changes with distance from the axis of rotation, an
efficiently designed propeller has a cross-sectional geometry and angle of attack that change with
distance along its length. Hydrofoils can be mounted below a boat to lift its hull out of the water
and greatly reduce its drag. Ship propellers, pump impellers and turbine blades are other
examples of foils.

Cavitation can become a problem when foils are used in a heavy liquid, such as water. Cavitation
occurs in a flow of liquid when the pressure is reduced to the vaporization pressure of the liquid.
(The vaporization pressure of a liquid depends upon its temperature, as discussed in the first
chapter.) Vaporization causes many small bubbles to form in the flow, and the collapse of these
bubbles causes large pressure waves. When a nearby boundary reflects these waves, the boundary
is subjected repeatedly to large compressive and tensile stresses and eventually fails from fatigue.
In a pump or turbine the top boundaries of the foils are sometimes destroyed from this process.
Ship propellers can have cavitation in their wing-tip vortices, as shown in Figure 9.11. This last
phenomenon is sometimes prevented by encasing the propeller in a tube.
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Figure 9.11  Flow cavitating in wing-tip vortices shed from a ship
propeller. [U.S. Navy photograph, reproduced from Rouse (1948).]

Figure 9.12  The vortex trail behind a circular cylinder. [Reproduced
from Schlichting (1968).]

Oscillating Lift Forces

Oscillating lift forces sometimes create vibrations and even failures in structures. The Tacoma
Narrows Bridge failure of 1940 is probably the best known example of a failure caused by
oscillating lift forces. However, difficulties from this type of flow behaviour can occur in many
structures ranging from long slim bridges to flag poles, smoke stacks and cables. The basic cause
of these failures is a matching of the oscillating lift force frequency with one of the natural
frequencies of the structure. The lift force itself need not be vertical but may be horizontal or in
any direction at right angles to the approaching flow.

An oscillating lift force is caused by a row of vortices that forms in the wake of a body. A picture
of such a vortex trail is shown in Figure 9.12. The essential feature of this flow is that vortices,
with circulations in opposite directions, are formed and shed periodically on alternate sides
behind the body. If a large closed material contour surrounds both the body and vortex trail, then
Kelvin's theorem states that the sum of all circulations within this contour must be zero. (Kelvin's
theorem was proved in Chapter 6.) However, the total circulation of all vortices in the vortex trail
is periodically changing with time as each new vortex is formed and shed into the flow. Thus,
there must be circulation around the body that oscillates in direction to balance the constantly
changing direction of total circulation in the vortex trail. This creates a lift force on the body that
oscillates in direction with the same frequency as the vortex shedding frequency.
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Figure 9.13  The Strouhal number,  versus Reynolds number for a vortex trail behind aS ,
circular cylinder. The frequency,  is in radians per second. [Reproduced from Gerhart and
,
Gross (1985).]

y 0 � 0 (9.17)

M
d 2y

dt 2
� � Ky � F0 sin 
 t (9.16)

Although small structural oscillations can be noisy and troublesome, really large oscillations and
structural failure can result if the lift force frequency matches one of the natural frequencies of
the structure and causes resonance. Dimensionless values of the vortex frequency,  are plotted
 ,
as a function of the Reynolds number in Figure 9.13 for flow past a circular cylinder. The next
section shows how this plot can be used to predict the onset of resonance in structures subjected
to oscillating lift forces.

Oscillating Lift Forces and Structural Resonance

As a first example, consider a right circular cylinder suspended horizontally by a system of
springs in a flow with an approach velocity . If is a coordinate normal to the approachingU

�
y

flow, then the transverse component of Newton’s second law of motion becomes

where  cylinder mass,  time,  sum of all spring constants,  lift force amplitudeM � t � K � F0 �

and  lift force frequency, which is given as a first approximation by Figure 9.13. The
 �

coordinate  is measured from the equilibrium position of the cylinder centre when  They U
�
� 0.

left side of (9.16) is the product of the cylinder mass and  component of acceleration. The firsty
term on the right side is the spring resistance force, and the last term is the forcing function
created by the oscillating life force. Since the system starts from a state of rest, appropriate initial
conditions are given by
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�2

�x 2
EI �2 u

�x 2
� m �2 u

� t 2
� F0 sin 
 t (9.21)

dy 0
dt

� 0 (9.18)

y t �

F0 M

K M � 
2
sin 
 t �




K M
sin t K M (9.19)

Limit

K M � 


y t �

F0 M

2

1



sin 
 t � tcos 
 t (9.20)

which require that the cylinder displacement and velocity be zero at t � 0.

The solution of (9.16)–(9.18) is given by

where  is the natural frequency of the unforced system. Resonance occurs whenK M
 Since the right side of (9.19) has the indeterminate form  an application ofK M � 
. 0 0,

l’Hospital’s rule gives

Equation (9.20) shows that the displacement amplitude at resonance grows linearly with time and
that as  In practice, the small amplitude approximation that was implicit in modellingy � � t � � .
both the spring force and wind lift force would invalidate the use of Eq. (9.16) long before this
point is reached. It is also worth noting that including a linear damping term in Eq. (9.16) leads
to a resonant solution for  that is relatively large but bounded.y t

The previous example was worked as a particle dynamics problem and gave a single value for
the resonant frequency. The remaining examples will model several different structures with
continuous distributions of mass. Consequently, these examples will all have an infinite number
of resonant frequencies. In these cases, it is frequently the smallest resonant frequency that is of
most interest.

Bodies such as smokestacks, flag poles and long slender bridges can be modelled with the
equation that describes the lateral vibration of beams. This equation, which is derived by Humar
(1990) and numerous other authors, has the form

in which  lateral displacement,  modulus of elasticity,  moment of inertia of theu � E � I �

cross section,  mass per unit length,  lift force amplitude,  lift force frequency,m � F0 � 
 �
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u x, t � C1 cosh ax � C2 sinh ax � C3 cos ax � C4 sin ax �

F0

EIa 4
sin 
t (9.22)

a �
m
2

EI

1/4

(9.23)

u 0, t � 0 (9.24)

�u 0, t
�x

� 0 (9.25)

�2 u 
 , t

�x 2
� 0 (9.26)

�3u 
 , t

�x 3
� 0 (9.27)

 distance along the beam and  time. We will assume that  are constants.x � t � EI , m and F0
In this case a solution of (9.21) is given by

in which

Equations (9.22) - (9.23) give what is often referred to as the “steady state” solution of (9.21),
which is the solution of (9.21) when  has become large enough to disregard the influence oft
initial conditions on the behaviour of u .

If (9.21) models the behaviour of a smokestack or flag pole, then the correct boundary conditions
to determine the 's in (9.22) are as follows:Ci

Equations (9.24) and (9.25) require that the beam be clamped at  and (9.26) and (9.27)x � 0,
require that the free end have a zero moment and shear force, respectively.

Substituting (9.22) into (9.24) - (9.27) and dividing the homogeneous equations by non-zero
factors that are common to each term gives the following set of four equations for the unknown
constants C1 , C2 , C3 and C4 :
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C1 � C3 �

F0

EIa 4

C2 � C4 � 0

C1 cosh a 
 � C2 sinh a 
 � C3 cos a 
 � C4 sin a 
 � 0

Csinh a 
 � C2 cosh a 
 � C3 sin a 
 � C4 cos a 
 � 0

(9.28 a, b, c, d)

1 � cos a 
 cosh a 
 � 0 (9.29)

a 
 � 1.19 �/2 , 2.99 �/2 , 5.00 �/2 , 7.00 �/2 , ... (9.30)

a 
 � 

m
EI

1/4

2�
SU

�

D
(9.31)



m
EI

1/4 SU
�

D
< 0.75 (9.32)

Equation (9.28) will have bounded solutions for  unless the determinant of the coefficientCi
matrix vanishes. Thus, setting this determinant equal to zero gives the following requirement for
resonance:

Equation (9.29) has an infinite number of real roots that can be found easily by Newton's method.
The results are

By using the definition of the Strouhal number to eliminate  in (9.23), we obtain an expression

for a 
 .

Since resonance cannot occur when  is less than the smallest values in (9.30), we see thata 

resonance is not possible if

Equation (9.32) shows that long slender beams with large ratios of  are most likely to give
 /D
problems with resonance from oscillating lift forces. Smaller amplitude oscillations may still
occur, however, even if resonance is not possible.

Example 9.6

Suppose that a solid steel pole  of length  is to be designedE � 200 × 109 N/m 2 
 � 10 m
so that resonance cannot occur with wind speeds up to a maximum value of . WeU

�
� 20 m/s

will use a Strouhal number from Figure 9.13 of 0.20 and a mass density for steel of 7,860 kg/m3

to calculate the range of pole diameters for which resonance is not possible. The pole will have
one end clamped and the other end free.
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Solution:

If we let  mass density of steel, then  Since  Eq. (9.32) becomes� � m � ��D 2 /4 . I � �D 4 /64 ,



16�

ED 2

1/4 SU
�

D
< 0.75

Setting 
 � 10 m, � � 7,860 kg/m 3 , E � 200 × 109 N/m 2 , U
�
� 20 m/s and S � 0.2

shows that resonance is not possible if

D > 0.751 m

Example 9.7 

Suppose that the solid steel pole in the previous example is replaced with a hollow steel pole that
has a wall thickness,  that is small compared to the outer diameter, T , D .

Solution:

If  wall thickness, then T � m � � �/4 D 2
� D�2T 2 	��DT and I �

�

64
D 4

� D�2T 4

 Therefore, Eq. (9.32) becomes	 �D 3 T /8 for 2T /D << 1.



8�

ED 2

1/4 SU
�

D
< 0.75

Setting 
 � 10 m, � � 7,860 kg/m 3 , E � 200 × 109 N/m 2 , U
�
� 20 m/s and S � 0.2

shows that resonance is not possible if

D > 0.632 m

It is interesting to notice that  cancels out when calculating the ratio  This means that theT m /I .
wall thickness has no influence on the result provided that  However,  would have2T /D << 1. T
to be large enough to withstand bending moments and shear forces created by the wind drag
(Example 9.5).

Similar calculations can be carried out for other boundary conditions. For example, if the beam
is simply supported at both ends, so that the deflection and moment vanish at each end, then
resonance occurs when
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m
EI

1/4

2�
SU

�

D
� 2n � 1 � for n � 1, 2, 3 , ... (9.33)



m
EI

1/4 SU
�

D
<

�

2
(9.34)



m
EI

1/4

2�
SU

�

D
� 3.01 �/2 , 5.00 �/2 , 7.00 �/2 , ... (9.35)



m
EI

1/4 SU
�

D
< 1.89 (9.36)

c 2 �2 u

�x 2
�

�2 u

� t 2
�

F0

m
sin 
 t (9.37)

c � P /m (9.38)

c �
12�EI

mh 2
(9.39)

This shows that resonance is not possible if

If the beam is clamped at both ends, resonance occurs when

and resonance is not possible if

Vibrations in some structures are described by the wave equation,

in which  wave speed in the body. For a tightly stretched cable,  is given byc � c

in which  cable tension and  mass per unit length. Humar (1990) shows that a tallP � m �

building modelled as a shear beam has

in which  sum of the products of  for all columns in the building cross section, �EI � E and I m �

mass per unit height and  storey height.h �
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2� 


D

U
�

c
S � n� for n � 1, 2, 3, ... (9.40)

2� 


D

U
�

c
S � 2n � 1 �

2
for n � 1, 2, 3 , ... (9.41)




D

U
�

c
S < 1

4
(9.42)

Equation (9.37) is a second order equation and requires only one boundary condition at each end.
A cable stretched tightly between two fixed supports has  at each end, and resonanceu � 0
occurs in this case when

Since  is very large for a cable, it is virtually impossible to design a cable so that large
 /D
amplitude oscillations can be avoided under all conditions.

A building has a zero displacement at ground level and a zero shear force at its top. The zero
shear force condition is imposed by requiring  at the building top and leads to the�u /�x � 0
following requirement for resonance:

Thus resonance is not possible if

The ratio  and  from Figure 9.13. This suggests that resonance from anU
�

/c 	 1/3 , S 	 0.2
oscillating lift force is not possible in a tall building if  which is usually true.
 /D < 3.75,
Smaller lateral oscillations may occur since the vortex trail and accompanying oscillating lift
force are always present. The lateral oscillations, however, are unlikely to become very large.

The preceding analysis neglected damping and the yielding of supports. It also assumed that the
structures are elastic. A departure from any one of these assumptions leads to resonant
oscillations that remain bounded. In fact, vibration amplitudes are sometimes controlled by
inserting damping rather than by changing dimensions of the structures.
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FD � f � , U
�

, D , � , � (10.1)

FD �
ML

T 2
, � �

M

L 3
, U

�

�
L
T

, D � L , � �
L 2

T
, � � L (10.2)

Chapter 10

Dimensional Analysis and Model Similitude

Experimental methods have traditionally played a major role in the study of fluid mechanics.
Exact mathematical solutions are exceptions rather than the rule, and this means that the end
result of different mathematical approximations must be tested with experiment before they can
be used with confidence. Experimental methods must be used for some problems, such as flows
requiring solutions that depend upon three spacial coordinates, that tax the limits of both modern
day computers and specialists in numerical methods who devise and use computer software.
Finally, problems involving turbulent flow cannot presently be solved in a general way with
either numerical or mathematical methods. At best, approximate methods must be used, and these
approximations always require experimental data to determine unknown constants and to ensure
that approximations are realistic. Dimensional analysis provides a basic tool that helps organize
an experiment, plot results in a general way and scale results from model to prototype.

The theory of dimensional analysis requires one basic hypothesis: it must be possible to describe
an experiment uniquely with a function that depends upon variables with dimensions. For
example, consider the problem of measuring the drag force on an object in a flow. If we consider
only objects that are geometrically similar and that have the same orientation in the flow, then
the drag force is a unique function of the following variables:

in which  drag force  fluid mass density   approachFD � N � kg � m/s 2 , � � kg/m 3 , U
�

�

velocity at infinity (m/s),  characteristic length (m) that determines the scale of theD �

geometrically similar bodies,  kinematic viscosity (m2/s) and  absolute roughness height� � � �

(m). Since  has been included, and since the dynamic and kinematic viscosities are related by � � � µ /� ,
we could replace  but should not include both  In other words, we should� with µ µ and �.
include only independent variables on the right side of (10.1).

The following development, although too unwieldy for general use, shows why dimensional
analysis can be used for any problem that is described uniquely with a set of variables that has
dimensions. If we use  to represent the fundamental dimensions of mass, length andM , L and T
time, then dimensions of the terms in (10.1) can be represented symbolically in the following
way:

in which  is read “has dimensions of” rather than indicating orders of magnitude, as in�

Chapter 5. Dimensions of mass can be removed from  by writingFD
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FD �

FD

�
� (10.3)

FD � � f1 � , U
�

, D , � , � (10.4)

FD � �
L 4

T 2 (10.5)

FD � � f1 U
�

, D , � , � (10.6)

FD

�
�

FD

�U 2
�

U 2
� (10.7)

� �
�

U
�

U
�

(10.8)

FD

�U 2
�

� f2 U
�

, D , �

U
�

, � (10.9)

FD

�U 2
�

� L 2
(10.10)

If  in (10.3) is now regarded as the product of  with  then (10.1) can be rewrittenFD FD � � ,
in the equivalent form

in which

Since  is the only variable in (10.4) that contains dimensions of mass, a change in units for � M
(say from kg to slugs) will change the numerical magnitude of  but will leave the magnitude�
of all other variables in (10.4) unchanged. However, it is impossible to change the numerical
magnitude of just one variable in a functional relationship without changing the magnitude of at
least one other variable in the relationship. Thus, (10.4) can be correct only if  does not appear�
by itself in f1.

If we now use  to eliminate dimensions of time from (10.6) by writingU
�

then (10.6) can be written in the equivalent form

in which
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�

U
�

� L (10.11)

FD

�U 2
�

� f2 D , �

U
�

, � (10.12)

FD

�U 2
�

�

FD D 2

�U 2
�

D 2 (10.13)

�

U
�

�
�

U
�

D
D (10.14)

� �
�

D
D (10.15)

FD D 2

�U 2
�

� f3 D ,
�

U
�

D
,
�

D (10.16)

FD D 2

�U 2
�

� f3
�

U
�

D
,
�

D (10.17)

Thus, time is contained only in the dimensions of  in (10.9), and a change in units of time (sayU
�

from seconds to minutes) will change only the magnitude of  This is inconsistent with theU
�

.
behaviour of a functional relationship unless  no longer appears by itself in (10.9).U

�

Finally,  can be used to eliminate the dimensions of length by writingD

This allows (10.12) to be rewritten as

in which  has units of length and all other terms are dimensionless. A change in units of lengthD
(say from metres to feet) will change only the magnitude of  which means that  must notD , D
appear by itself in (10.16).

Since we are considering drag forces on geometrically similar bodies, specification of  alsoD
determines an area,  which is proportional to  Furthermore, we are free to insertA , D 2 .
dimensionless constants in any of the terms in (10.17) or to replace any term with another power
of itself. Thus, (10.17) can be written in the equivalent form
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FD A

�U 2
�

2
� f4

U
�

D

�
, �

D
(10.18)

U
�

D

� p

�

U
�

D

� m

(10.19)

�

D p

�
�

D m
(10.20)

FD A

�U 2
�

2
p

�

FD A

�U 2
�

2
m

(10.21)

in which the left side of (10.18) is the drag coefficient,  that we studied in Chapter 9.CD ,

Two advantages of using dimensional analysis are that it reduces the amount of experimental
work and it allows experimental results to be used to predict results for other similar flows. For
example, Equation (10.18) has been used to plot the experimental curves shown in Figure 9.4 for
smooth and rough circular cylinders. This is a three-dimensional plot in which  is plottedCD
against  while holding the third dimensionless variable,  constant for each curve. [ThereRe � /D ,
are only two curves shown for a circular cylinder in Figure 9.4: one for a smooth surface

 and one for a rough surface with  unspecified. Presumably this is because the� /D � 0 � /D
drag on a circular cylinder is almost entirely pressure or form drag at large values of  andRe ,
different values of  will probably give much the same result provided that  is of� /D � /D
sufficient size to cause turbulence in the boundary layer.] Furthermore, these plots hold for any
other experiment in which  falls within the range shown in Figure 9.4. This result should beRe
contrasted with the difficulties that would arise if the data were plotted dimensionally according
to (10.1): six variables would require the use of a large number of three-dimensional plots, and
each plot could be used only for the particular values of dimensional variables that were used in
the original experiments.

A dimensional analysis also provides the basis for scaling results from model to prototype in a
model study. For example, the function  in (10.18) is the same function for model andf4
prototype. Therefore, if the independent variables are identical for model and prototype, then the
dependent variable must also be the same for model and prototype:

in which the subscripts  denote model and prototype, respectively. In the language ofm and p
hydraulic modelling, Equations (10.19) - (10.21) require Reynolds number similarity, geometric
similarity and Euler number similarity, respectively. The direct use of (10.19) - (10.21) for a
particular model study merely eliminates the intermediate step of preparing the general
dimensionless plot shown in Figure 9.4.
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FD ×
1
�

×
1

U 2
�

×
1

D 2
�

F /D 2

�U 2
�

�
F /A

�U 2
�

/2
(10.22)

ML

T 2
×

L 3

M
×

T 2

L 2
×

1

L 2
� 1 (10.23)

� ×
1

U
�

×
1
D

�
�

U
�

D
�

1
Re (10.24)

L 2

T
×

T
L

×
1
L

× � 1 (10.25)

� ×
1
D

�
�

D
(10.26)

L ×
1
L

� 1 (10.27)

A Streamlined Procedure

The example just considered is useful for showing why dimensional analysis works for any
problem that can be described uniquely with a set of variables that has dimensions. In practice,
however, the process that was just used to obtain (10.18) can be streamlined by using

 to obtain one dimensionless variable when combined with each of the remaining�, U
�

and D
variables. When  are combined with  they give�, U

�

and D FD ,

in which (10.23) shows the dimensions of each term in (10.22).

When  are combined with  they give�, U
�

and D �,

Finally, combining  gives�, U
�

and D with �

Thus, (10.22), (10.24) and (10.26) lead to (10.18) with considerably less effort than was required
for the first procedure. An observant student, however, will notice that the streamlined procedure
merely uses a different order for the same steps that were used in the first procedure.

Steps in the streamlined procedure can be organized in the following general way:

1 Write down the dependent variable and the corresponding list of independent variables,
as in Eq. (10.1).

2 Write down the dimensions of each variable, as in Eq. (10.2).
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�1 � f �2 , �3 , �4 (10.28)

�2 � �2 �
a
3 �

b
4 �

a
3 �

b
4 (10.29)

�1 � f1 �2 �
a
3 �

b
4 , �3 , �4 (10.30)

Euler number �
�p

�U 2 /2
(10.31)

Reynolds number �
UL
�

(10.32)

Froude number �
U

gL
(10.33)

3 Choose as many “repeating variables” as basic dimensions represented in step 2. (Our
first example had the three basic dimensions  represented in (10.2), and weM , L and T
chose the three repeating variables  Other examples might have fewer, say �, U

�

and D . L and T ,
or more, say  and temperature.) The repeating variables must contain betweenM , L , T
them all of the basic dimensions present in step 2, and it must not be possible to form a
dimensionless variable by using only the repeating variables.

4 Combine the repeating variables with each of the remaining variables to form
dimensionless variables, as in (10.22) - (10.27).

Standard Dimensionless Variables

It has already been pointed out that a derived dimensionless variable can always be modified by
inserting dimensionless multiplicative constants and by taking the variable to any power other
than zero. It is also possible to replace a dimensionless variable by its product with any
combination of powers of other dimensionless variables in the problem. For example, if a
particular problem has the result

in which dimensionless variables are represented by  then we can always write�i ,

Since (10.29) can be viewed as the product of  with a function of  we can�2 �
a
3 �

b
4 �3 and �4 ,

replace (10.28) with the following equivalent statement:

in which  are arbitrary numbers. This means, of course, that the result of a dimensionala and b
analysis is never unique. In practice, this additional flexibility is used to obtain standardized
forms for dimensionless variables whenever possible. Some of these standard dimensionless
variables follow:
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Densimetric Froude number �
U

Lg �� /�
(10.34)

Strouhal number �
�L
U

(10.35)

Weber number �
U

� / �L
(10.36)

in which  are changes in pressure and mass density, respectively,  frequency and�p and �� � �

 surface tension. We see from (10.31) that the drag coefficient given by the left side of� �

(10.18) is actually an Euler number.

Example 10.1

A model study of the spillway shown in the sketch is to be carried out in a laboratory by
constructing a geometrically similar model at a reduced scale.

We will use a dimensional analysis to organize the study and to scale results from model to
prototype. The dependent variables are the flow rate,  over the spillway and the minimumQ ,
pressure, , on the spillway crest. (To save construction costs, designers sometimes reducepmin
the radius of curvature of the spillway crest. Too large a reduction, however, would create
sufficiently negative pressures to cause cavitation. Thus, a model study of this nature measures
minimum crest pressures to see if cavitation might occur. The relationship between Q and H
is important because the dam embankment must not be overtopped when the spillway passes the
maximum possible outflow from the reservoir.)

Solution: The flow rate,  over the spillway is a function of the following independentQ ,
variables:

Q � f W , H , g , � , � , �
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in which  spillway height,  reservoir height above the spillway crest,  gravitationalW � H � g �

constant,  spillway surface roughness,  kinematic viscosity and  fluid mass density.� � � � � �

Dimensions of these variables follow:

Q �
L 3

T
, W � L , H � L , g �

L

T 2
, � � L , � �

L 2

T
, � �

M

L 3

Since  is the only variable that contains  it cannot combine with any of the other variables.� M ,
Thus, we will omit  from this part of the analysis, which means that two basic dimensions,�

 occur and that two repeating variables must be chosen. We will choose  forL and T , W and g
repeating variables. This is a suitable choice because they contain between them both basic
dimensions of  and because  cannot form a dimensionless variable byL and T W and g
themselves.

Combining  givesW and g with Q

Q ×
1

g
×

1

W 5/2
�

Q

W 2 gW

L 3

T
×

T

L 1/2
×

1

L 5/2
� 1

This dimensionless flow rate is a Froude number. Combining  with  obviously gives W and g H H /W ,
and from  we obtain a relative roughness term  The kinematic viscosity can be combined� � /W .
with  to obtainW and g

1
�

× g × W 3/2
�

W gW
�

T

L 2
×

L 1/2

T
× L 3/2

� 1

Since any analysis that contains a viscosity, velocity and length can be expected to yield a
Reynolds number, we will replace this last variable by its product with the dimensionless flow
rate to obtain

Q

W 2 gW
� f1

H
W

,
�

W
,

Q
�W

The result contains both a Froude and Reynolds number, but there is a fundamental difficulty in
obtaining both Froude and Reynolds number similarity when the same fluid is used for model
and prototype. In particular, this requires

Q

W 2 gW p

�
Q

W 2 gW m

and
Q
�W p

�
Q
�W m
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If  are the same for both model and prototype, this gives two conflicting requirements:g and �

Qp

Qm

�

Wp

Wm

5/2

and
Qp

Qm

�

Wp

Wm

This contradiction is resolved by making use of our knowledge of irrotational flow. We know
that irrotational flow calculations would give a highly accurate approximation for  if boundaryQ
layer thicknesses are very small compared with flow depths on the spillway crest. This will
certainly be true for the prototype, since Reynolds numbers are very large, and it will be
approximately true for the model if model surfaces are made very smooth  and if the� /D � 0
scale is large enough to have fairly large Reynolds numbers. Nobody knows what this scale ratio
must be to ensure relatively small boundary-layer effects, but everyone agrees that it should be
as large as practically possible. Under these conditions, the dimensional analysis gives

Q

W 2 gW
� f1

H
W

and similarity requirements become

   and   Q

W 2 gW p

�
Q

W 2 gW m

H
W p

�
H
W m

Minimum spillway crest pressures depend upon the following variables:

pmin � f W , H , g , �

in which boundary layer effects have been neglected. Dimensions of  arepmin

pmin �
M

LT 2

and dimensions of the remaining variables have been given previously. This time dimensions of
mass appear in both  which means that  cannot be discarded. There are three basicpmin and � , �
dimensions  and we will choose  as repeating variables. CombiningM , L and T , W , g and �
the repeating variables with  givespmin

pmin × 1
g

× 1
�

× 1
W

�

pmin

�gW

M

LT 2
×

T 2

L
×

L 3

M
×

1
L

� 1
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Combining  and we obtain the following end result:W , g and � with H gives H /W ,

pmin

�gW
� f

H
W

Thus, for similarity we have the requirements

   and   
pmin

�gW p

�

pmin

�gW m

H
W p

�
H
W m

Example 10.2

Use the results from Example 10.1 to calculate  for the prototype if a 1:20Q , pmin / �g and h
scale model gives values of 0.0225 m3/s, - 0.12 m and 0.15 m, respectively, for a particular run.

Solution: The Froude number similarity requirement gives

Q

W 2 gW p

�
Q

W 2 gW m

or Qp �
Wp

Wm

5/2

Qm �
20
1

5/2

(0.0225) � 40.2 m 3/s

The corresponding reservoir depth is

 Hp �

Wp

Wm

Hm �
20
1

(0.15) � 3.0 m

and the minimum crest pressure head is

 
pmin

�g p

�

Wp

Wm

pmin

�g m

�
20
1

� 0.12 � � 2.4 m

This is well above the vaporization pressure head at sea level and 5�C of - 10.2 m (gage
pressure).
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� �p � �g � µ �
2 V � �

DV
Dt

(10.37)

p � ps � pd (10.38)

� � ps � �g � 0 (10.39)

� � pd � µ �
2 V � �

DV
Dt

(10.40)

Selection of Independent Variables

Up to this point we have been concerned entirely with the process of combining dependent and
independent variables into dimensionless variables. This is an important step in a dimensional
analysis, and it obviously is a step that must be mastered if correct results are to be obtained.
However, the most difficult step in an analysis is the first step, the step in which independent
variables are chosen. This process frequently requires a combination of mathematical and
physical insight that can be learned only through experience. In fact, that is the primary reason
for placing this chapter at the end rather than at the beginning of a series of chapters that are
concerned with the study of basic fluid mechanics.

Normally, an experimental study hopes to obtain results for a class of flows with geometrically
similar geometries. This means that a single geometric length is usually sufficient to characterize
the flow geometry, and specification of more than one geometric length would be incorrect since
a functional relationship should not have more than one dependent variable. An exception occurs
if the orientation of the geometry changes during the experiments. In this case, one or more
angles, which are already dimensionless, must be included in the list of independent variables.

It is often necessary to include a velocity in the list of independent variables. For example, the
velocity at infinity was included in (10.1) since a change in  with all other independentU

�

,
variables held constant, would certainly change the drag force,  It would have been incorrect,FD .
however, to include a second velocity for any other point in the flow. This is because the flow
net and one specified velocity are sufficient to calculate the velocity at all other points in the
flow.

Some of the most difficult variables to consider are the mass density,  the viscosity, �, µ or �,
and the gravitational constant,  Generally, since the Navier-Stokes equations can be writteng .
in the form

it is always possible to divide the pressure,  into the sum of a hydrostatic pressure,  and ap , ps ,
dynamic pressure, pd .

The hydrostatic pressure satisfies (10.37) when V � 0.

Subtraction of (10.39) from (10.37) and use of (10.38) gives
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� � V � 0 (10.41)

� � ps � �s g � 0 (10.42)

� � pd � � � �s g � µ �
2 V � �

DV
Dt

(10.43)

Equation (10.40) can be solved simultaneously with the continuity equation

for the unknown values of  After  has been calculated from (10.40) - (10.41), pd and V . pd ps
can be calculated from the principles of hydrostatics and added to  to obtain  in (10.38). Wepd p
will use (10.40) - (10.41) to show when  must be included in an analysis.g and �

Since g is missing from (10.40) - (10.41), the solution for pd and V will not depend upon g
unless g enters the problem through a boundary condition on either a free surface or an
interface between two fluids with different densities. Along a free surface  and, fromp � 0
(10.38),  Since  is shown from (10.39) to depend upon  we see that  and pd � � ps . ps g , pd V
will also depend upon  The only exception occurs when changes in free surface elevation areg .
small compared with  as shown with Equations (4.9) - (4.10). One common exampleV 2/(2g) ,
of this occurs for free jets with extremely large velocities.

Prandtl (1952) points out that constant-density two-layer flows can be simplified if one of the
layers has a pressure distribution that is nearly hydrostatic. He gives as an example a layer of cold
dense air flowing across a mountain range beneath a relatively thick layer of warmer air. In this
case pressures in the upper layer of warm air are nearly hydrostatic. Pressures in the layer with
a hydrostatic pressure distribution satisfy

Thus, since pressures in the other layer satisfy (10.37), subtraction of (10.42) from (10.37) gives

in which  are prescribed constants. The dynamic boundary condition along the interface� and �s
requires that  so that (10.43) shows that the interface can be treated as a free surface butpd � 0,
with a reduced gravitational term  In steady flow this means that if a change in velocity� � �s g .
creates a certain depth change in an open channel flow, then the same change in velocity for a
two-layer flow has a depth change that is magnified by the ratio  In unsteady flow the�/� � �s .
reduced gravitational term increases the time scale for a problem as  In a dimensional� � �s � 0.
analysis for this type of problem we can replace  with just  and � , �s and g � � � �s g � g��
in the list of independent variables, a simplification that ultimately leads to the densimetric
Froude number defined in Eq. (10.34).  If, on the other hand, pressure distributions in one of the
layers cannot be described by (10.42), then it becomes necessary to include all three of the
variables � , �s and g .

The mass density,  is seen from (10.40) - (10.41) to appear in any problem that has non-zero�,
accelerations. For example, Stoke's solution for creeping flow past a sphere neglects
accelerations, and Eq. (7.14) shows that  does not appear in the expression for the dynamic drag�
force. (If a buoyancy force must be included as part of the problem, then  re-enters the�g
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problem. This is because a buoyancy force is calculated from  which is seen from (10.39) tops ,
depend upon  Frequently, however, we study only the dynamic effects of a problem so that �g . g
can be omitted.) In another example, fully developed laminar flow in a pipe has zero acceleration
everywhere, and Eq. (7.10) shows that the dynamic pressure loss is independent of both

 [If we consider only dynamic pressures, then  Since  on the� and g . h � pd / �g . � � µ /�
right side of (7.10), both  cancel out of the solution for the dynamic pressure loss.] On� and g
the other hand, Eq. (7.51) and the Moody diagram, Figure 7.18, show that the dynamic pressure
loss in turbulent flow is independent of  but depends upon  [For example,  depends upon g �. f � /D
but not  for completely turbulent flow in a rough pipe, and  does not cancel out ofRe �
Eq. (7.51).] This is because highly turbulent flow has instantaneous accelerations that are non-
zero, even when time-averaged velocities are not changing with time. Thus,  must be included�

in any problem that has non-zero accelerations, and this includes problems in which
instantaneous accelerations are caused by turbulence.

The viscosity can be expected to appear in any problem for which Reynolds numbers are
sufficiently small. It will also appear in high Reynolds number flows that have laminar
boundary layers or laminar sublayers next to a boundary either (a) if tangential boundary
stresses are an important part of the problem or (b) if points of flow separation change
location with changes in the Reynolds number. Examples of some of these possibilities are
shown in Figure 7.3. In particular, the drag coefficient for a circular disk varies with the Reynolds
number for  but remains constant thereafter. Evidently, since flow separates at the0 < Re < 103

sharp disk edge for all but the smallest values of  pressures on the disk surface change withRe ,
viscosity until Reynolds numbers reach about 103. The drag coefficient for a sphere varies rapidly
with Reynolds number for  Thereafter,  remains nearly constant until0 < Re < 103 . CD

 when the pressure distribution is changed abruptly by the onset of turbulence inRe � 3 × 105 ,
the boundary layer. The drag coefficient for a flat plate aligned with the flow is seen in Figure 8.5
to depend upon  and therefore the viscosity, until the laminar sublayer vanishes and the plateRe ,
becomes hydraulically rough. Thereafter, the influence of viscosity disappears.

With this background it now becomes easy to see why some variables have been included and
others omitted in the problems considered so far. Equation (10.1) contains  because the fluid�
is accelerated as it passes the object, and  was omitted because no free surface is present andg
we have only considered the dynamic drag force. The viscosity is important if flow occurs at
lower Reynolds numbers, if surface drag is a significant part of the total drag force or if points
of flow separation change location with  The roughness,  was included because it mayRe . � ,
create turbulence within the boundary layer at high enough Reynolds numbers and because
relative roughness has a strong influence on surface drag when the laminar sublayer vanishes. For
relatively short, unstreamlined bodies submerged in moderate to high Reynolds number flows,
both  can be omitted if points of flow separation are fixed at sharp corners.� and �

In Example 10.1  was included because of the presence of a free surface. The mass density, g �,
was included because flow is highly accelerated as it passes over the spillway crest. (  later�
dropped out of the analysis for  because none of the other variables contained dimensions ofQ
mass. However,  did combine with the pressure,  when spillway crest pressures were� p ,
considered.) Both  were included because boundary layer thicknesses can be a� and �
significant portion of flow depths on the crest for small enough Reynolds numbers.
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Example 10.3

A small scale model is to be used to predict the total drag force on a ship. Carry out a
dimensional analysis for this problem.

Solution: The drag force can be expected to be a function of the following variables:

F � f U , � , � , g , � , � , W

The ship velocity,  and hull length,  are obvious choices for independent variables thatU , �,
influence the magnitude of the drag force,  The mass density,  is included because fluidF . �,
accelerations occur. The gravitational constant,  results from the presence of a free surface.g ,
The kinematic viscosity,  and relative roughness,  are included because surface or skin�, �,
friction drag is a significant portion of the total drag force on a well streamlined ship. Finally, the
total weight,  of the ship and its cargo is included since this will determine the submergenceW ,
depth of the hull. Dimensions for these variables follow:

F �
ML

T 2
, U �

L
T

, � � L , � �
M

L 3
, g �

L

T 2
, � �

L 2

T
, � � L , W �

ML

T 2

There are three basic dimensions  represented, and we will choose  forM , L and T U , � and �
repeating variables. This means that 8 - 3 = 5 dimensionless variables will result. Combining

 with each of the remaining variables can be carried out either by setting down eachU , � and �
group of four variables and using appropriate powers to make units cancel or by making use of
past experience to write the end result. (  combined with  will give an EulerU , � and � F
number;  combined with  will give a Froude number;  combined with U , � and � g U , � and � �
will give a Reynolds number; etc.) In either case, an acceptable final result is

F /�2

�U 2/2
� f

U

g �
,

U �

�
,

�

�
,

W

�g �
3

[An observant student will notice that combining  givesU , � and � with W

W

� �2 U 2
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This dimensionless variable was then replaced by its product with  to obtain aU / g �
2

dimensionless variable,  that effectively determines the hull submergence depth whenW / �g �
3 ,

the ship is not moving. This step is not obligatory. It is merely a result of the writer's personal
tastes.]

Example 10.4

Discuss difficulties that arise when trying to use the results from Example 10.3 to scale drag
forces from model to prototype.

Solution: The end result of Example 10.3 requires both Froude and Reynolds number similarity.

U

g � m

�
U

g � p

and
U �

� m

�
U �

� p

If the same fluid is used for model and prototype, this gives conflicting requirements for velocity
scales.

Um

Up

�

�m

�p

and
Um

Up

�

�p

�m

In practice, this difficulty is circumvented by an approximate method that divides the total drag
into the sum of pressure drag and surface drag.

F � Fpres � Fsur

The surface drag is calculated analytically with approximations from boundary layer theory for
both model and prototype. Then the pressure drag is scaled using experimental results from the
model with the following approximation:

Fpres /�2

�U 2 /2
� f

U

g �
, W

�g �3

Both model and prototype are normally considered to have smooth boundaries. However, there
is some uncertainty in Figure 8.4 about whether calculations for the model should assume a
completely laminar boundary layer, a completely turbulent boundary layer or a boundary layer
that is partly laminar and partly turbulent. This problem is usually solved by roughening the
leading edge of the model to ensure a completely turbulent boundary layer.
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Example 10.5

A 1:100 scale model has a total drag of  when towed at a speed of  inF � 0.9 N U � 1.0 m/s
fresh water. The smooth hull has its leading edge roughened, a wetted length of 0.60 m and a
wetted surface area of 0.10 m2. Calculate for the prototype in salt water the corresponding speed,
total drag force and power required to overcome the drag force.

Solution: The model surface drag calculation requires a Reynolds number.

Re �
UL
�

�
(1.0) (0.6)

1.31 × 10	6
� 4.6 × 105

Since the rough leading edge ensures a completely turbulent boundary layer, Figure 8.4 gives

CD � 0.0052

This allows an approximate calculation of the model surface drag.

Fsur � CD A�
U 2

2
� (0.0052) (0.10) (1000)

1.0 2

2
� 0.26 N

Thus, the pressure drag for the model is

Fpres � F � Fsur � 0.9 � 0.26 � 0.64 N

The corresponding prototype speed is obtained by requiring Froude number similarity.

 U

g � p

�
U

g � m

or Up � Um

�p

�m

� 1.0
100
1

� 10 m/s � 36 km/hr

Euler number similarity gives the prototype pressure drag.

F /�2

�U 2/2 p

�
F /�2

�U 2 /2 m

or Fp � Fm

�p

�m

Up

Um

2
�p

�m

2

Since  this givesUp /Um � �p /�m ,

Fp � Fm

�p

�m

�p

�m

3

� (0.64) (1.025)
100
1

3

� 6.56 × 105 N
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The prototype Reynolds number is

Re �
UL
�

�
(10) (0.60 × 100)

1.31 × 10	6
� 4.6 × 108

in which  has been computed from the product of the model wetted length with the scale ratio.L
Figure 8.4 gives

CD � 0.0017

Thus, the prototype surface drag is

Fsur � CD A�
U 2

2
� (0.0017) 0.10 × 1002 (1,025)

102

2
� 8.71 × 104 N

Adding the prototype surface and pressure drag forces gives the total drag.

 F � Fpres � Fsur � 6.56 × 105
� 8.71 × 104

� 7.43 × 105 N

Finally, the power required to overcome this drag is calculated from the product of the drag force
and speed.

Power � FU � 7.43 × 105 (10) � 7.43 × 106 watts

   = 7.43 megawatts

Example 10.6

Carry out a dimensional analysis for velocities in the highly turbulent axisymmetric submerged
jet shown in Figure 7.13.

Solution: It was pointed out in Chapter 7 that experimental pressures have been found to be
hydrostatic throughout a turbulent submerged jet when the receiving reservoir of fluid is
relatively large. Therefore, a control volume contained between any two vertical planes in
Figure 7.13 has a zero horizontal pressure force, and the horizontal momentum flux through each
of the two vertical planes must be identical. In other words, the momentum flux through any
vertical plane remains unchanged as the  coordinate of the plane changes, which means that thisz
constant momentum flux can be computed from the momentum flux at the nozzle.
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M0 � �U 2
0 �D 2 /4

In general we would have to expect that the velocity,  at any point in the flow would dependu ,
upon both  However, the preceding comments about momentum flux suggest that itU0 and D .
might be possible to combine  into the single term  for large enough values ofU0 and D M0

 Experiments have shown that this is possible, and, for large enough values of  thez /D . z /D ,
nozzle is referred to as a “point source of momentum”. Thus, the following analysis is valid only
for the zone of established flow in Figure 7.13.

The time averaged velocity in the zone of established flow is a function of the following
variables:

u � f M0 , �, r , z

The mass density,  has been included because accelerations occur both in the mean flow and�,
in the turbulent velocity fluctuations. The gravitational constant,  has been omitted becauseg ,
there is no free surface, and the viscosity has been omitted because measurements show that
changes in viscosity have a negligible effect on time averaged velocities in highly turbulent flow
at large Reynolds numbers. Dimensions of these variables follow:

u �
L
T

, M0 �
ML

T 2
, � �

M

L 3
, r � L , z � L

Since there are three basic dimensions  represented, we will choose M , L and T M0 , � and z
as repeating variables. This will give 5 - 3 = 2 dimensionless variables. Combining

 givesM0 , � and z with u

u ×
1

M0

× � × z �
uz

M0 /�

L
T

×
T

ML
×

M

L 3/2
× L � 1

Combining  obviously gives  Thus, we obtainM0 , � and z with r r /z .

zu r , z

M0 /�
� f

r
z

If we set  we get an expression for the maximum velocity at the centreline in the regionr � 0,
of fully established flow.

zUmax

M0 /�
� f (0) � C1
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The constant  has been determined experimentally to be  and substitution forC1 C1 � 7.0,
 leads to Eq. (7.53).M0 /� and C1

Umax

U0

�
6.2
z /D

for 6.2 	 z /D < 


If we divide the first circled equation by the equation for  that follows it, we obtainC1

u (r , z )
Umax

�
f (r /z )

C1

� e
	C2r 2 /z 2

for 6.2 	 z /D < 


in which the given exponential function has been found empirically to provide a close fit of
experimental data. The constant  can be calculated from  by using the constant momentumC2 C1
flux requirement.

M0 � �
�

0

�u 2 (r , z ) 2�r dr

Substitution for  givesM0 and u (r , z )

�U 2
0 �D 2 /4 � 2��U 2

max �
�

0

e
	2C2r 2 /z 2

r dr

� 2��
6.2U0

z /D

2

�
�

0

e
	2C2r 2 /z 2

r dr

By cancelling terms and changing the integration variable from  (with  fixed) wer to � � r /z z
obtain

1
4

� 2(6.2)2

�
�

0

e
	2C2!

2

� d� � 2(6.2)2 1
4C2

Thus, we calculate for  the value given in Eq. (7.54).C2

C2 � 2(6.2)2
� 77

The following plot shows the experimental variation of centreline velocity for an axisymmetric
jet. [Reproduced from Albertson, Dai, Jensen and Rouse (1948).]
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Example 10.7

For a number of years civil engineering students at Canterbury have carried out a laboratory
experiment in which spheres are suspended in turbulent jets of air and water, as shown in the
following sketch:
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The sphere has an equilibrium position that is stable for small horizontal displacements because
of the velocity distribution of the approaching flow. For example, if the sphere is displaced
slightly to the right of its pictured position, the bell shaped velocity distribution in the
approaching flow creates higher velocities and lower pressures on the left side of the sphere than
on the right. As a result, an unsymmetric pressure distribution forces the sphere back towards its
original position along the jet centreline.

The vertical elevation,  of the sphere is a function of the following variables:z ,

z � f d , g �� , �, M0

in which  sphere diameter,  gravitational constant,  fluid mass density,  sphered � g � � � �s �

mass density,  and  nozzle momentum flux. Our previous�� � �s � � M0 � �U 2
0 �D 2 /2 �

experience with highly turbulent submerged jets suggests that viscosity is unimportant and that
the nozzle diameter and flow velocity can be combined into  for a point source of momentum.M0
The fluid mass density,  has been included because fluid accelerations are present, and  is�, d
needed to fix the scale of the experiment. Setting the summation of vertical forces equal to zero
for the sphere gives

g �s � � �d 3/6 � CD �d 2/4 �U 2 /2

in which the left side is the difference between the sphere weight and the buoyancy force, and
the right side is a drag force calculated from an unknown drag coefficient and characteristic
velocity in the approaching flow. Since  appear in the equation only in the form�s and g

 this suggests that  might be replaced by g �s � � � g�� , �, �s and g g�� and � .

Dimensions for the five relevant variables follow:

z � L , d � L , g�� �
M

T 2L 2
, � �

M

L 3
, M0 �

ML

T 2

Since there are three basic dimensions represented  we will chooseM , L and T ,
 for repeating variables to obtain 5 - 3 = 2 dimensionless variables. Combiningd , g�� and �

the repeating variables with  and combining the repeating variables with  givesz gives z /d , M0
the following result:

M0 × 1
g��

× 1

d 3
�

M0

d 3g��

ML

T 2
×

T 2L 2

M
×

1

L 3
� 1

This gives the relationship

z
d

� f
M0

d 3g��
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However, since  is proportional to  we see that the dimensionless momentum flux termM0 �U 2
0 ,

is actually a densimetric Froude number. For this reason, we will replace this term with its square
root to obtain

z
d

� f
M0

d 3g��

Some experimental measurements confirming this result are shown in the following plot:

References

Albertson, M.L., Dai, Y.B., Jensen, R.A. and H. Rouse (1948) Diffusion of submerged
jets, ASCE Proceedings, December, 639-664.

Prandtl, L. (1952) Essentials of Fluid Dynamics, (Translated edition), Blackie and Son
Ltd, London, p. 368.



Chapter 10 — Dimensional Analysis and Model Similitude 10.23



h1 �

U 2
1

2g
� h2 �

U 2
2

2g
� HL

(11.1)

Q � U1 A1 � U2 A2 (11.2)

h �
p
�g

� z (11.3)

HL � f
L
D

U 2

2g
(11.4)

HL � K1

U1 � U2
2

2g
� K2

U 2
1

2g
� K3

U 2
2

2g
(11.5)

Chapter 11

Steady Pipe Flow

Pipe-flow problems are important for engineers who design distribution systems for water supply
and waste disposal. These are problems in which control volumes have extremely large ratios of
length to width. Thus, as explained in Chapter 4, the Bernoulli equation must be modified to
account for energy losses that result from work done by tangential stresses. This means that
Eq. (4.12)

and a one-dimensional form of the continuity equation

are the main tools of analysis. We will let  be a vertical coordinate that is positive in the upwardz
direction, which means that the piezometric head in (11.1) has the following form:

The head loss term in (11.1) most generally consists of the sum of friction losses over long
lengths of pipe, given by Eq. (7.51 a),

and local or “minor” losses expressed in any one of the three forms suggested in Example 4.2:

in which cross sections 1 and 2 are immediately upstream and downstream, respectively, from
the sudden change in pipe geometry that creates the local loss. Local losses are the result of high
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K1 � 1

K2 � 1 �

A1

A2

2

K3 �

A2

A1

� 1

2

(11.6 a, b, c)

levels of turbulence, flow separation and/or secondary flows. These losses occur over relatively
short lengths of pipe as a result of pipe expansions and contractions, bends, valves and other pipe
fittings. They are usually called “minor” losses because often they are small compared to friction
losses. This is not always true, however, and we will prefer to describe these losses as local rather
than minor.

Foundations for the use of (11.4) have been given in Chapter 7 and will not be repeated in this
chapter. Instead, we will remind readers that  are the length and constant diameter,L and D
respectively, of the pipe and that the friction factor,  is a function of the Reynolds number,f ,

, and relative roughness,  Values of  are given in the Moody diagramRe � UD /� � /D . � and f
shown in Fig. 7.18.

With a few exceptions, local loss coefficients are usually determined experimentally. One notable
exception occurs for a sudden expansion, for which it was shown in Example 4.2 that

Equations (11.6 a) and (11.6 b) also hold for the limiting case of a submerged pipe discharging
into a large reservoir, in which case  vanishes and  is infinite.U2 A2

Local loss coefficients for sudden contractions are given in Table 11.1, and loss coefficients for
some commercial pipe fittings are shown in Table 11.2. Loss coefficients for gradual expansions,
bends and various other pipe transition geometries and fittings can be found in other texts, such
as Albertson, Barton and Simons (1960).

Table 11.1  Loss coefficients for sudden contractions.

D2 /D1 K3

1 0

0.8 0.13

0.6 0.28

0.4 0.38

0.2 0.45

0.0 (reservoir inlet) 0.50
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Table 11.2  Loss coefficients for commercial pipe fittings.

Globe valve (fully open) 10

Angle valve (fully open) 5

Swing check valve (fully open) 2.5

Gate valve (fully open) 0.2

Close return bend 2.2

Standard tee 1.8

Standard elbow 0.9

Medium sweep elbow 0.75

Long sweep elbow 0.6

Hydraulic and Energy Grade Lines

Every term in Eqs. (11.1) and (11.3) has dimensions of length. This makes it possible to show
in a sketch for any pipe-flow problem the qualitative behaviour of each term in these two
equations. The energy grade line (abbreviated EGL) shows the magnitude of the Bernoulli sum, h � U 2 / (2g) .
This line is sketched by starting from its known elevation at a point upstream (often a reservoir
free surface). Friction losses are shown by (11.4) to cause the EGL to slope downward linearly
with distance in the direction of flow, and local losses, given by (11.5), are assumed to create
discontinuities in the EGL at the locations of expansions, contractions, bends, valves, etc. The
hydraulic grade line (abbreviated HGL) shows the magnitude of the piezometric head,  Since h . h
differs from the Bernoulli sum by the velocity head,  the HGL is parallel to the EGLU 2 (2g) ,
and lies below it by an amount  Since  in (11.3) is the elevation of the pipeU 2 (2g) . z
centreline, the pressure head,  is the vertical distance between the HGL and the pipep /(�g) ,
centreline. Therefore pressures in the pipe are positive and negative, respectively, when the
HGL lies above and below the pipe centreline. The following examples should help make these
ideas clear.
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Example 11.1

Two pipes, joined in series, allow flow to exit from a reservoir. The loss coefficient for the gate
valve is zero since no free shear layer and associated turbulence exist downstream from the valve.
Sketch the energy and hydraulic grade lines. Then use symbols to write an equation that could
be solved for the flow rate leaving the reservoir.

Solution:  The EGL and HGL are shown in the sketch with dashed lines. Since atmospheric
pressure exists both on the reservoir free surface and within the free jet, writing (11.1) between
these two points gives

H �

Q /AJ
2

2g
� f1

L1

D1

Q /A1
2

2g
� f2

L2

D2

Q /A2
2

2g

� 0.5
Q /A1

2

2g
� 0.38

Q /A2
2

2g

in which the arbitrary datum has been chosen to coincide with the pipe centreline and the velocity
on the reservoir free surface has been taken as zero.
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Example 11.2

Suppose that the pipes in Example 11.1 are commercial steel and that the following data applies:

H � 10 m AJ � 0.003 m 2

L1 � 100 m L2 � 10 m

D1 � 200 mm D2 � 80 mm

Water Temperature = 10�C

Calculate the flow rate, Q .

Solution:  Calculations give  Figure 7.18 givesA1 � 0.0314 m 2 and A2 � 0.0050 m 2 .
 for commercial steel, which leads to � � 0.046 mm � /D1 � 0.00023 and � /D2 � 0.00058.

Inserting these numbers in the equation obtained for Example 11.1 gives

10 � 5,663 � 25,847 f1 � 251,811 f2 � 26 � 766 Q 2

Solution for  givesQ

Q �
1

646 � 2,585 f1 � 25,181 f2

in which  vary with relative roughness and Reynolds number. This means thatf1 and f2
 are functions of  and this equation must be solved by successive approximation.f1 and f2 Q ,

The values of  when used with Fig. 7.18, suggest that� /D1 � 0.00023 and � /D2 � 0.00058,
we might start with  This givesf1 � 0.0143 and f2 � 0.0178.

Q � 0.0297 m 3/s

Re1 �

U1 D1

�
�

Q /A1 D1

�
�

(0.947)(.200)

1.31 × 10	6
� 1.45 × 105

Re2 � 3.61 × 105

These values of  give new values of  This gives theRe and � /D f1 � 0.0183 and f2 � 0.0184.
following second approximation:

Q � 0.0294 m 3/s

Re1 � 1.43 × 105

Re2 � 3.57 × 105

Since values for  do not change in the next cycle, we have the final resultf1 and f2

Q � 0.0294 m 3 /s
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Example 11.3

Sketch the EGL and HGL and write an equation that could be solved for the flow rate through
the siphon shown in the sketch. Then determine the lowest negative pressure in the pipe.

Solution:  The EGL and HGL are shown with dashed lines. Since the pipe entrance is rounded, K3 � 0
and the EGL starts at the free surface elevation in the upstream reservoir. Friction losses in the
vertical pipe sections and local losses at the four pipe bends cause vertical discontinuities in the
EGL, and EGL slopes are the same for all horizontal sections of pipe since the pipe diameter is
constant.

The HGL is parallel to the EGL and lies a vertical distance  below it. Furthermore, sinceU 2/2g
pressures are known, from experiment, to be hydrostatic within a submerged jet entering a large
reservoir, the HGL meets the free surface in the downstream reservoir. Pipe pressures are
negative at points where the pipe centreline lies above the HGL.

Writing (11.1) between points on the free surfaces of the two reservoirs, where  gives theU � 0,
following equation to solve for Q :

H � 4(0.9)
Q /A 2

2g
� 1

Q /A 2

2g
� f

L
D

Q /A 2

2g
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in which  has been measured upward from the downstream reservoir free surface. Since z f
depends upon  the solution of this equation would have to proceed by successiveQ ,
approximation.

Pressures within the pipe can be calculated once  has been determined. Inspection of theQ
relative elevations of the HGL and pipe centreline shows that the lowest negative pressure will
occur either immediately downstream from point  or else further downstream. If  and  areB pB zB
the pressure and elevation of a point immediately downstream from point  then an applicationB ,
of (11.1) between this point and a point further downstream in the vertical section of pipe gives

pB

�g
� zB �

Q A 2

2g
�

p
�g

� z �
Q A 2

2g
� f

zB � z

D
Q /A 2

2g

This equation can be put in the following form:

p
�g

�

pB

�g
� 1 �

f
D

Q /A 2

2g
zB � z

Since  varies linearly with  there can be no relative minimum for  If the last term isp z , p .
positive, then an absolute minimum for  occurs when  If the last term is negative,p zB � z � 0.
then an absolute minimum occurs where  attains a maximum positive value. However,zB � z
the circled equation that was written to obtain  shows thatQ

f
L
D

Q /A 2

2g
� H � 4(0.9)

Q /A 2

2g
� 1

Q /A 2

2g
< H

This gives the inequality

f
D

Q /A 2

2g
<

H
L

The problem sketch shows that  which leads to the following inequality:H /L < 1,

1 �
f
D

Q /A 2

2g
> 0

Thus, the minimum value of  occurs where p / �g zB � z � 0

Min p
�g

�

pB

�g

An application of (11.1) between a point on the upstream reservoir free surface and the point
immediately downstream from point  givesB
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P � �gQ �HM (11.7)

h1 �

U 2
1

2g
� h2 �

U 2
2

2g
� HL ± �HM

(11.8)

H �

pB

�g
� zB �

Q /A 2

2g
� 3 (0.9) Q /A 2

2g
� f

LB

D
Q /A 2

2g

in which  pipe length between point  and the upstream reservoir. This equation can beLB � B
solved for the minimum pipe pressure,  If  exceeds the vaporization pressure of water,pB . pB
then cavitation will not occur. (A brief discussion of cavitation is given in Chapter 9 in
connection with Fig. 9.11.)

Hydraulic Machinery

A civil engineer sometimes needs to design pipe systems that contain pumps or turbines. The
purpose of this section is to acquaint readers with a few of the fundamental ideas that are used
to choose pumps or turbines for specific applications. More detailed discussions of hydraulic
machinery are given in other texts, such as Streeter and Wiley (1981).

The power delivered to a system by a pump or extracted from a system by a turbine is given by

in which  power in watts   fluid mass densityP � W � N � m/s � kg � m 2/s 3 , � �

 gravitational constant  flow rate (m3/s) and  change inkg/m 3 , g � m/s 2 , Q � �HM �

Bernoulli sum across the machine (m). The output power required from a motor to drive a pump
shaft is obtained by dividing (11.7) by the pump efficiency, and the power delivered by a turbine
is obtained by multiplying (11.7) by the turbine efficiency. Linsley and Franzini (1955) suggest
that impulse, Francis, propeller and Kaplan turbines can have efficiencies as high as 80 to 95 per
cent. Peak efficiencies for centrifugal pumps are of the order of 80 to 90 per cent.

Equation (11.1) must be modified when hydraulic machinery is present. The modification takes
the form

in which the plus and minus signs in front of  are used for a turbine and pump, respectively.�HM
The correct sign is easily remembered since a turbine subtracts energy from a flow and a pump
adds energy. Consequently, when sketching an EGL, a step decrease in elevation of the EGL
occurs at a turbine and a step increase at a pump.

Turbines are usually designed individually for each specific application. Pumps, however, are
mass produced, and pump manufacturers routinely provide pump characteristic curves for their
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* It is possible to use a pump in reverse as a turbine for relatively small applications. Efficiencies are likely to
be reduced, however.

Figure 11.1  A typical characteristic curve for a
centrifugal pump.

Figure 11.2  An equivalent pump characteristic curve for two pumps connected in series

products.* The most important of these
curves from our standpoint is a plot of

 versus  An example of a typical�HM Q .
characteristic curve for a centrifugal pump
is shown in Fig. 11.1.

Sometimes it becomes necessary to connect
two or more pumps in either series or
parallel. In this case a single equivalent
characteristic curve can be constructed from
the curves for each pump by remembering
that  is constant and   additive forQ �HM
two pumps connected in series, as shown in
Fig. 11.2. When pumps are connected in
parallel,  is constant and  is�HM Q
additive, as shown in Fig. 11.3.

Choosing a pump to deliver a specified discharge,  generally requires the following steps:Q ,

1 Apply Eq. (11.8) with the specified  to calculate Q �HM .

2 Choose from a set of characteristic curves supplied by a pump manufacturer a pump that
will supply the given  and calculated  at a reasonably high efficiency.Q �HM

3 Choose a motor that will provide sufficient power to turn the pump shaft.
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Figure 11.3  An equivalent pump characteristic curve for two pumps connected in parallel.

Figure 11.4  Calculation of  for a given pump installed in a pipe system.�HM and Q

In some applications it becomes necessary to calculate the flow rate,  delivered by a pipeQ ,
system that has a given pump already in place. This requires the simultaneous solution of
Eq. (11.8) and a pump characteristic curve that plots  versus  The solution is obtainedQ �HM .
by using (11.8) to calculate and plot  for a number of specified values of  for the pipe�HM Q
system. The intersection of this system curve with the pump characteristic curve gives the
operating point, as shown in Fig. 11.4.
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Example 11.4

A flow of 0.03 m3/s can be diverted from a small stream through a 50 m length of pipe and
discharged as a free jet at a point 25 m below the free surface of the stream intake. Neglect local
losses and assume an efficiency of 100 per cent to calculate the maximum amount of power that
could be produced by placing a turbine in the pipe line.

Solution:  The EGL and HGL are shown in the sketch. A step decrease in elevation of these lines
occurs at the turbine location. Application of Eq. 11.8) between a point on the free surface above
the intake and a point in the free jet gives the following result:

H �

Q /AJ
2

2g
� f L

D
Q /A 2

2g
� �HM

Substitution of the given numbers leads to the result

�HM � 14.3 m

Equation (11.7) can now be used to calculate the power extracted from the flow, which would
also be the power produced by the turbine if it were 100 per cent efficient.

P � �gQ �HM � (1000)(9.81)(0.03)(14.3) � 4,220 W

P � 4.22 kW

An 80 per cent efficiency would reduce  to 3.37 kW.P
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Example 11.5

A pump is to be used to force 0.01 m3/s of water through a 50 m length of pipe to a point 2 m
above the intake free surface. Calculate the value of  that must be supplied by the pump.�HM
Then estimate the power that must be used to drive the pump if the pump and motor together are
80 per cent efficient. Neglect all local losses.

Solution:  The EGL and HGL are shown in the sketch. A step increase in elevation of these lines
occurs at the pump location. Furthermore, the pipe centreline lies above the HGL between the
reservoir and pump, which means that pressures in this region are negative. The magnitude of
these negative pressures can be reduced by moving the pump to as low an elevation as possible.

If a local loss at the pipe entrance is neglected, Eq. (11.8) can be applied between a point on the
intake free surface and a point in the free jet to obtain

0 � H �

Q /AJ
2

2g
� f L

G
Q /A 2

2g
� �HM

Substituting the given numbers leads to the following value of �HM :

�HM � 3.10 m
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�
j

Qj � 0 (11.10)

h1 � h2 � f
L
D

Q A 2

2g
(11.9)

The values of  could be used with a manufacturer's set of pump characteristic�HM and Q
curves to choose a pump and motor for this application. If the pump and motor are 80 per cent
efficient, the power required to drive the system can be estimated from Eq. (11.7).

P �

�gQ�HM

efficiency
�

(1000)(9.81)(0.01)(3.10)
(0.80)

P � 380 W � 0.380 kW

Pipe Network Problems

We will define a pipe network to be any system that contains at least one junction where three
or more pipes meet. Some examples are shown in Fig. 11.5. It is normally assumed when
working these problems that piezometric head and friction loss terms dominate the Bernoulli
equation. This means that Eqs. (11.1) and (11.4) are approximated with

and Eq. (11.2) is replaced with the following equation at each junction:

in which flows out and into the junction are taken as positive and negative, respectively. When
Eq. (11.9) is written for every pipe in the network and Eq. (11.10) for every pipe junction,
specification of  at one or more pipe ends or junctions gives enough equations to solve for h h
at every pipe junction and  through every pipe.Q

Pipe network problems can be formulated so that the unknowns are either flow rates or
piezometric heads. Since Eq. (11.9) is nonlinear, either method requires the use of successive
approximation to solve a set of simultaneous, nonlinear equations. Large pipe networks can
contain many pipes, and computers are an essential ingredient in the solution of these problems.
In the writer's opinion it is easier to both understand and program the formulation in which
piezometric heads are unknowns, and this will be the only formulation that will be considered
herein. Readers will find the second formulation, in which flow rates are unknowns, described
in most other texts. In either case, solution for one set of unknowns leads to a direct calculation
of the other set from Eq. (11.9).

A typical junction in a pipe network is shown in Fig. 11.6. The junction under consideration is
labelled 0, and the numbers 1 - 4 denote the other end of pipes meeting at 0. (The number of
pipes joined at 0 is arbitrary. There is no particular reason for using four pipes in Fig. 11.6). The
external flow at node 0 is denoted by  and has a sign that is positive for outflow and negativeQ0
for inflow. The resistances,  for each pipe are defined by the following equation:Rj ,
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Figure 11.5  Some examples of pipe networks.

Figure 11.6  A typical junction in a pipe network.
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Qj � Rj h0 � hj (11.11)

Q0 � �
4

j
1
Rj h0 � hj � 0 (11.12)

h0 �

� Q0 � �
N

j
1
Rj hj

�
N

j
1
Rj

(11.13)

Rj �
�

128
gD 4

�L
(11.14)

in which, since  the sign of  is determined by the sign of  Thus,  is alsoRj > 0, Qj h0 � hj . Qj
positive and negative for outflow and inflow, respectively. Expressions for  will be given later.Rj

Substituting (11.11) into (11.10) and using the definition of  gives the following equation,Q0
which has values of  at nodes 0 through 4 as its only unknowns:h

By writing a similar equation for every node at which  is unknown, and by specifying valuesh
of  at the remaining nodes, we obtain as many equations as unknown values of  Theseh h .
equations can be solved by using either a direct method, such as Gaussian elimination, or by an
iterative technique, such as the Gauss-Seidel iteration. Iterative techniques are probably easier
to program and more efficient for this application. The Gauss-Seidel iteration uses Eq. (11.12)
in the following form:

in which the upper limit on the sum has been changed to  to allow any number of pipes to beN
joined at node 0. The iteration proceeds by using the last approximations for  in the right sidehj
of (11.13) to calculate the newest approximation for . Calculations terminate when values of h0 h
cease to change significantly at all nodes for any two successive cycles in the iteration.

Varga (1962) shows that the Gauss-Seidel iteration will always converge from any starting values
of  if the governing equations are both linear and irreducibly diagonally dominant. Equationhi
(11.12) satisfies these criteria for laminar flow when  is specified at one or more nodes in theh
network. In this case Eq. (11.9) and  give the following constant value for f � 64/Re Rj :

In most instances, however, flow is turbulent. Then  depends upon  Eq. (11.12) becomesRj h ,
nonlinear and there are no theorems to guarantee convergence. Nevertheless, Isaacs and Mills
(1980) report satisfactory convergence in applications they have considered. Equation (11.9)
shows that  has the following value for turbulent flow:Rj
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Rj �
�D 2

4
2gD /L

f � h0 � hj �
(11.15)

f �
1.325

ln � /D
3.7

� 5.74 Re 	0.9
2

for 10	6 �
�

D
� 10	2

and 5000 � Re � 108

(11.16)

f �
1.325

ln
� /D
3.7

�
2.51

Re f

2
(11.17)

Equation (11.15) never gives a singular value for  since a small value of  leads to aRj �h0 � hj�
small Reynolds number and requires the use of (11.14) for laminar flow. This is one minor detail
in which the formulation considered herein differs from the formulation used by Isaacs and Mills
(1980), who effectively set  became smaller than a specified value.Rj � 0 when �h0 � hj�

A computer coding for the solution of pipe network problems requires a convenient way of
calculating  for use in (11.15). Swamee and Jain (1976) obtained the following explicitf
approximation for f :

Values of  computed from (11.16) are within one per cent of values computed from thef
following Colebrook implicit equation that was used to construct the Moody diagram in
Fig. 7.18:

Equations (11.14)–(11.16) do not cover the transition zone  The computer2000 < Re < 5000.
program given at the end of this chapter uses (11.14) for  and (11.15)–(11.16)0 � Re � 2000
for Re > 2000.
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Example 11.6

The problem shown in Fig. 11.5 b has the following data:

Use Eq. (11.13) to calculate  and the flow rate in each of the three pipes.h0

Solution:  Values of  for each of the three pipes are as follows:Rj

R1 � 0.0158 for 0 � Re � 2000

�
0.000348

f1 � h0 � h1 �
for Re > 2000

R2 � 0.0226 for 0 � Re � 2000

�
0.000416

f2 � h0 � h2 �
for Re > 2000

R3 � 0.0317 for 0 � Re � 2000

�
0.000492

f3 � h0 � h3 �
for Re > 2000

The relative roughness is the same for all pipes.

�

D
� 0.0005

Reynolds numbers for each pipe are given by the following expression:

Rej � 8.38 × 106 �Qj �



11.18 Chapter 11 — Steady Pipe Flow

Since  Eq. (11.13) reduces toQ0 � 0, h1 � 100 m, h2 � 80 m, and h3 � 0 m,

h0 �

100 R1 � 80 R2

R1 � R2 � R3

Values of  from the previous cycle are used to compute  which means thatQj Rej and f j ,
guessed values for  must be used for the first cycle. The following table summarizes thef j
remaining calculations:

Cycle h0 m f1 f2 f3 Q1 m 3/s Q2 Q3

1 50.0 0.017 0.017 0.017 -0.0189 -0.0207 0.0267

2 58.0 0.0194 0.0192 0.0187 -0.0162 -0.0141 0.0274

3 59.9 0.0197 0.0200 0.0187 -0.0157 -0.0132 0.0278

4 60.6 0.0197 0.0201 0.0187 -0.0156 -0.0129 0.0280

5 60.9 0.0198 0.0202 0.0187 -0.0155 -0.0128 0.0281

6 61.0 0.0198 0.0202 0.0187 -0.0154 -0.0128 0.0281

7 61.0 0.0198 0.0202 0.0187 -0.0154 -0.0128 0.0281

Since no change occurs in the calculated results from cycle 6 to cycle 7, the final answers are

h0 � 61.0 m

Q1 � �0.0154 m 3/s (inflow)

Q2 � �0.0128 m 3/s (inflow)

Q3 � 0.0281 m 3/s (outflow)

Despite the fact that the solution ceased to change after six cycles, continuity is not satisfied
exactly at the junction.

Q1 � Q2 � Q3 � �0.0001 � 0

This error, which is about 0.4 per cent of the flow rate  can be reduced by retaining moreQ3 ,
significant figures in the calculations.
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Pipe Network Computer Program

The listing for a computer program that uses (11.13) - (11.16) to solve pipe network problems
is shown in Fig. 11.7. The program has been designed to require a minimum amount of input
data, with definitions for the input data variables shown in comment statements at the beginning.
The piezometric head must be specified for at least one node, which is a requirement for
uniqueness. (If  is not specified for at least one node, then the same arbitrary constant can beh
added to  at all nodes without changing the flow rate through any of the pipes. This is becauseh
the flow rate through each pipe depends only upon the difference between values of  at its twoh
ends, and the arbitrary additive constant cancels when calculating this difference.) The external
flow rate,  must be specified at all nodes for which  is not specified. Thus, either Q0 , h Q0 or h ,
but not both, must be specified for every node in the network. An example of the use of this
program for a network with 13 nodes and 18 pipes is shown in Figs. 11.8 - 11.9. Input data for
this problem is printed in the first 32 lines of the output data shown in Fig. 11.9. Units of metres
and seconds have been used for all variables in this example.

The program makes no allowance for pumps inserted in a network. However, a pump is easily
included by placing nodes in the pipe immediately before and after the pump, as shown in
Fig. 11.10. Then specification of an outflow and inflow with the same magnitudes at the
upstream and downstream nodes, respectively, allows calculation of  at each node. Theh
difference in these two values of  can be computed for the specified flow rate, and repeatingh
this calculation for a number of different flow rates allows a system curve to be plotted on the
pump characteristic curve. The intersection of the system and characteristic curves gives the
operating point for the system.

Colebrook and White (1937) found that commercial pipe roughness heights generally increase
linearly with time as the result of corrosition and deposition. The rate at which roughness
increases with time can be determined for any given pipe only by measuring the friction factor, f ,
at two different times. This means that prediction of  for a pipe often requires an educated�

guess. It also means that it is unrealistic to expect extremely accurate predictions from any pipe
flow calculation.
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C THIS CALCULATES SOLUTIONS FOR STEADY FLOW THROUGH PIPE NETWORKS 
C Heads, H(I), are specified and external flows cannot be specified at nodes
C 1 through NH. External node flow rates, Q0(I), are specified and heads are
C unknown at nodes NH+1 through NQ. Other variable definitions follow:
C NP = number of pipes
C ERRA = allowable error
C V = kinematic viscosity
C H(I) = head at node I for I = 1 through NH
C Q0(I) = external flow at node I for I = NH+1
C through NQ (outflows positive,
C inflows negative)
C If K = pipe number, then
C L(K) = pipe length
C D(K) = pipe diameter
C E(K) = pipe roughness height
C I1(K),I2(K) = node numbers at each pipe end
C Use a consistent set of units for all variables.
      REAL L

       DIMENSION H(100),Q0(100),L(100),D(100),E(100),I1(100),I2(100),
      1 N(100),ID(100,6),RL(100,6),RT(100,6),Q(100),F(100)

OPEN(UNIT=1,FILE='INPUT.DAT',STATUS='OLD')
OPEN(UNIT=2,FILE='OUTPUT.DAT',STATUS='NEW')

C
C Data is entered and written out.
C

READ(1,*) NH,NQ,NP,ERRA,V
WRITE(2,1000) NH,NQ,NP,ERRA,V

 1000 FORMAT(lX,'NH=',I3,2X,'NQ=',I3,2X,'NP=',I3,2X,'ERRA=',F9.6,
  1 2X,'V=',lPE10.2)

DO 100 I=1,NH
READ(1,*) J,H(I)
WRITE(2,2000) J,H(I)

 2000 FORMAT(lX,'J=',I3,2X,'H=',F10.3)
  100 CONTINUE

 NH1=NH+1
DO 150 I=NH1,NQ
READ(1,*) J,Q0(I)
WRITE(2,2500) J,Q0(I)

 2500 FORMAT(lX,'J=',I3,2X,'Q0=',F12.7)
  150 CONTINUE

DO 200 I=1,NP
READ(1,*) R,L(I),D(I),E(I),I1(I),I2(I)
WRITE(2,3000) R,L(I),D(I),E(I),I1(I),I2(I)

 3000 FORMAT(1X,'R=',I3,2X,'L=',F6.0,2X,'D=',F6.3,2X,'E=',F8.5,
    1 2X,'I1=',I3,2X,'I2=',I3)
  200 CONTINUE
C
C Variables are initialised and connectivity is determined.
C

G=9.806
PI=3.141593
DO 300 I=NH1,NQ
N(I)=0
H(I)=0.

  300 CONTINUE
DO 400 K=1,NP
F(R)=0.02
N(Il(K))=N(Il(K))+1
N(I2(K))=N(I2(K))+1
ID(Il(K),N(Il(K)))=K
ID(I2(K),N(I2(K)))=K

  400 CONTINUE

Figure 11.7  A computer program that solves pipe network problems.
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C
C Coefficients are calculated
C

DO 500 I=NH1,NQ
NJ=N(I)
DO 500 J=1,NJ
K=ID(I,J)
RL(I,J)=PI*G*D(K)**4/(V*L(K)*128.)
RT(I,J)=SQRT(2.*G*D(K)/L(K))*PI*D(K)**2/4.

  500 CONTINUE
C
C The solution is calculated by iteration.
C
   10 ERRC=0.

DO 600 I=NH1,NQ
SUMl=-Q0(I)
SUM2=0.
NJ=N(I)
DO 700 J=l,NJ
K=ID(I,J)

IF(I.EQ.Il(K)) THEN
       J1=I2(K)

ELSE
Jl=Il(K)

ENDIF
RE=4.*RT(I,J)*SQRT(ABS(H(I)-H(Jl))/F(K))/(PI*V*D(R))

IF(RE.GT.2000) THEN
C=RT(I,J)/SQRT(F(K)*ABS(H(I)-H(Jl)))
SUM1=SUMl+C*H(J1)
SUM2=SOM2+C

ELSE
C=RL(I,J)
SUM1=SUMl+C*H(J1)
SUM2=SOM2+C

ENDIF
 700 CONTINUE

A =SUM1/SUM2
ERRC=ERRC+(H(I)-A)**2
H(I)=A

 600 CONTINUE
DO 750 K=1,NP
C=SQRT(2.*G*D(K)*ABS(H(Il(K))- (I2(K)))/(F(K)*L(K)))
RE=C*D(K)/V
     IF(RE.GT.2000) THEN

Q(K)=C*PI*D(K)**2/4.
F(K)=1.325/(ALOG(E(K)/(3.7*D(K))+5.74/RE**0.9))**2

     ELSE
C=PI*G*D(K)**4/(V*L(K)*128.)
Q(K)=C*(ABS(H(I1(K))-H(I2(K))))

     ENDIF
 750 CONTINUE

ERRC=SQRT(ERRC)
IF(ERRC.GT.ERRA) GO TO 10

C
C The solution is written out.
C

DO 800 I=1,NQ
WRITE(2,4000) I,H(I)

 4000 FORMAT(lX,'H(',I3,')=',Fl0.3)
  800 CONTINUE

DO 900 K=l,NP
WRITE(2,5000) K,Q(K)

 5000 FORMAT(lX,'Q(',I3,')=',Fl2.7)
  900 CONTINUE

END

Figure 11.7  A computer program that solves pipe network problems, (continued).
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NH= 1 NQ= 13 NP= 18 ERRA= 0.000100 V= 1.52E-06
J= 1 H= 0.000
J= 2 Q0= 0.0000000
J= 3 Q0= 0.0000000
J= 4 Q0= 0.0000000
J= 5 Q0= 0.0000000
J= 6 Q0= 0.0020000
J= 7 Q0= 0.0020000
J= 8 Q0= 0.0020000
J= 9 Q0= 0.0020000
J= 10 Q0= 0.0020000
J= 11 Q0= 0.0000000
J= 12 Q0= 0.0000000
J= 13 Q0= -0.0300000
K= 1 L=  50. D= 0.100 E= 0.00010 I1= 1 I2=   2 
K= 2 L= 100. D= 0.100 E= 0.00010 I1= 2 I2= 3 
K= 3 L=  100. D= 0.100 E= 0.00010 I1= 3 I2= 4
K= 4 L=  100. D= 0.100 E= 0.00010 I1= 4 I2= 5
K= 5 L=  50. D= 0.100 E= 0.00010 I1= 5 I2= 6
K= 6 L=  50. D= 0.100 E= 0.00010 I1= 4 I2= 7
K= 7 L=  50. D= 0.100 E= 0.00010 I1= 3 I2= 8
K= 8 L= 50. D= 0.100 E= 0.00010 I1= 2 I2= 9
K= 9 L= 100. D= 0.100 E= 0.00010 I1= 9 I2= 8
K= 10 L= 100. D= 0.100 E= 0.00010 I1= 8 I2= 7
K= 11 L= 100. D= 0.100 E= 0.00010 I1= 7 I2= 6
K= 12 L= 50. D= 0.100 E= 0.00010 I1= 6 I2= 13
K= 13 L= 50. D= 0.100 E= 0.00010 I1= 7 I2= 12
K= 14 L= 50. D= 0.100 E= 0.00010 I1= 8 I2= 11
K= 15 L= 50. D= 0.100 E= 0.00010 I1= 9 I2= 10
K= 16 L= 100. D= 0.075 E= 0.00010 I1= 10 I2= 11
K= 17 L= 100. D= 0.075 E= 0.00010 I1= 11 I2= 12
K= 18 L= 100. D= 0.075 E= 0.00010 I1= 12 I2= 13
H( 1)= 0.000
H( 2)= 3.537
H( 3)= 5.798
H( 4)= 7.835
H( 5)= 9.283
H( 6)= 10.007
H( 7)= 7.872
H( 8)= 5.804
H( 9)= 4.300
H( 10)= 4.351
H( 11)= 5.817
H( 12)= 8.008
H( 13)= 14.048
Q( 1)= 0.0199846
Q( 2)= 0.0110251
Q( 3)= 0.0104352
Q( 4)= 0.0087135
Q( 5)= 0.0087140
Q( 6)= 0.0017234
Q( 7)= 0.0005931
Q( 8)= 0.0089600
Q( 9)= 0.0088906
Q( 10)= 0.0105191
Q( 11)= 0.0106966
Q( 12)= 0.0214111
Q( 13)= 0.0035476
Q( 14)= 0.0009684
Q( 15)= 0.0020705
Q( 16)= 0.0040710
Q( 17)= 0.0050406
Q( 18)= 0.0085888

Figure 11.9  Output data for the pipe network example shown in Fig. 11.8.
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Figure 11.10  A method for including a pump in a pipe network problem.
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q � Uy (12.1)

Chapter 12

Steady Open Channel Flow

Channelled flows with a free surface are known as open channel flows. Examples include flows
in rivers, canals and drainage ditches. These flows are of traditional importance for civil
engineers who work in the areas of water supply, flood control, hydropower, irrigation and
drainage.

The study of steady flow in open channels can be divided into consideration of three separate
types of flow. The first flow type is described as rapidly varied. In this flow changes in depth and
velocity occur over relatively short lengths of channel. Typical control volume lengths are less
than about ten channel depths, and example applications include flow beneath sluice gates, over
weirs, spillways and humps and between side-wall constrictions and expansions. Since control
volumes in these flows are relatively short, calculations usually neglect channel resistance and
slope. However, energy losses from flow separation and turbulence are included when
considering applications such as hydraulic jumps and sudden channel expansions.

The second type of flow is described as gradually varied. This flow has changes in depth and
velocity that occur over relatively long lengths of channel. Typical control volume lengths are
more than 100 channel depths. This means that channel resistance and slope play dominant roles
and must be included in gradually varied flow calculations.

The third type of flow is described as uniform. It would probably be more accurate to describe
this flow as fully developed rather than uniform since this is flow in which the free surface is
parallel to the channel bottom and velocity distributions remain unchanged from one cross
section to the next. This type of flow is seldom encountered in practice. However,
approximations for energy losses that are used in gradually varied flow calculations are obtained
from uniform flow equations. This means that uniform flow concepts are extremely important
when studying gradually varied flow, even though examples of truly uniform flow are not
common.

Rapidly Varied Flow Calculations

Rapidly varied flow calculations make use of three equations: the continuity equation, the
Bernoulli or energy equation and the momentum equation. These are the same basic tools that
were used in Chapter 4 except that the forms of these equations are a little more specialised.
Initially we will consider flow in channels with rectangular cross sections, and changes that must
be made when cross sections have more general shapes will be discussed later.

Variable definitions for rapidly varied flow in open channels are shown in Fig. 12.1. In
rectangular channels it is convenient to define a flow rate per unit width,  byq ,
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Q � q1 B1 � q2 B2 (12.2)

Figure 12.1  Definitions of variables used for rapidly varied flow
in open channels.

E � y �
U 2

2g
� y �

q 2

2gy 2 (12.3)

z1 � E1 � z2 � E2 � EL (12.4)

in which  flux velocity and  flow depth. Thus, if the channel width,  changesU (x ) � y (x ) � B ,
with distance,  along the channel, the continuity equation takes the formx ,

in which  is the constant flow rate and the subscripts 1 and 2 denote cross sections at twoQ
different values of  in the same flow.x

It is also convenient to define a specific energy function,  asE ,

This definition allows the Bernoulli or energy equation to be written in the form

in which  channel bed elevation above an arbitrarily chosen horizontal datum plane,z �

 head loss and cross section 2 is downstream from cross section 1. The definition of  inEL � E
(12.3) differs from an earlier use of this same letter in Eq. (4.13) by a factor of  This switch�g.
in notation is excused on the grounds that the choice of notation in (12.3) is standard in most
open channel flow texts.

In many applications both  and  in (12.3) are known numbers, and (12.3) must be solved for E q y .
The resulting cubic equation may have two real positive roots. In other words, the solution of
(12.3) for  is not unique until additional information is inserted into the problem for eachy
application. This is one of the considerations that makes open channel flow calculations both
challenging and interesting.
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Figure 12.2  Behaviour of the specific energy function.

dE (y )
dy

� 1 �
q 2

gy 3 (12.5)

q 2

gy 3
c

� 1 (12.6)

yc �
q 2

g

1/3

(12.7)

The best way to study solutions of (12.3) is to consider  as a function of  with  a specifiedE y , q
constant, rather than trying to calculate  as a function of  (  is a single-valued function ofy E . E y ,
whereas  is a multiple-valued function of ) As  has the asymptoticy E . y � �, E
behaviour  and, as  Thus  becomes positively infinite asE � y , y � 0, E � q 2 /(2gy 2) . E y
approaches both zero and infinity. This means that  must have a minimum for some value ofE y
in the range  as shown in Fig. 12.2.0 < y < � ,

The value of  that makes  a minimum is called critical depth and is denoted by  andy E (y ) yc ,
the corresponding value of  is denoted by  Since the derivative of (12.3) is given byE (yc ) Ec .

the requirement that  be a minimum at  becomesE (y ) y � yc

Equation (12.6) gives critical depth as
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E /yc � y /yc �
1

2 y /yc
2 (12.8)

Ec �
3
2

yc (12.9)

E y1 � E y2 (12.10)

y2

yG

� Cc (12.11)

Equation (12.6) also allows us to plot a generalized specific energy diagram, valid for all values
of  by eliminating  from (12.3) and (12.6) to obtainq , q

Equation (12.8) is plotted in Fig. 12.3. This generalized plot is useful in obtaining numerical
solutions of rapidly varied flow problems. Equation (12.8) also shows that the minimum value
of  at  is given byE y � yc

Generally, flows in which  are called subcritical, and flows in which  are calledy > yc y < yc
supercritical. (Sometimes the terms “tranquil” or “streaming” are used to denote subcritical flow,
and the terms “rapid” or “shooting” are used to denote supercritical flow. We will not use these
terms.)

A relatively simple illustration of the use of the specific energy concept and Fig. 12.3 is provided
by flow beneath the sluice gate shown in Fig. 12.4. We would expect on physical grounds to be
able to calculate both upstream and downstream depths if  and the gate opening,  areq yG ,
specified. Since the channel bottom is horizontal and energy losses are negligible, the Bernoulli
equation gives

Equation (12.10) contains the two unknowns  A second equation with these same twoy1 and y2 .
unknowns is provided by the contraction coefficient relationship given in Chapter 6.

in which  is a function of  Since  changes slowly with  a previous estimateCc yG y1 . Cc yG /y1 ,
for  can be used in (12.11) to calculate  which in turn can be used in (12.10) to obtain any1 y2 ,
improved estimate for  Several cycles of this method of successive approximation are usuallyy1 .
sufficient to obtain reasonably accurate values for  Some examples follow.y1 and y2 .



Chapter 12 — Steady Open Channel Flow 12.5

F
ig

ur
e 

12
.3

 A
 g

en
er

al
iz

ed
 p

lo
t o

f 
th

e 
sp

ec
if

ic
 e

ne
rg

y 
fu

nc
tio

n.



12.6 Chapter 12 — Steady Open Channel Flow

Figure 12.4  Use of specific energy for flow beneath a sluice gate.

Example 12.1

A sluice gate in a rectangular channel has a gate opening  Calculate  yG � 0.5 m. y1 and y2
if Q � 8 m 3/s and B � 4 m.

Solution:  Since  critical depth isq � Q /B � 8/4 � 2 m 2/s ,

yc �
q 2

g

1/3

�
22

9.81

1/3

� 0.742 m

The iterative process will be started by assuming that  Then Cc � 0.600. y2 � 0.600 yG
 and� 0.600(0.5) � 0.300 m

E2 � y2 �
q 2

2gy 2
2

� 0.3 �
22

2(9.81)(0.3)2
� 2.57 m

� E2 /yc � 2.57/0.742 � 3.46

Since flow at cross section 1 must be subcritical with  use of the larger value ofE1 � E2 ,
 in Fig. 12.3 givesy /yc for E1 /yc � 3.46

y1 /yc � 3.40

� y1 � 3.40 yc � 3.40 (0.742) � 2.52 m

Now we must check to see if the correct value of  was used initially. SinceCc
 the contraction coefficient relationship given in Chapter 6 for flowyG /y1 � 0.5 /2.52 � 0.200,

beneath a sluice gate gives  which agrees exactly with our starting value. Hence, ourCc � 0.600,
final answers are
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y1 � 2.52 m

y2 � 0.300 m

In most cases we would not be quite as lucky in our initial estimate for  and one or twoCc ,
additional iterations might be required.

Example 12.2

Discuss the solution behaviour as  decreases in Fig. 12.4.y1

Solution:  Since  points 1 and 2 in the specific energy diagram must lie along the sameE1 � E2 ,
vertical line. Thus, as  decreases,  must increase. This process continues until points 1 andy1 y2
2 coincide at  Since  (this obvious result is outside they1 � y2 � yc . Cc � 1 when yG /y1 � 1
range of  for which values of  are given in Chapter 6), we also see that  at thisyG /y1 Cc yG � yc
critical point. Further decreases in  will cause the flow to pass beneath the sluice gate withouty1
touching its lower edge. In this case points 1 and 2 will coincide and will be on the supercritical
branch of the specific energy diagram in Fig. 12.4.

Example 12.3

Explain how  can be calculated by iteration fromy /yc

E /yc � y /yc �
1

2 y /yc
2

when  is specified.E /yc

Solution:  Some algebraic clutter can be eliminated by replacing  with  and E /yc and y /yc E y ,
respectively, to obtain

E � y �
1

2y 2

For subcritical flow  the last term is relatively small. This suggests an iterative processy > 1 ,
in which the equation

y � E �
1

2y 2

is solved by placing the last estimate for  in the right side to calculate the next estimate for y y .
Since convergence is fastest when a good starting value is used for  it is suggested that  bey , E
used for the first approximation for  An example for  is shown below, andy . E � 3.5
convergence for larger values of  will be faster.E
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E � 3.50

cycle y

0
1
2
3

3.500
3.459
3.458
3.458

For supercritical flow  the first term on the right is relatively small. This suggests any < 1 ,
iterative process in which the equation

y � 1 2 E � y

is solved by placing the last estimate for  in the right side to calculate the next estimate for y y .
The first approximation for  should be  An example for  is shown below, andy 1 2E . E � 3.5
convergence for larger values of  will be faster.E

E � 3.50

cycle y

0
1
2
3

0.378
0.400
0.402
0.402

Newton's method provides a second approach to this problem. This method defines a function f (y )
by

f (y ) � y �
1

2y 2
� E

The first derivative of  isf (y )

f � (y ) � 1 �
1

y 3

The first two terms of a Taylor's series expansion about  arey � y0

f (y ) � f (y0 ) � f � (y0 ) (y � y0 ) � � � �

If the series is truncated after the first two terms, and if  is set equal to zero, we obtain thef (y )
following formula for y :
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E1 � E2 � �z � E3 (12.12)

y � y0 �

f (y0 )

f �(y0 )

The last approximation for  is substituted in the right side for  to calculate the nexty y0
approximation for y .

Rates of convergence for these different methods are compared in the following table:

E
Starting Value

for y
Final Answer

for y

Number of Cycles for Convergence

Newton's
Method

y � E �
1

2y 2
y �

1

2(E � y )

1.55
1.55

1.550
0.568

1.207
0.838

3
4

10
—

—
11

2.00
2.00

2.000
0.500

1.855
0.597

2
3

3
—

—
4

3.00
3.00

3.000
0.408

2.942
0.442

1
2

2
—

—
2

4.00
4.00

4.000
0.354

3.968
0.371

1
2

2
—

—
2

In all cases, rates of convergence decrease as  and increase as  becomes larger.E � 1.50 E
Newton's method has a slightly more complicated iteration formula. On the other hand, Newton's
method converges at a much faster rate for small values of  and the same iteration formula isE ,
used for both subcritical and supercritical flow. There is not much difference in convergence
rates for either of the methods when  is greater than about two.E

Flow over a hump and the corresponding specific energy diagram are shown in Fig. 12.5. Since
the hump has a maximum elevation of  the Bernoulli equation becomes�z ,

in which cross sections 1, 2 and 3 are upstream, on top of and downstream, respectively, from
the hump. Equation (12.12) shows that  and  a result which is shownE1 � E3 E1 � E2 � �z ,
graphically in the specific energy diagram of Fig. 12.5. If the approaching flow is subcritical

 then the specific energy diagram shows that  If the approachingy1 > yc , y2 < y1 and y1 � y3 .
flow is supercritical  then the same diagram shows that y1 < yc , y2 > y1 and y1 � y3 .

One of the most interesting results for the flow in Fig. 12.5 occurs when  is allowed to�z
increase. Then points 1 and 3 remain fixed in the specific energy diagram and point 2 moves
leftward. This process continues until critical depth occurs at 2 and  Since point 2 cany2 � yc .
move no further leftward, any additional increase in  causes point 1 to move rightward. When�z
the approaching flow is subcritical,  increases and raises water levels upstream from the hump.y1
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* Since supercritical flow has  Eq. (12.6) shows that supercritical flow is characterized by they < yc ,
requirement that  Since  this is equivalent to  orq 2/ gy 3 > 1. q 
 Uy , U 2/gy > 1

U > gy

The theory of shallow water waves shows that the speed of an unbroken wave in still water is given by gy .
Thus, velocities in supercritical flow are greater than the wave speed of a disturbance. Likewise, consideration
of Eq. (12.6) and  shows that critical conditions occur at a point where the flow velocity and waveq 
 Uc yc
speed are equal.

Figure 12.5  Supercritical and subcritical flow over a hump.

When the approaching flow is supercritical,  suddenly increases to its subcritical value andy1
creates a hydraulic jump upstream from the hump. At first glance, moving point 1 rightward
when  causes  to decrease. However, supercritical flow velocities are faster than they1 < yc y1
speed of a small wave or disturbance in still water.* This means that any disturbance or change
in water level is rapidly swept downstream, and water levels in supercritical flow cannot be
controller or changed from a downstream point. Therefore, the only possibility when point 1
moves rightward in Fig. 12.5 is to have subcritical flow form upstream from the hump, which
sends a shock or surge in the upstream direction. This surge will eventually come to rest and
become a hydraulic jump if the upstream channel is long enough. Thus, in either case moving
point 1 rightward increases  and the flow is said to be “choked”.y1 ,

When the hump is sufficiently high to choke the flow, water levels at 3 may be either
supercritical or subcritical. For example, a downstream sluice gate can be used to ensure
subcritical flow at 3, and flows at cross sections 1, 2 and 3 are subcritical, critical or subcritical
and subcritical, respectively. If no downstream control raises the water level at 3, then these
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Figure 12.6  Choked flow over a hump.

Figure 12.7  A plot of Eq. (12.3) for two different values of q .

flows become subcritical, critical and supercritical, respectively. A sketch of these possibilities
is shown in Fig. 12.6, in which (a) curve A results if the downstream depth is less than  (b)y1 ,
curve B results if the downstream depth exactly equals  and (c) curve C results if they1
downstream depth exceeds  When curve A occurs, a hydraulic jump may or may not formy1 .
further downstream from the hump. Curve C occurs when a downstream control completely
submerges the hump. Flow downstream from a hump will be discussed again in the section on
gradually varied flow.

Changes in cross section width, B, cause  to change according to Eq. (12.2). In this caseq
Eq. (12.8) and Fig. 12.3 can still be used provided that different values for  are calculated atyc
each cross section by using  in (12.7). However, a qualitative understanding of flowq1 and q2
behaviour is best obtained from a dimensional plot of (12.3) for values of  and q � q1 q � q2 .
If  (a constriction), then (12.3) shows that the curve for  will lie to the right of theq2 > q1 q2
curve for  as shown in Fig. 12.7.q1 ,

If we consider the case in which a horizontal channel of width  narrows to a width  then B1 B2 , q2 > q1
since  The different possibilities for this case are shown with dashed lines in Fig. 12.7.B2 < B1 .
Since the Bernoulli equation requires  all operating points lie along the same verticalE1 � E2 ,
dashed line. If  is subcritical, then  if  is supercritical, then  If they1 y2 < y1 ; y1 y2 > y1 .
constriction is narrowed further, then  increases and the specific energy curve for  movesq2 q2
rightward. This process continues until point 2 lies on the point of minimum  where E , y2 � yc .
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E � y �
U 2

2g
� y �

Q 2

2gA 2 (12.13)

Any additional decrease in  after critical conditions have been reached causes the verticalB2
dashed line to move rightward with  In this case the flow becomes choked. If they2 � yc .
approaching flow is subcritical,  is increased and raises water levels upstream from they1
constriction. If the approaching flow is supercritical, then flow immediately upstream from the
constriction suddenly becomes subcritical and sends a surge in the upstream direction. Depths
downstream from the constriction are determined from the same considerations that are used in
discussing flow downstream from a hump.

Non-rectangular Cross Sections

The extension of specific energy calculations to non-rectangular cross sections is straightforward.
However, computational details are more difficult because relationships between area and depth
are more complicated and because the flow rate per unit width,  no longer has a meaning. Thisq ,
means that the specific energy must be calculated from

in which  Thus, plots of  can be made and used in calculations, and theA � A (y ) . E versus y
resulting curves and the solutions obtained from these curves will be similar to the corresponding
results for rectangular cross sections. The more complicated relationship between area and depth
makes it much more difficult to obtain a closed form solution for critical depth, and this usually
makes it impractical to construct a generalized specific energy plot like the one shown in
Fig. 12.3 for rectangular cross sections. This means that it is usually necessary to make
dimensional plots of (12.13), like the plot shown in Fig. 12.8 for a trapezoidal cross section. The
interpretation and use of dimensional specific energy diagrams for non-rectangular cross sections
is straightforward once the principles for rectangular cross sections have been mastered.

Uniform Flow Calculations

Fully developed flow in an open channel is described as uniform. This is flow on a sloping
channel bottom in which the free surface is parallel to the channel bottom and velocity
distributions do not change with distance along the channel. Truly uniform flow conditions can
be approached only in prismatic channels with very large ratios of length to depth. Nevertheless,
uniform flow approximations are important because they are routinely used to estimate energy
losses in gradually varied flows.

The free body diagram for a control volume of length  in uniform open channel flow is shown�x
in Fig. 12.9. Pressure forces on end sections of the control volume have identical magnitudes and
are not shown since they cancel out when summing forces. The pressure force exerted by the
channel bottom on the control volume has also been omitted since we are only interested in
forces parallel to the channel bottom. Since momentum fluxes at the two end sections have
identical magnitudes, the momentum equation requires that the summation of forces parallel to
the channel bottom vanish:
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Figure 12.8  The dimensional specific energy diagram for a trapezoidal cross section.

Figure 12.9  The free body diagram for a control volume of length  in uniform flow.�x
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�gA�x sin� � �Pw �x � 0 (12.14)

U �
8
f

gRS0
(12.15)

R �
A
Pw

(12.16)

H � E � z (12.17)

dH
dx

� 0 �
dz
dx

(12.18)

Sf � �
dH
dx

� S0 (12.19)

Sf � �
dH
dx

�
f
8

U 2

gR
(12.20)

in which  fluid mass density,  gravitational constant,  cross sectional area, � � g � A � �x �

control volume length,  channel bed slope,  channel bed shear stress and  wetted� � � � Pw �

perimeter of the cross section. Dividing (12.14) by  and using Eqs. (7.47) and (7.51) leads to�x
the following expression for the flux velocity, U � Q /A :

in which  channel slope,  Darcy-Weisbach friction factor and the hydraulicS0 � sin� � f �

radius,  is defined as the ratio of the cross sectional area to wetted perimeter.R ,

The Bernoulli sum,  for flow in a sloping channel isH ,

in which  specific energy [defined by (12.3) when slopes are small enough to allowE �

 and ] and  channel bottom elevation. Since energy lossescos� � 1 sin� � tan� � � z �

cannot be ignored when ratios of control volume length to flow depth are large, the Bernoulli
sum decreases with  In uniform flow  is constant, and differentiation of (12.17) givesx . E

But  and  in which  is called the friction slope. Thus,dz /dx � � sin� � � S0 , dH /dx � � Sf Sf
(12.18) shows that the friction slope in uniform flow is given by

and elimination of  from (12.15) and (12.19) givesS0
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R �
A
Pw

�
By

B � 2y
�

y
1 � 2 y /B (12.21)

R � y 1 � 2 y /B � 4 y /B 2
� ��� (12.22)

R � y for 2 y /B < 0.1 (12.23)

Re �
UD
�

�
U 4R

�
(12.24)

�

D
�

�

4R
(12.25)

Equation (12.20) has been derived for uniform open channel flow on a slope. However, it is also
used as an approximation for  in gradually varied flow for both horizontal and slopingS f
channels.

In some applications the ratio of flow depth to channel width is small. Calculation of the
hydraulic radius for a rectangular channel gives

When  is small, (12.21) can be expanded in the following power series:2 y /B

Thus, when  is less than 0.1, we can approximate  with the flow depth.2 y /B R

The error in (12.23) is about ten per cent when  which leads to an error of about2 y /B � 0.1 ,
five per cent when used in (12.15) to calculate U .

Values of  in (12.15) and (12.20) are given by the Moody diagram shown in Fig. 7.18. Sincef
the hydraulic radius of a circular pipe is given by  both the Reynolds number and relativeD /4 ,
roughness in the Moody diagram are computed by replacing  with D 4R :

 
in which  is calculated from (12.16). Values of  for some different surfaces have beenR �
published in an ASCE task force report (1963) and are given in Table 12.1
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U �
1
n

R 2/3 S 1/2
0 (12.26)

U �
1.49

n
R 2/3 S 1/2

0 (12.27)

Table 12.1  Values of  in mm for some different surfaces.�

0.15 Concrete class 4 (monolithic construction, cast against oiled steel forms
with no surface irregularities).

0.30 Very smooth cement-plastered surfaces, all joints and seams hand-
finished flush with surface.

0.49 Concrete cast in lubricated steel moulds, with carefully smoothed or
pointed seams and joints.

0.61 Wood-stave pipes, planed-wood flumes, and concrete class 3 (cast against
steel forms, or spun-precast pipe). Smooth trowelled surfaces. Glazed
sewer pipes.

1.52 Concrete class 2 (monolithic construction against rough forms or smooth-
finished cement-gun surface, the latter often termed gunite or shot
concrete). Glazed brickwork.

2.44 Short lengths of concrete pipe of small diameter without special facing of
butt joints.

3.05 Concrete class 1 (precast pipes with mortar squeeze at the joints). Straight
uniform earth channels.

4.27 Roughly made concrete conduits.

6.10 Rubble masonry.

3.05 to 9.14 Untreated gunite.

For many years engineers have used an empirical equation known as the Manning equation to
calculate velocities in uniform open channel flow. Because this equation is not dimensionally
homogeneous, it has different forms for different systems of units. In metre-second units it has
the form

and in foot-second units it changes to

in which  is the dimensionless Manning surface roughness coefficient. It is generally agreedn
that Mannings equation holds only in fully rough turbulent flow, where  depends upon relativef
roughness but not upon the Reynolds number. On the other hand, Eq. (12.15) is dimensionally
correct, so that its form does not change with the system of units, and it holds for flows in which f
depends upon both relative roughness and Reynolds number. Consequently, we will prefer the
use of (12.15).
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n � 1.49 R 1/6 f
8g

(12.28)

n � R 1/6 f
8g

(12.29)

Despite the shortcomings of the Manning equation, a great deal of information exists about
choices for  in open channel flows. [For example, Chow (1959) and Henderson (1966).] Forn
this reason, many engineers continue to use the Manning equation. Values for  can bef
calculated from  by using the following equation with foot-second units:n

When metre-second units are used, this equation changes to

Equations (12.28) - (12.29) have been obtained by equating the expressions for  in (12.15) andU
(12.26) - (12.27).

Example 12.4

Calculate the uniform flow velocity and discharge in the trapezoidal canal shown in Fig. 12.8
if  y � 2 m, S0 � 1:2000 and � � 0.49 mm.

Solution:  The area and wetted perimeter for a depth of 2 m are

A � 2y (2 � y ) � 2(2)(2 � 2) � 16 m 2

Pw � 4 � 2y 5 � 4 � 2(2) 5 � 12.9 m

This leads to the following value for the hydraulic radius:

R �
A
Pw

�
16

12.9
� 1.24 m

Thus, Eq. (12.15) gives

U �
8
f

gR S0 �
8
f

9.81 1.24
1

2000
�

0.221

f

In general,  depends upon  and this equation must be solved by successivef Re and � /D ,
approximation. We will start by calculating

� /D � � / 4R � 0.49 × 10	3 4 × 1.24 � 0.0001

If the flow is completely turbulent with a rough boundary, Fig. 7.18 gives
 At 10�C, this gives a Reynolds number off � 0.012 and U � 0.221 0.012 � 2.02 m s.
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Re �
U 4R

�
�

2.02 4 × 1.25

1.31 × 10	6
� 7.65 × 106

This leads to a revised value of  from Fig. 7.18 and a slightly changed value for f � 0.0123 U .

 U � 0.221 0.0123 � 1.99 m/s

Since  Fig. 7.18 shows that the next cycle would give the same values for Re � 7.53 × 106 , f
and  Finally, the discharge isU .

 Q � U A � 1.99 16 � 31.8 m 3/s

Example 12.5

Calculate the uniform flow depth in the trapezoidal canal shown in Fig. 12.8  if
  and Q � 20 m 3/s , S0 � 1:2000 � � 0.49 mm.

Solution:  The unknown depth appears in  and also in  since  dependsA , Pw (and, thus R ) f f
upon both the Reynolds number and relative roughness. Thus, the uniform flow equation,
(12.15), cannot be solved directly for  Therefore, it is better to specify values for  andy . y
calculate corresponding values for  Then interpolation gives an estimate for  correspondingQ . y
to  The results for this example are summarized in the following table:Q � 20 m 3/s .

y (m) A (m 2) Pw (m) R (m) U (m/s) Q (m 3/s)

1.3 8.58 9.81 0.874 1.61 13.8

1.5 10.5 10.7 0.981 1.73 18.2

1.6 11.5 11.2 1.03 1.79 20.6

Linear interpolation gives

y � 1.58 m

Gradually Varied Flow Calculations

In gradually varied flow, where changes in depth and velocity occur over distances greater than
about 100 flow depths, the effects of both channel slope and energy losses must be taken into
account. Mathematical solutions for this type of flow are obtained from a simultaneous solution
of the continuity and momentum equations. Probably the easiest way to derive the momentum
equation is to differentiate the Bernoulli sum
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H � z � y �
U 2

2g
(12.30)

dH
dx

�
dz
dx

�
dy
dx

�
U
g

dU
dx

(12.31)

dy
dx

�
U
g

dU
dx

� S0 � Sf (12.32)

Sf �
f
8

U 2

gy
(12.33)

Un �
8
f

g yn S0
(12.34)

Sf � S0

yn

y
U 2

U 2
n

� S0

yn

y

3

(12.35)

U
g

dU
dx

�
q

gy
d

dx
q
y

� �
q 2

gy 3

dy
dx

� �

yc

y

3
dy
dx

(12.36)

with respect to  to obtainx

Setting  in (12.31) gives a general form of the momentumdz /dx � �S0 and dH /dx � �Sf
equation for gradually varied flow in an open channel:

Equation (12.32) holds for any cross sectional geometry, and  in (12.32) is usuallyS f
approximated with the friction slope for uniform flow on a slope given by (12.20).

The qualitative behaviour of solutions of (12.32) is investigated most easily for a relatively
shallow flow in a prismatic channel for which the ratio of flow depth to channel width is small.
Under these conditions, (12.23) shows that the hydraulic radius is approximated with the flow
depth and (12.20) becomes

It is also convenient to introduce the definition of normal depth,  as the depth calculated fromyn ,
(12.15) if uniform flow existed in the channel:

in which  velocity for the corresponding uniform flow depth,  Eliminating Un � yn . 8g /f
between (12.33) and (12.34) gives

in which the continuity equation  has been used to replace  withq � Uy � Un yn U /Un
2

  Finally use of  allows the convective acceleration term to be calculated in theyn /y 2 . U � q /y
following form:
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dy
dx

� S0

1 � yn /y 3

1 � yc /y 3
� S0

y 3
� y 3

n

y 3
� y 3

c

(12.37)

in which the definition of critical depth given by (12.6) has been used to eliminate q 2/g .
Substituting (12.35) and (12.36) into (12.32) gives an ordinary differential equation for the
gradual variation of depth in a shallow open channel.

Equation (12.37) was first integrated in closed form by Bresse in 1860. Although the integration
is fairly straightforward, we will give neither the details nor the results. This is because most
engineers calculate numerical solutions of (12.32), and these numerical solutions can be
calculated for both prismatic and non-prismatic channels with cross sections of any form. It is
important, however, to obtain a qualitative understanding of the way in which solutions of
(12.37) behave. This qualitative behaviour is obtained most easily from a direct study of (12.37)
rather than from plots of the integral of (12.37).

Solutions of (12.37) have behaviours that depend upon the magnitude of  compared with they
magnitudes of  Since the straight lines  divide the solutionyn and yc . y � yn and y � yc
domain into three distinct regions, a sloping channel has three different solution regions that are
denoted by subscripts 1, 2 and 3 in going from the top, to the middle and to the bottom,
respectively. Furthermore, we must consider slopes that are mild  steep yn > yc , yn < yc ,
adverse (  non-existent) and horizontal  Solutions for these various slopes areyn yn � � .
denoted with the letters  respectively. This classification should become clearM , S , A and H ,
as each possibility is discussed.

A mild slope is characterized by the requirement  The straight lines  and yn > yc . y � yn y � yc
are shown in Fig. 12.10 with dashed lines that are parallel to the channel bottom. The solution
for a mild slope when  is denoted by  in Fig. 12.10. In this region the right sideyn < y < � M1
of (12.37) is positive. Thus,  in region one and approaches  as  which showsdy /dx > 0 S0 y � �,
that the solution for  is asymptotic to a horizontal line as  As  from within regiony y � �. y � yn
one,  In region two, where  the right side of (12.37) is negative. Thus, dy /dx � 0. yc < y < yn , dy /dx
is negative for region two and approaches zero and negative infinity as  and y � yn y � yc ,
respectively. This solution is denoted by  in Fig. 12.10. Finally, region three has M2 0 < y < yc .
In this case the right side of (12.37) is positive. When  is a finite positive number.y � 0, dy /dx
When  becomes positively infinite. This solution is denoted by  in Fig. 12.10.y � yc , dy /dx M3
Solution curve behaviour for a steep slope is determined in the same way, and the result is shown
in Fig. 12.10.

The solution behaviour for an adverse slope  cannot be determined from (12.37) since S0 < 0 yn
is not defined. Since critical depth can still be calculated from (12.7), the convective acceleration
term can be replaced with (12.36). The friction slope can be approximated with (12.33), in which U
can be replaced with  Thus, (12.32) can be written for an adverse slope in the formq /y .
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Figure 12.10  Gradually varied flow solution behaviour for relatively shallow flow in open
channels.
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* Experiments show that critical depth actually occurs a distance of  upstream from the brink. This3yc to 4yc
distance is usually ignored in gradually varied flow calculations, and critical depth is assumed to occur at the
brink.

dy
dx

�

S0 �
fq 2

8gy 3

1 � yc /y 3

(12.38)

in which  The right side of (12.38) is negative when  and approachesS0 < 0. yc < y < �

 When  through values of  greater than  approaches negativeS0 as y � �. y � yc y yc , dy /dx
infinity. The curve for this region, which is defined to be region two, is labelled  in Fig. 12.10.A2
Similar reasoning gives the curve labelled  when  Solutions for the horizontalA3 0 < y < yc .
slope are also determined from (12.38) after setting  These curves are labelledS0 � 0.

 in Fig. 12.10.H2 and H3

It is now possible to summarize the results shown in Fig. 12.10. Since a finite normal depth
exists only for positive slopes, there are three possible solutions for mild and steep slopes but
only two solutions for adverse and horizontal slopes. Normal depth is approached asymptotically
at the upstream end of mild slopes and at the downstream end of steep slopes, and horizontal
asymptotes are approached in all cases as  becomes infinite. Finally, all solutions have any
infinite slope as  When these facts are remembered, it becomes easy to sketchy � yc .
qualitatively correct solution behaviours for the different cases. There is no need to memorize
the results, however, since they are all summarized concisely in Fig. 12.10.

Flow Controls

A flow control is defined to be any point along an open channel where a unique relationship
exists between flow rate and depth. One example is the sluice gate considered in Example 12.1,
where specification of a flow rate and gate opening allowed upstream and downstream depths
to be calculated. Another example occurs for flow over either a weir or spillway, in which case
specification of  determines an upstream depth. A free overfall, shown in Fig. 12.11a, becomesQ
a flow control if the approaching flow is subcritical. Then critical depth occurs at the overfall.*

Critical depth does not occur at the overfall, however, if the approaching flow is supercritical.
In that case the overfall is not a flow control. A final example, shown in Fig. 12.11b, occurs at
a point where a channel slope changes from mild to steep, in which case critical depth occurs at
the point where the slope changes. In all of these cases subcritical and supercritical flow occur
upstream and downstream, respectively, from the control unless another downstream control
drowns all or part of the control under consideration.

A channel constriction or rise in channel bottom elevation becomes a flow control only if the
flow is choked so that critical depth occurs at the constriction or on top of the rise. A hydraulic
jump is not a flow control since specification of  determines a relationship between Q y1 and y2
but is not sufficient to determine values for these depths. Henderson (1966) gives a detailed
discussion of flow controls.
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Figure 12.11  Flow controls (a) at a free overall and (b) at a change in channel slope.

Gradually varied flow calculations must, in general, start at a flow control and proceed in the
upstream direction for subcritical flow and in the downstream direction for supercritical flow.
Flow controls are important because they fix the flow depth, and, therefore, provide an initial
condition to fix the integration constant when integrating the first-order differential equation for
gradually varied flow. Since subcritical and supercritical flow generally exist upstream and
downstream, respectively, from a flow control, gradually varied flow profiles are calculated by
integrating in both the upstream and downstream direction from flow controls. When a flow
control exists at both ends of a channel reach, the resulting flow profiles can be joined only by
inserting a hydraulic jump somewhere along the reach. However, a hydraulic jump can always
move upstream to submerge all or part of an upstream control, or sometimes it can move
downstream to eliminate a downstream flow control. Examples will be shown in the following
section.

Flow Profile Analysis

Flow profile analysis uses the free surface behaviours shown in Fig. 12.10 together with
additional information about flow controls to predict free surface flow profiles in open channel
flows. Every problem generally has a number of different possible profiles, and a final unique
solution for any given problem ultimately depends upon specific values for   flow controlyn , yc ,
depths, depths calculated from rapidly varied flow equations and from integrations of (12.32) or
(12.37) for gradually varied flow. However, the final numerical solution of a particular
problem should not be attempted until a flow profile analysis has been used to examine the
different possibilities.

Our first example will consider flow in a horizontal channel downstream from a hump when the
hump chokes the flow, as shown in Fig. 12.12. We will assume that the downstream channel
terminates with a free overfall. Since the flow immediately downstream from the hump is likely
to be supercritical, Fig. 12.10 shows that an  profile will extend downstream until criticalH3
depth is reached at a finite distance from the hump. We assume initially that the overfall brink
occurs well downstream from this point, which means that critical depth occurs at the overfall
brink and that an  profile extends upstream from this point. Thus, the overfall also acts as aH2
flow control, and the supercritical profile downstream from the hump and the subcritical profile
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y2

y1

�
1
2

� 1 � 1 � 8F 2
1 (12.39)

F1 �

U1

gy1

�
q

gy 3
1

(12.40)

Figure 12.12  The flow profile downstream from a hump in a horizontal channel. The hump
chokes the upstream flow, and the downstream channel terminates with a free overfall.

upstream from the overfall can be joined only with a discontinuity in depth given by the hydraulic
jump equation calculated in Example 4.7:

in which the upstream Froude number is given by

By starting at the point where  occurs in the  profile, depths in the  profile can beyc H3 H3
inserted for  in (12.39) -(12.40) to calculate corresponding values for  which are showny1 y2 ,
with dots in Fig. 12.12. The intersection of this curve with the  curve is the point where theH2
gradually varied flow equations and the hydraulic jump solution are satisfied simultaneously, and
it is at this point where the jump will stabilize.

The flow profile shown in Fig. 12.12 is not unique, but it can be used to arrive at other possible
profiles. For example, shortening the distance between the overfall and hump lowers the H2
profile and causes the intersection of the  profile with the curve calculated fromH2
(12.39) - (12.40) to move downstream. If this channel reach is shortened sufficiently to place the
overfall brink upstream from the point where critical depth occurs in the  profile, the jumpH3
will be swept over the brink. Then supercritical flow with an  profile extends along the entireH3
reach. In this case the overfall no longer acts as a flow control. At the other extreme, lengthening
the channel reach causes the jump to move upstream by raising the elevation of the  profile.H2
If the channel reach becomes long enough, the jump will move upstream to the hump. In this case
the jump will remain at the hump as a drowned hydraulic jump if the  depth at this point isH2
less than the depth just upstream from the hump. If the  depth equals the depth upstream fromH2
the hump, curve  in Fig. 12.6 will result. Finally, if the  depth at the hump exceeds the depthB H2
immediately upstream from the hump, curve  in Fig. 12.6 will occur. In this case, critical depthC
no longer occurs on the hump, and the hump ceases to act as a flow control.
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Figure 12.13  A possible flow profile for two consecutive reaches.

In more general problems flow profiles must be considered for two or more reaches joined
together. Figure 12.13 shows a mild reach  joined to a steep reach  with ayn > yc yn < yc
sluice gate at the upstream end of the mild reach and a weir at the downstream end of the steep
reach. Flow profiles are shown in Fig. 12.13 for the case in which flow controls exist at the sluice
gate, the change in channel slope and the weir. Values of  calculated from (12.39) - (12.40) arey2
shown again with dots, and hydraulic jumps occur in each reach at the intersection of these
curves with subcritical flow profiles. As in the previous example, the remaining possible profiles
can be obtained by modifications of the channel and profile geometry shown in Fig. 12.13. For
example, lengthening the mild reach will force the first jump upstream, and shortening the mild
reach allows the jump to move downstream. It is also possible to shorten the mild reach enough
to sweep the jump over the change in channel slope, in which case an  profile extends overM3
the full length of the reach and the change in channel slope ceases to act as a flow control.
Lowering the sluice gate will also move the jump downstream, and raising the gate allows the
jump to move upstream. Likewise, lowering or raising the weir causes the jump on the steep
slope to move downstream or upstream, respectively, and it may be possible to raise the weir
enough to drown the flow control at the change in channel slope.

The problems considered so far have assumed that flow rates are given. A more difficult problem
occurs when the flow rate is an unknown that must be calculated as part of the solution. An
example of this occurs when two reservoirs at different elevations are joined with a sloping
channel, as shown in Fig. 12.14. Free surface elevations in both reservoirs are given, and the
unknowns are the flow rate per unit width,  and the free surface profile in the open channel.q ,
Since  is unknown, critical and normal depths cannot be calculated directly. This means thatq
a method of successive approximation must be used to obtain the final solution.
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Figure 12.14  Two reservoirs joined with a sloping channel.

Figure 12.15  The free surface profile for Fig. 12.14 when the channel slope is steep.

H � yc �
q 2

2gy 2
c

(12.41)

yc �
2
3

H (12.42)

q �
8
27

gH 3 (12.43)

Since critical and normal depths are unknown, the solution of this problem can be started by
assuming that the channel slope is steep. If the channel is steep, then critical depth must occur
at the upstream end of the channel with an  curve extending downstream. If the downstreamS2
reservoir surface is high enough, then an  curve extends upstream from the lower end of theS1
channel. In this case the  curves are joined with a hydraulic jump at the point whereS1 and S2
the  depths satisfy (12.39) - (12.40), as shown in Fig. 12.15. Raising or lowering theS1 and S2
downstream reservoir surface will cause the jump to move upstream or downstream, respectively.
If the downstream reservoir surface falls below the value of  calculated from (12.39) - (12.40)y2
at the downstream channel end, then the jump will be swept into the reservoir.

An application of the Bernoulli equation at the upstream channel end in Fig. 12.15 gives

The simultaneous solution of (12.6) and (12.41) for  givesyc and q
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q � yn
8
f

g yn S0
(12.44)

H � y �
q 2

2g y 2 (12.45)

Figure 12.16  Free surface profiles for Fig. 12.14 when the channel slope is mild.

The value of  in (12.43) can be used to calculate a normal depth fromq

If  calculated from (12.44) is less than  calculated from (12.42), then the channel isyn yc
confirmed to be steep and (12.42) - (12.43) give the correct solution. In this case, the free surface
profiles shown in Fig. 12.15 can be calculated without further difficulty.

If the value of  calculated from (12.44) exceeds the value of  calculated from (12.42), thenyn yc
the channel slope is mild and (12.41 - (12.43) are invalid. Possible free surface profiles for a mild
slope are shown in Fig. 12.16, with either an  profile extending upstream from theM1 or M2
downstream reservoir. In this case an assumed value of  can be used to calculate correspondingq
values for  and free surface coordinates in the open channel. Then the free surfaceyc , yn
coordinate at the upstream end of the channel can be used to calculate  from the BernoulliH
equation.

After  has been calculated from (12.45) for a number of assumed values of  a plot of H q , H
versus  can be prepared and used to calculate the particular value of  that will occur for anyq q
specified value of H .

It becomes apparent from an examination of Fig. 12.16 that all free surface profiles for a mild
slope approach normal depth asymptotically at the upper end of the channel. Therefore, if the
channel is long enough, the procedure just outlined becomes equivalent to the simultaneous
solution of (12.44) and (12.45) [after replacing  in (12.45) with ]. In this case it is convenienty yn
to specify  and calculate  from (12.44) and (12.45), respectively, to obtain a plot ofyn q and H

 This procedure is considerably easier than the first procedure given for a mild slopeH versus q .
since it does not require calculation of a free surface profile for every assumed value of q .
However, one or two free surface profiles should be calculated for the channel to ensure that the
channel reach is long enough to allow uniform flow to be approached at the upstream end of the
channel.
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Example 12.6

A rectangular open channel serves as an outlet for a reservoir. Calculate a dimensionless
relationship between the outflow per unit width,  and reservoir free surface elevation,  ifq , H ,
the channel is long enough to ensure that any downstream control creates a negligible backwater
effect at the reservoir outlet.

Solution:  When the channel slope is steep, Eq. (12.43) gives the outflow discharge.

q

gH 3
�

8
27

when yn < yc

Solution of Eq. (12.44) for  and use of the previous equation for  givesyn q

yn �
f q 2

8g S0

1/3

�
f H 3

27 S0

1/3

Substituting this expression for  and Eq. (12.42) for  in the inequality  givesyn yc yn < yc

yn < yc when
f

S0

< 8

This shows that the channel can be made steep by either increasing  or decreasing S0 f .

When the channel slope is mild, flow at the reservoir outlet can be influenced by non-uniform
flow that results from a downstream control (i.e. a backwater effect). If we assume that the
channel is long enough to have a negligible backwater effect at the reservoir outlet, then uniform
flow exists in the channel immediately downstream from the outlet and Eq. (12.44) gives the
following expression for the flow depth:

yn

H
�

1
8

q 2

gH 3

f
S0

1/3

Setting  in the Bernoulli equation, Eq. (12.45), gives a second relationship.y � yn

1 �

yn

H
�

1
2

q 2

gH 3

1

yn /H 2

Elimination of the parameter  between these two equations gives a relationship between yn /H q / gH 3

and  for a mild slope when   However, the numerical solution of these equationsf /S0 yn > yc .
is achieved most easily by calculating  from the second equation for an assumed valueq / gH 3

of  Then the assumed value of  and calculated value of  can be used in theyn /H . yn /H q / gH 3

first equation to compute  The result of this calculation is shown in the following plot.f /S0 .
Applications of this plot under the most general circumstances must proceed by trial and error
since  depends upon both Reynolds number and relative roughness.f
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dE
dx

� S0 � Sf (12.46)

x2 � x1 �

E2 � E1

2
1

S0 � Sf 1

�
1

S0 � Sf 2

(12.47)

E (1)
2 � E1 � S0 � Sf 1

x2 � x1 (12.48)

Numerical Integration of the Gradually Varied Flow Equation

The numerical integration of (12.32) is carried out most conveniently by rewriting it in the form

in which  is defined, for the most general case, by (12.13). There are two basic ways in whichE
(12.46) is integrated to calculate free surface coordinates. The first way, which can only be used
for prismatic channels with constant slopes, specifies  (and, therefore, ) at two different crossE y
sections and uses (12.46) to calculate the  distance between these two cross sections. Thus, ifx

 are specific energies at  and  respectively, an application of theE1 and E2 x � x1 x � x2 ,
trapezoidal rule to integrate (12.46) gives

in which the sign of  determines whether cross section 2 is upstream or downstream fromx2 � x1
cross section 2. The second method, which can be used for both prismatic and non-prismatic
channels with either constant or variable slopes, specifies the distance  between two crossx2 � x1
sections and integrates (12.46) to calculate  and the depth at cross section 2. For example, aE
second-order Runge-Kutta method uses the known value of  at  to get a firstE1 x � x1
approximation for E2 :
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E (2)
2 � E1 �

x2 � x1

2
S0 � Sf 1

� S0 � Sf
(1)

2
(12.49)

This first approximation for  gives corresponding values for  and  and theE2 y (1)
2 S0 � Sf

(1)

2
,

second and final approximation for  is given byE2

Again,  has a sign determined by the relative positions of cross sections 1 and 2.x2 � x1
Computational accuracy is increased with (12.47) by decreasing  which increases theE2 � E1 ,
number of steps required to calculate a profile for a specified channel length. Computational
accuracy is increased with (12.48) - (12.49) by decreasing  which also increases thex2�x1 ,
number of steps required to calculate a profile for a specified channel length.

Example 12.7

The trapezoidal canal in Fig. 12.8 has  andQ � 5 m 3/s , S0 � 1:2000, � � 0.49 mm
 Use two equal steps in depth to calculate the distance between cross sections thatyc � 0.500 m.

have depths of y � 0.90 and 1.00 m.

Solution:  A calculation like the one illustrated in Example 12.5 gives  foryn � 0.74 m
 Since  the slope is mild. Since all values of  in this calculation areQ � 5 m 3/s. yc < yn , y

greater than  we expect an  curve in which depths go from  to 0.95 to 0.90 m inyn , M1 y � 1.00
the upstream direction.

Figure 12.8 shows that E � 1.03, 0.98 and 0.94 m when y � 1.00, 0.95 and 0.90 m,
respectively. Corresponding values for  at these depths are calculated from Eq. (12.20):Sf

Sf �
f
8

U 2

gR
�

f
8

Q /A 2

gR

Calculations for  are summarized in the following table:Sf

Cross Section 1 2 3

1.00 0.95 0.90y (m)

6.00 5.61 5.22A m 2

0.708 0.680 0.650R (m)

1.80 × 106 1.85 × 106 1.90 × 106Re

0.00017 0.00018 0.00019� / (4R )

0.0140 0.0141 0.0141f

0.000175 0.000210 0.000254Sf
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Since  application of (12.47) givesS0 � 1/2000 � 0.00050,

x3 � x1 �

E2 � E1

2
1

S0 � Sf 1

�
1

S0 � Sf 2

�

E3 � E2

2
1

S0 � Sf 2

�
1

S0 � Sf 3

� �
0.05

2
1

0.000325
�

1
0.000290

�
0.04

2
1

0.000290
�

1
0.000246

 = � 313 m

The negative sign indicates that cross section 3 is upstream from cross section 1, which is to be
expected for an  curve.M1

Example 12.8

Rework the previous example by using two equally spaced steps in  to calculate  atx y3
x � � 313 m if y1 � 1.00 m at x1 � 0.

Solution: From Example 12.7 we have  x2 � x1 � � 313/2 � � 157 m, S0 � Sf 1
� 0.000325

and  Therefore, Eq. (12.48) gives the following first approximation for E1 � 1.03 m. E2 :

E (1)
2 � E1 � S0 � Sf 1

x2 � x1 � 1.03 � 0.000325 �157 � 0.98 m

The corresponding value for  is found from Fig. 12.8 to be  which leads to y2 y (1)
2 � 0.95m,

 The final approximation for  is nowS0 � Sf
(1)

2
� 0.00050 � 0.000210 � 0.000290. E2

calculated from Eq. (12.49).

E (2)
2 � E1 �

x2 � x1

2
S0 � Sf 1

� S0 � Sf
(1)

2
� 1.03 �

157
2

0.000325 � 0.000290 � 0.98 m

The corresponding value for  is found from Fig. 12.8 to be which leads to y2 y (2)
2 � 0.95 m,

S0 � Sf
(2)

2
� 0.000290.

Repetition of this process for the second step in  gives the following results:x

E (1)
3 � E2 � S0 � Sf 2

x3 � x2 � 0.98 � 0.000290 �157 � 0.93 m

y (1)
3 � 0.88 and S0 � Sf

(1)

3
� 0.00050 � 0.000273 � 0.000227

E (2)
3 � E2 �

x3 � x2

2
S0 � Sf 2

� S0 � Sf
(1)

3
� 0.98 �

157
2

0.000290 � 0.000227 � 0.94 m

 y (2)
3 � 0.90 m

This happens to agree exactly with the value of  that was used in Example 12.7. In general wey3
would expect these values to be close but not necessarily identical.
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H (1)
2 � H1 � Sf 1

x2 � x1 � HL (12.50)

H (2)
2 � H1 �

x2 � x1

2
Sf 1

� Sf
(1)

2
� HL (12.51)

H � z �
Q /A 2

2g
(12.52)

Gradually Varied Flow in Natural Channels

Gradually varied flow in natural channels can be calculated with the one-dimensional flow
approximations used in this chapter only when flow is subcritical. This is because standing waves
always occur in irregular channels containing supercritical flow, and this causes the flow to
become highly two and three-dimensional. Since channel cross sections used in the integration
have  coordinates that are fixed by the natural geometry of the channel, subcritical flowx
integrations must be carried out in the upstream direction by using Eqs. (12.48) - (12.49).
However, these equations are usually modified to include a term for local losses at sharp bends
or sudden expansions. Furthermore, since the channel slope varies irregularly, the channel slope
and flow depth terms in  are combined to give the vertical elevation,  of the free surfaceE z ,
above an arbitrarily chosen fixed datum. Thus, Eqs. (12.48) - (12.49) take the following form:

in which  local head loss,  since cross section 2 is upstream from cross sectionHL � x2 � x1 < 0
1 and  is defined asH

Equations (12.50) - (12.51) are applied in the same way that (12.48) - (12.49) were used in
Example 12.8 except that Eq. (12.52) and field measurements must be used to prepare a plot of H
versus  for each channel cross section. Henderson (1966) points out that little generalizedz
information is available for values of  and river engineers commonly use values that haveHL ,
been measured in past floods.

References

Chow, V.T. (1959) Open-channel hydraulics, McGraw-Hill Book Co., New York,
pp. 115-123.

Henderson, F.M. (1966) Open channel flow, MacMillan Publishing Co., New York,
pp. 96-101, p. 141, ch. 6.

Report (1963) ASCE task force on friction factors in open channels, Proc. Am. Soc. Civil
Engrs, vol. 89, no. HY2, pp. 97-143.



Figure 13.1  The control volume and free body diagram for unsteady flow in a pipe.

Chapter 13

Unsteady Pipe Flow

In unsteady flow variables such as velocity and pressure change with time at a fixed point. An
important example of unsteady flow that will be considered in this chapter is concerned with the
movement of relatively large pressure waves through a pipe when a valve is closed rapidly, a
phenomenon known as waterhammer. We will treat these flows as one-dimensional. However,
the addition of time as a second independent variable means that all dependent variables are
functions of both  As a result, these problems are described with partial rather thanx and t .
ordinary differential equations. In this chapter we will learn to solve these partial differential
equations by using a very general and powerful technique that is known as the method of
characteristics.

The Equations of Unsteady Pipe Flow

We will only consider flow in constant diameter pipes. However, pressures in these flows often
become so large that elastic effects in both the fluid and pipe walls must be included in an
analysis. Thus, the control volume shown in Fig. 13.1 has a cross sectional area,  and massA ,
density,  that change with both  For this reason longitudinal pressure forces include�, x and t .
pressure forces on both end sections and a third force exerted by the diverging pipe walls on the
flow. The remaining longitudinal forces include a component of the fluid weight and a tangential
shear force along the pipe walls. The pipe centreline makes an angle  with the horizontal.�
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T
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�U
�x

�
1
�A

D �A
Dt

� 0 (13.4)

The control volume form of the continuity equation states that the sum of the net mass flux out
through the control volume boundaries and the time rate of increase of mass within the control
volume must vanish.

Since  are independent variables,  is treated as a constant when differentiating withx and t �x
respect to  Therefore, division of (13.1) by  and letting  givest . �x �x � 0

Expansion of the first term in (13.2) gives

and use of the definition of the material derivative puts (13.3) in a relatively simple form.

Changes in  occur in the flow only as a result of changes in pressure,  Thus, we define�A p .

Use of the chain rule and Eq. (13.5) gives

and allows Eq. (13.4) to be written in its final form.

Later in this chapter we will show that  is the celerity or speed of a pressure wave in the flow,c
(i.e.  is the speed of sound in the fluid). Wylie and Streeter (1982) give expressions for  forc c
various types of conduits. The most important of these expressions for our purposes is the
following result for an elastic conduit with thin walls:
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pA x � pA x ��x � Ax ��x� Ax p � �gA�xsin� � �Pw �x � �A�x
DU
Dt

(13.9)

�
1
�A

� pA
�x

�
p
�A

�A
�x

� g sin� �
�

�A /Pw

�
DU
Dt (13.10)

�
1
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�p
�x

� g sin� �
f

2D
�U �U �

DU
Dt

� U
�U
�x

�
�U
� t

(13.11)

in which  fluid bulk modulus of elasticity,  pipe material modulus of elasticity, Ef � Ep � D �

pipe diameter and  pipe wall thickness. Equation (13.8) shows that  can be increased eitherT � c
by stiffening the pipe walls or by increasing the pipe wall thickness relative to the pipe diameter.
For water at 15�C in a steel pipe,  decreases from 1,464 m/s when  to 1,017 m/sc D /T � 0
when D /T � 100.

The momentum equation can be derived by using the free body diagram shown in Fig. 13.1b. In
this case the dashed lines become system volume boundaries. Since the mass of fluid within the
system volume does not change with time (by definition of a system volume, as explained in
Chapter 2), Newton's second law states that the resultant of all external forces on the system
volume equals the product of its mass and acceleration.

Dividing by  and letting  gives�A�x �x � 0

Expansion of the derivative in the first term and use of (7.47), (7.51) and  putsA /Pw � D /4
(13.10) in the following form:

in which the absolute value sign in the third term has been used to ensure that the tangential wall
shear force is always in a direction opposite to the direction of motion. This is necessary because
pressure waves and velocities in water hammer problems invariably oscillate in direction.

Simplification of the Equations

Equations (13.7) and (13.11) contain a few terms that are relatively small. While it is not
incorrect to retain these terms, their presence complicates both the calculation and interpretation
of solutions. Furthermore, these terms are likely to make contributions to the end result that are
of the same order as errors introduced by inaccurate estimates for  For these reasons,c and f .
we will scale terms in (13.7) and (13.11) and discard several terms that are found to be relatively
small.

The problem in Fig. 13.2 is useful for estimating magnitudes of terms in (13.7) and (13.11). As
in Chapter 5, the symbol  will be used to denote “of the order of”. Thus, since flow in the pipe�
has a constant initial velocity  that is reduced to zero at the downstream pipe end when theU0
valve is suddenly closed, we have the estimate  Since  is the speed of a pressure waveU � U0 . c
in the flow, a characteristic time is given by  Changes in  are relatively small� t � L /c . � and c
in these problems, and this allows us to treat  as constants in Eqs. (13.7) and (13.11).� and c
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Figure 13.2  A problem used to estimate magnitudes of terms in Eqs. (13.7) and (13.11).

�c 2
U0

L
� U0

�p
L

�
�p
L /c

� 0 (13.12)

�cU0

�p
�

U0

c
� 1 � 0 (13.13)

�p � �c U0 (13.14)

If  is the maximum change in pressure created by suddenly closing a valve at the downstream�p
end of the pipe, then terms in Eq. (13.7) have the following orders of magnitude:

Since  is unlikely to be small in (13.7), division of (13.12) by  gives an estimate�p /� t �p / L /c
for each of the first two terms relative to �p /� t .

But  and, in most problems, we would expect that  would not exceed 50 m/s.c � 1400 m/s U0
Thus, the second term is unlikely to be more than four per cent of the third term, and the first and
third terms must have the same order of magnitude. Thus, Eq. (13.13) gives the following
estimate for �p :

When we eventually solve the problem in Fig. 13.2, we will find that the estimate given by
(13.14) is extremely close.

The easiest way to appreciate the size of the pressure increase given by (13.14) is to divide both
sides of (13.14) by  to obtain�g
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in which  is the maximum increase in piezometric head. Since  1400 m/s and�h c �
 9.81 m/s,  is very large for any reasonably large value of  For example, if  10 m,g � �h U0 . H �

if friction and local losses are neglected and if the valve is completely open before being
suddenly closed, then  and  2000 m. In dimensionless terms, thisU0 � 2gH � 14 m/s �h �
gives  This massive pressure increase can be large enough to burst a pipe and is�h /H � 200.
the reason for using the term waterhammer to describe the phenomenon.

The preceding analysis showed that the second term in (13.7) can be neglected and also provided
an estimate for the maximum pressure rise created by suddenly closing a valve at the downstream
end of the pipe. A similar analysis of Eq. (13.11) gives

in which (13.14) has been used to provide an estimate for  Since  is unlikely to be�p . �U /� t
small, division of (13.16) by  gives an estimate for each term relative to .U0 / L /c �U /� t

Equation (13.17) shows that the convective acceleration term,  should be droppedU �U /�x ,
since it has the same relative magnitude as the term  that was dropped in (13.7). TheU �p /�x
friction term can be neglected only when

Since (13.18) is not always true, we will retain the friction term but note that it can be neglected
when (13.18) is satisfied. Equation (13.17) also shows that the gravitational term   cang sin�
probably be neglected in most problems. However, we will choose to retain this term and then
absorb it by changing the dependent variables from  and  to  and p U h U .

The governing equations, (13.7) and (13.11), now have the following simpler forms:
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h �
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c 2 �U
�x
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in which  are treated as constants. If  is measured upward from an arbitrarily chosen� and c z
horizontal datum, the piezometric head defined by Eq. (2.22) becomes

in which  elevation of the pipe centreline above datum. Since  (13.21)z (x ) � �z (x ) /� t � 0,
allows (13.19) to be rewritten in the form

Since  (13.21) allows (13.20) to be rewritten in the following simpler form:sin� � � �z (x ) /�x ,

Second-order equations with as their unknown can be obtained from (13.22) - (13.23).U or h
For example, differentiating (13.23) with respect to  and using (13.22) to eliminate x �U /�x
gives

In a similar way, differentiating (13.23) with respect to  and using (13.22) to eliminate t �h /� t
gives

Equations (13.24) and (13.25) are a nonlinear form of an equation known as the wave equation.
If these equations are linearized by replacing  with a constant, say  then standard�U � U0 ,
solution techniques such as separation of variables (Fourier series) or Laplace transform methods
can be used to obtain solutions. However, the method of characteristics offers a number of
important advantages over these other techniques. These advantages include closed-form
solutions that are easily interpreted when friction is neglected together with a technique that can
be used to obtain accurate and stable numerical solutions when the nonlinear friction term is
included. Therefore, the remainder of this chapter will be concerned exclusively with the use of
characteristics to solve (13.22) - (13.23).
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x � x (s )

t � t (s )
(13.26 a, b)
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The Method of Characteristics

The method of characteristics is based upon the idea of a directional derivative, which was
introduced in Chapter 1. If a dependent variable,  is a function of the two independent� ,
variables  then a curve in the  plane can always be described parametrically as ax and t , x , t
function of arc length,  along its path.s ,

This means that along this curve  takes on the values  and the derivative of � � x (s ) , t (s ) , �
with respect to  is calculated from the chain rule of differential calculus.s

Since  are the direction cosines of the unit tangent to the curve, Eq. (13.27)dx /ds and dt /ds
is a two-dimensional form of Eq. (1.44).

An alternative form for a directional derivative can be obtained by solving (13.26 b) for s � s (t )
and substituting the result into (13.26 a) to obtain

The function  now takes on the values of  along the curve, and the derivative of � � x t , t �
along this curve is given by

We will choose to use (13.29) when using the method of characteristics to solve problems
because  has the physical interpretation of a velocity. However, we could just as easily usedx /dt
(13.27), in which  may or may not be chosen as arc length, or we could instead solve (13.26 a)s
for  and use  to calculates � s (x ) t � t s (x ) � t (x )

Our choice of (13.29) is quite arbitrary. We will call the curve given by Eq. (13.28) a
“characteristic curve”. Some examples will now be used to show how (13.29) can be used to
integrate partial differential equations.
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Example 13.1

Solve the following problem by using the method of characteristics:

��

�x
� e t ��

� t
� 0 for � � < x < � and 0 < t < �

� x, 0 � e 	x 2
for � � < x < �

Solution:  The first step is to divide the differential equation by  so that  has ae t �� /� t
coefficient of unity.

e 	 t ��

�x
�

��

� t
� 0

Equation (13.29) shows that this partial differential equation is equivalent to the simultaneous
solution of two ordinary differential equations along a characteristic curve:

d�
dt

� 0 along the curve
dx
dt

� e 	 t

Integration of these two equations gives

� � K1 along x � e 	 t
� K2

The next step is to make qualitatively correct sketches of the  plane and a typicalx , t
characteristic curve. It is usually easier to obtain characteristic curve geometry from the
differential equation (  in this case) than from its integral (  in thisdx /dt � e 	 t x � e 	 t

� K2
case).
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The characteristic curve originates from the point  where  from the initialx , t � �, 0 , � � e 	!2

condition given in the problem statement. Thus,  may be evaluated at this point toK1 and K2
obtain

� � e 	!2
along x � e 	 t

� � � 1 for � � < � < �

This allows  to be calculated at every point along the characteristic curve, and by allowing � �
to take on all values in the range  we are able to calculate a value for  at every� � < � < � �
point in the solution domain  This will be called the parametric form� � < x < � and 0 � t < � .
of the solution, with  as a parameter.�

The non-parametric form of the solution is obtained by eliminating  from the two equations that�
hold along the characteristic curve. In this case, the characteristic curve gives � � x � e 	 t

� 1,
from which we obtain

� � e 	 x � e 	 t
	 1 2

for � � < x � e 	 t
� 1 < �

The solution for  obviously satisfies the correct initial condition at  and it is not difficult� t � 0,
to show that it also satisfies the partial differential equation. The inequality shows that the
solution holds only in the region covered by characteristic curves that pass through points where
initial data for  was specified. (In this case, initial data was specified along the entire  axis.� x
Since the characteristic curves passing through the  axis cover the entire solution domain, thex
solution for  holds everywhere within this region.) In practice it is easier and more informative�
to omit the inequality and, instead, indicate in a drawing of the  plane the region in whichx , t
the solution holds.

� � e 	 x � e 	 t
	 1 2

for � � < x < � and 0 � t < �
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Example 13.2

Use characteristics to solve the following problem:

5
��

�x
�

��

� t
� 1 for 0 < x < � and 0 < t < �

� x , 0 � 0 for 0 < x < �

� 0, t �
1

1 � t
for 0 < t < �

Solution:  Since the coefficient of  is unity, Eq. (13.29) shows that the following two�� /� t
ordinary differential equations hold along a characteristic curve:

d�
dt

� 1 along the curve
dx
dt

� 5

Integration of these two equations gives

� � t � K1 along x � 5t � K2

The characteristic curves are straight lines with a slope of 5. A sketch of the  plane follows:x , t

The solution domain covers the entire first quadrant. However, the characteristic curves passing
through the positive  axis, where  can be calculated from the given initial condition,x K1 and K2
only cover the portion of this solution domain that lies below the characteristic curve passing
through the coordinate origin  Because of this, the boundary condition along thex � 5t .
positive  axis is required so that the solution can be calculated in the region above the curvet
x � 5t .
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Along the characteristic curve that intersects the  axis at  we obtainx � , 0

� � t � 0 along x � 5t � � for 0 < � < �

Elimination of the parameter  gives�

� � t

in the region between  and the positive  axis.x � 5t x

Along the characteristic curve that intersects the  axis at  we obtaint 0, �

� � t �
1

1 � �
� � along x � 5t � �5� for 0 < � < �

Elimination of the parameter  gives�

� � t �
1

1 � t � x /5
� t � x /5

in the region between  and the positive  axis. A sketch of the solution domain and thex � 5t t
final form of the solution follows:

Again, it is easy to see that the boundary and initial conditions are satisfied, and a bit more work
would show that the partial differential equation is also satisfied.
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Example 13.3

Use characteristics to solve the following problem:

� 5
��

�x
�

��

� t
� 1 for 0 < x < � and 0 < t < �

� x , 0 � 0 for 0 < x < �

Solution:  The characteristic form of the partial differential equation follows:

d�
dt

� 1 along the curve
dx
dt

� �5

Integration of these equations gives

� � t � K1 along x � 5t � K2

The characteristic curves are straight lines with a slope of -5. A sketch of the  plane follows:x , t

The solution domain again consists of the first quadrant. However, because the characteristics
have a negative slope, characteristics passing through the positive  axis cover the entire solutionx
domain. Therefore, only the initial condition along the positive  axis is needed to calculate ax
solution in the first quadrant.

Along the characteristic curve that intersects the  axis at  we obtainx � , 0

� � t � 0 along x � 5t � � for 0 < � < �

The non-parametric form of the solution is

� � t

which is valid throughout the entire solution domain.
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�u
�x

�
�v
� t

� 0

�v
�x

�
�u
� t

� 0
(13.31 a, b)

The previous three examples illustrate a number of important points that can be generalized. We
will state these points without proofs.

1 Any equation or set of equations that can be solved by using characteristics is defined to
be hyperbolic. All linear first-order equations with a single unknown can be solved using
characteristics and, therefore, are hyperbolic.

2 Hyperbolic equations allow discontinuities in either the dependent variable or its
derivatives to be carried from a boundary into a solution domain along a characteristic.
(See the discontinuity in  that occurs along the characteristic  in Example 13.2.)� x � 5t
Only hyperbolic equations have this property. Since numerical methods usually
approximate dependent variables with polynomials, hyperbolic problems with
discontinuous boundary or initial conditions can be solved accurately with numerical
techniques only by integrating along, rather than across, characteristics. This suggests that
accurate numerical solutions of these problems can be obtained only by using the method
of characteristics.

3 The geometry of the characteristics determines which boundary and initial conditions
must be used to obtain a unique solution. For example, a single first-order equation in one
unknown requires that the dependent variable, , be specified at one, and only one, point�
on each and every characteristic within its solution domain. (In Example 13.2, the
positive sloping characteristics required that data be specified along both the positive x
and positive  axes to calculate a solution in the first quadrant. In Example 13.3, thet
negative sloping characteristics meant that data specified along only the positive  axisx
was sufficient to calculate a solution in the first quadrant. Specification of any more data,
say along the positive  axis, would have over determined the solution.)t

4 The characteristic slope,  gives the wave speed. This is the speed at which adx /dt ,
disturbance or solution is carried through a solution domain.

One fascinating topic that has not been discussed is the occurrence of shocks within a solution
domain. Shocks, which are often called surges by hydraulic engineers, occur only when
coefficients of the highest derivatives in hyperbolic partial differential equations are functions
of the dependent variable or its derivatives. (This causes characteristic curve slopes to vary with
changes in the dependent variable.) Since coefficients of the derivatives of  inh and U
(13.22) - (13.23) are constants, shocks cannot occur in waterhammer problems. However, shocks
do occur in unsteady open channel flow problems, which are not considered in this chapter.
Stoker (1957) and Whitham (1974) give detailed discussions of shocks.

The ideas just discussed for a single first-order equation can sometimes be extended to solve two
or more simultaneous first-order equations. For example, consider the following two equations:
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�u
�x

�
�v
� t

� �
�v
�x

�
�u
� t

� 0 (13.32)

�
1
�

�u
�x

�
�u
� t

� �
�v
�x

�
�v
� t

� 0 (13.33)

dx
dt

�
1
�

� � (13.34)

�
du
dt

�
dv
dt

� 0 along
dx
dt

� � (13.35)

du
dt

�
dv
dt

� 0 along
dx
dt

� 1

�
du
dt

�
dv
dt

� 0 along dx
dt

� � 1
(13.36 a, b)

u � v � K1 along x � t � K2

� u � v � K3 along x � t � K4

(13.37 a, b)

We will look for a linear combination of these equations that contains derivatives along the same
characteristic curve in the  plane. Multiplying (13.31 b) by an unknown parameter  andx , t �
adding the result to (13.31 a) gives

This can be rearranged in the following form:

Since we want all derivatives in (13.33) to be directional derivatives along the same curve in the x , t
plane, (13.29) shows that we must choose  so that�

Then (13.33) becomes

Since (13.34) gives  we obtain two sets of equations from (13.35).�2
� 1 and � � ±1,

Integration of (13.36) gives

From this result we see that there are two families of characteristic curves for this problem. In
general, the method of characteristics can be used to solve a problem only if the number of
unknowns, the number of simultaneous differential equations and the number of families of
characteristic curves are all identical. The next example will show how (13.37 a, b) are used
to solve a particular problem.
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Example 13.4

We will use (13.37 a, b) to solve the following problem
�u
�x

�
�v
� t

� 0 for 0 < x < L and 0 < t < �

�v
�x

�
�u
� t

� 0 for 0 < x < L and 0 < t < �

u � x and v � 0 at t � 0 for 0 < x < L

u � 1 at x � 0 for 0 < t < �

v � 0 at x � L for 0 < t < �

Solution:  Sketches of the  plane and some typical characteristics are shown below.x , t

Since (13.37 a) and (13.37 b) apply along the characteristics originating from x1 , 0 and x2 , 0 ,
respectively, we obtain

u � v � x1 along x � t � x1

� u � v � x2 along x � t � x2

in which  have been calculated from the given initial conditions forK1 , K2 , K3 and K4
 at  Solution of these equations for  at the point where the twou and v t � 0. u , v , x and t

characteristics meet gives the parametric solution.

u � x1 � x2 2 v � x1 � x2 2

x � x1 � x2 2 t � x2 � x1 2
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By choosing  in the range  values for  can bex1 and x2 0 � x1 < x2 � L , u , v , x and t
calculated at every point within the triangle AEC. The non-parametric form of the solution is
obtained by eliminating the parameters  to obtainx1 and x2

u � x and v � � t within AEC

Thus,  must both be specified at  if a unique solution is to beu and v t � 0 for 0 < x < L
calculated within AEC.

Application of (13.37 a) along the characteristic originating at  gives the parametricx3 , 0
solution for  along BC.u and t

u � x3 along L � t � x3

Elimination of the parameter  gives the non-parametric form of the solution.x3

u � L � t along BC

From this result it becomes apparent that either  or some functional relationship betweenu or v
 must be specified as a boundary condition along  if a unique solution is to beu and v x � L

calculated along BC.

Application of (13.37 b) along the characteristic originating at  give the parametric solutionx4, 0
for  along AD.v and t

� 1 � v � � x4 along t � x4

Elimination of the parameter  gives the non-parametric form of the solution.x4

v � 1 � t along AD

Thus, either  or a functional relationship between  must be specified along theu or v u and v
boundary  if a unique solution is to be calculated along AD.x � 0

The solution within AED can be obtained by using positive and negative sloping characteristics
that originate from AD and AC, respectively. The solution within BEC can be obtained by using
positive and negative sloping characteristics that originate from AC and BC, respectively. The
solution in the region immediately above DEB can be calculated by using positive and negative
sloping characteristics that originate from AD and BC, respectively. Thus, the solution for each
region is used as a stepping stone to calculate the solution for another region.
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In this particular problem the boundary and initial conditions specify  so that it is discontinuousu
at  Therefore, discontinuities in  can be expected to travel through thex � t � 0. u and v
solution domain along the characteristic AB.

These discontinuities will then move back into the solution domain along the negative sloping
characteristic that originates at B. From this we see that disturbances move through the solution
domain with speeds given by the slopes of the characteristics, and the discontinuities in y and v
that originated at  continue to travel through the entire solution domain for x � t � 0 0 < t < �
along both positive and negative sloping characteristics. These discontinuities would make an
accurate numerical solution of this problem virtually impossible to obtain with finite difference
or finite element methods.

A Fourier series solution could be obtained since  can be shown to both satisfy theu and v
second-order wave equation.

�2u

�x 2
�

�2u

� t 2
and

�2v

�x 2
�

�2v

� t 2

However, the rate of convergence of a Fourier series is slowed considerably by discontinuities,
and oscillations known as Gibbs phenomenon occur in Fourier series solutions near
discontinuities. Kreyszig (1993) gives a brief discussion of Gibbs phenomenon.

Example 13.5

Under what conditions can the equation

A
�2�

�x 2
� B

�2�

�x� t
� C

�2�

� t 2
� 0

be solved by using characteristics?

Solution:  The second-order equation can be rewritten as two simultaneous first-order equations
by setting

u �
��

�x
and v �

��

� t

Then the second-order equation becomes

A
�u
�x

� B
�v
�x

� C
�v
� t

� 0

A second equation is obtained from a compatibility condition.

�u
� t

�
�2�

� t�x
�

�

�x
��

� t
�

�v
�x
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Multiply the second equation by  and add to the first equation.�

�
�u
� t

�
�v
�x

� A
�u
�x

� B
�v
�x

� C
�v
� t

� 0

Rearranging terms gives

�
A
�

�u
�x

�
�u
� t

� C
B � �

C
�v
�x

�
�v
� t

� 0

This equation will contain derivatives along the same curve in the  plane if we can choose x , t �
so that

dx
dt

�
A
�

�
B � �

C

Then the equation takes the following form:

�
du
dt

� C
dv
dt

� 0 along
dx
dt

�
A
�

Calculation of  requires the solution of a quadratic equation�

A
�

�
B � �

C

The solution for  is�

� � B ± B 2
� 4AC 2

Since there are two equations with two unknowns,  the method of characteristics canu and v,
be used only if there are two distinct families of characteristics. This requires that

B 2
� 4AC > 0

in which case the original second-order equation is said to be hyperbolic. The method of
characteristics cannot be used if  in which case the equation is said to beB 2

� 4AC � 0,
parabolic, or if  in which case the equation is said to be elliptic.B 2

� 4AC < 0,
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� c 2 �U
�x

�
�h
� t

� g
�h
�x

�
�U
� t

� �
f

2D
�U �U (13.38)

� c 2 �U
�x

�
�U
� t

� � g
1
�

�h
�x

�
�h
� t

� �
f

2D
�U �U (13.39)

dx
dt

� � c 2
�

1
�

(13.40)

dU
dt

� � g
dh
dt

� �
f

2D
�U �U along

dx
dt

�
1
�

(13.41)

d U � gh /c
dt

� �
f

2D
�U �U along

dx
dt

� c

d U � gh /c
dt

� �
f

2D
�U �U along

dx
dt

� � c
(13.42 a, b)

U � gh /c � K1 along x � ct � K2

U � gh /c � K3 along x � ct � K4

(13.43 a, b)

The Solution of Waterhammer Problems

The method of characteristics will now be used to solve (13.22) - (13.23). Multiplying (13.22)
by  and adding the result to (13.23) gives�

Rearrangement of the terms in (13.38) gives the following result:

Derivatives in (13.39) will be calculated along the same curve in the  plane if we choose x , t �
so that

in which case (13.39) becomes

Equation (13.40) gives  and we obtain from this result and (13.41) the following� � ± 1/c ,
equations:

When (13.18) is satisfied, friction losses can be neglected. In this case (13.42) can be integrated
to obtain

Since two equations with two unknowns, , have given two families of characteristics,U and h
we see that the method of characteristics can be used to solve waterhammer problems.
Furthermore, (13.42) furnishes the proof that velocity and pressure waves in these problems
move with a speed given by  Finally, since one family of characteristics has a positive slopec .
and the other family has a negative slope, we see that a unique solution requires:
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1 Specification of  at  for  (Initial conditions.)U and h t � 0 0 < x < L .

2 Specification of  or one functional relationship between  at bothU or h U and h
 for  (Boundary conditions.)x � 0 and x � L 0 < t < � .

Equation (13.15) shows that  is likely to be a very small portion of the maximum change in H h .
Therefore, any initial or boundary condition which specifies a value of  that does not exceed h H
can often be replaced with the requirement  This approximation can always be checkedh � 0.
at the end of any calculation by comparing the maximum calculated value of  with  to see�h H
if  Thus, the problem in Fig. 13.2 has an initial value for  that does not exceed H /�h << 1. h H ,
and we will use the approximate initial condition  at  Likewise, theh � 0 t � 0 for 0 < x < L .
boundary condition at  specifies a value for  that does not exceed  and we will usex � 0 h H ,
the approximate boundary condition  at   for  If the valve at  ish � 0 x � 0 0 < t < �. x � L
completely closed during a zero time interval, we will require that  forU � 0 at x � L
0 < t < �.

Example 13.6

Solve the problem in Fig. 13.2 by neglecting friction and local losses. Use the following initial
and boundary conditions:

U � U0 and h � 0 at t � 0 for 0 < x < L

h � 0 at x � 0 for 0 < t < �

U � 0 at x � L for 0 < t < �

Solution:  Sketches of the  plane and some typical characteristics are shown below.x , t
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Equations (13.43 a) and (13.43 b) apply along the characteristic originating from
 respectively. Use of the initial conditions to evaluate  givesx1 , 0 and x2 , 0 , Ki

U � gh /c � U0 along x � ct � x1

U � gh /c � U0 along x � ct � x2

Simultaneous solution gives

U � U0 and h � 0 within AEC

Equation (13.43 a) applied along the characteristic originating from  givesx3, 0

gh /c � U0 along x � ct � x3

Thus, we obtain the result

h �

cU0

g
along BC

We note that this agrees exactly with the order of magnitude estimate given by (13.15) for the
maximum change in piezometric head.

Equation (13.43 b) applied along the characteristic originating from  givesx4 , 0

U � U0 along ct � x4

Thus, the initial velocity does not change at  for x � 0 0 < t < L /c .

Continuing in this way gives the solution shown in the following sketch of the  plane:x , t
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Plots of  versus  at  and of  versus  at  show that the maximum piezometrich t x � L U t x � 0
head oscillates between  with a period of  and that the velocity atcU0 /g and �cU0 /g 4L /c

 oscillates between  with the same period. These oscillations continuex � 0 U0 and �U0
indefinitely since friction and local losses have been neglected.
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�x � c � t (13.44)

Numerical Solutions

Departures from the idealized assumptions made in working Example 13.6 usually make it
necessary to obtain numerical solutions of (13.42). These departures include the effects of
friction, finite valve closure times and systems with a number of different pipes. Whenever
possible, the solution domain should be discretized with constant node spacings in the x and t
directions with node spacings determined by the slope of the characteristic curves.
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Figure 13.3  Characteristic line segments used for calculating numerical solutions.

U � gh /c � U � gh /c 1 �
f

2D
�U �U

1

� t � K1

U � gh /c � U � gh /c 2 �
f

2D
�U �U

2

� t � K2

(13.45 a, b)

U � K1 � K2 2

h � c K1 � K2 2g
(13.46 a, b)

U � gh /c � U � gh /c 2 �
f

2D
�U �U

2

� t � K2 (13.47)

U � gh /c � U � gh /c 1 �
f

2D
�U �U

1

�t � K1 (13.48)

At internal nodes, as in Fig. 13.3 b, Eqs (13.42) are approximated with

which can be solved for  at the node U and h x , t .

At the boundary node  in Fig. 13.3 a, an approximate integral of (13.42 b)0, t

is solved simultaneously with a boundary condition at  to obtain  and  at  At the0 , t U h 0, t .
boundary node  in Fig. 13.3 c, an approximate integral of (13.42 a).L , t

is solved simultaneously with a boundary condition at  to obtain  at L , t U and h L , t .
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h 0, t � H �
U 2

2g
if U > 0

� H if U < 0

(13.49)

U � � gh (13.50)

� gh � gh /c � K1 (13.51)

h �
c 2

4g
� � � �2

� 4K1 /c
2

(13.52)

When more than one pipe occurs in a system, it is impossible to choose constant values for �x
and  that satisfy (13.44) everywhere. The usual procedure in this case is to choose constant�t
values for  in all pipes. Then points 1 and 2 in Fig. 13.3, whose locations are found�x and �t
from (13.44), do not coincide with nodes, and linear interpolation along a horizontal line between
nodes is used to calculate  (and, therefore, ) for use in (13.45) - (13.48). IfU and h K1 and K2
a discontinuity or steep gradient in  occurs between nodes, this interpolation processU and h
will smooth the solution and create artificial numerical diffusion. For this reason, (13.44) should
be used to determine node spacings whenever possible.

Finite valve closure times are sometimes used to reduce peak pressures in pipes. When this is
done,  may no longer be very large compared to  in Fig. 13.2. This means that  is�h H h � 0
no longer an acceptable approximation for a boundary condition at  or for an initialx � 0
condition at  In this case the initial condition for  is calculated from the Bernoullit � 0. h
equation with, or without, a friction loss term. The most accurate form of the boundary condition
at  isx � 0

This is because the flow behaves as flow into a pipe entrance when  and as flow in aU > 0
submerged jet when  In practice, most analysts apparently set  for bothU < 0. h 0, t � H
cases, which is an acceptable approximation if U 2 / 2gH << 1.

For a finite closure time, the velocity upstream from the valve in Fig. 13.2 can be related to byh

in which  is an experimental coefficient that varies with the valve geometry. Thus,  will� �
change with time as the valve is closed. [If datum is not chosen at the valve and the flow does
not exit to the atmosphere at the valve, then  in (13.50) must be replaced with the change in h h
across the valve.] Introduction of (13.50) into (13.48) gives

which can be solved for  to obtainh

At the junction of two different pipes,  and the flow rate are assumed to be continuous. Thus,h
the following simultaneous equations apply:
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U
	

� gh /c
	

� K1

U
�

� gh /c
�

� K2

U
	

A
	

� U
�

A
�

(13.53 a, b, c)
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(13.55 a, b, c)

Figure 13.4  Characteristic geometry at the location of a pipe junction, pump or valve.

in which  are defined in (13.48) and (13.47) and  are velocities on eachK1 and K2 U
�

and U
	

side of the pipe junction as shown in Fig. 13.4. The solution of these equations is given by

A similar, but more involved, calculation can be made where three or more pipes meet by
requiring continuity of flow rates and piezometric heads at the junction.

If a pump or valve is inserted in the middle of a pipeline, and if the pipes on either side of the
pump or valve have different areas, then the relevant equations are

The characteristic geometry for (13.55) is shown in Fig. 13.4.
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U
	

� � (t ) g �h
	

� h
�

� (13.56)

The three equations in (13.55) contain four unknowns:  This system ofU
	

, U
�

, h
	

and h
�

.
equations is closed for a valve by requiring

in which  is an experimental coefficient that has the same sign as  The system of� (t ) h
	

� h
�

.
equations is closed for a pump by using an experimental pump characteristic curve that plots Q
versus the change in  across the pump. An extensive discussion of unsteady flow in pipes,h
together with computer program listings for some of the simpler cases, can be found in Wylie and
Streeter (1982).

Pipeline Protection from Waterhammer

There are numerous ways to prevent pipelines from bursting as a result of waterhammer. One
obvious way is to simply design pipes so that they are strong enough to withstand the expected
changes in pressure. Changes in pressure can also be controlled by specifying equipment and
operational procedures, such as minimum times for valve closures. Mechanical devices such as
surge tanks, air chambers, reflux valves and pressure relief valves can be used in some
applications. Discussions of many different possibilities are given by Wylie and Streeter (1982)
and Stephenson (1989).
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Figure 14.1  A control volume for unsteady flow in an open channel.

Chapter 14

Unsteady Open Channel Flow

Unsteady flows in open channels occur frequently. Examples include waves moving across the
free surfaces of lakes and reservoirs, changes in flow rates and water levels downstream from
reservoir outlet works, sudden releases of water from burst dams and floods moving down rivers.
Many of these problems can be modelled by assuming one-dimensional velocity distributions
and pressure distributions that are hydrostatic along lines normal to the channel bottom. This
leads to a set of partial differential equations known as the Saint-Venant equations. These
equations are hyperbolic, so the method of characteristics can be used in their solution. However,
the use of characteristics is considerably more difficult for flow in open channels than for flow
in pipes. This is because the equations are nonlinear, so that the slope of the characteristic curves
is not constant but is a function of the dependent variables. As a result, shocks or surges can
appear spontaneously in these solutions, causing difficulties with numerical accuracy and
stability.

In this chapter we will derive the Saint-Venant equations for unsteady flow in a prismatic
rectangular channel. Then the method of characteristics will be used to show the types of
boundary and initial conditions that must be imposed and to illustrate an effective numerical
technique that is sometimes used to solve these equations. Finally, a simplification of the Saint-
Venant equations known as the kinematic wave approximation will be introduced and used to
discuss the problem of flood-wave movement down rivers in a process known as "flood routing".

The Saint-Venant Equations

A control volume bounded by the free surface, the channel bottom and two surfaces normal to
the channel bottom is shown with dashed lines in Figure 14.1. The two surfaces normal to the
channel bottom are fixed, which means that fluid passes through them. The top boundary,
however, moves in the vertical direction as the free surface geometry changes with time.
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q x , t � q x � �x , t �
� y�x

� t
(14.1)

q x � �x , t � q x , t
�x
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� t

� 0 (14.2)
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� t

� 0 (14.3)
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(14.5)

�h
�x

�
dz
dx

�
�y
�x

� � S0 �
�y
�x

(14.6)

Let  be the flow rate per unit width. Since the continuity principle states that the differenceq x , t
between flow rates entering and leaving the control volume must be balanced by the rate at which
fluid is stored within, we obtain

Since  and  are independent variables, dividing (14.1) by  and putting all terms on thex t �x
same side of the equation gives

Finally, letting  gives the continuity equation for flow in a prismatic rectangular channel�x�0
with zero lateral inflow.

Since  in which  is the one-dimensional flux velocity, (14.3) can be written with q � Uy U U
and  as its two unknowns.y

Probably the simplest way to recover the momentum equation is to take the partial derivative of
(6.22) with respect to x .

If pressures are hydrostatic along any vertical line, then  in which h � z (x ) � y (x, t ) z (x ) �

channel bed elevation and the channel slope,  has been assumed small enough to make the�,
approximations  and  bed slope. Therefore, the first termcos� � 1 sin� � tan� � � � S0 �

in (14.5) can be rewritten as

in which the negative sign in front of  indicates that  decreases with  when  is positive.S0 z x S0
(i.e.  is positive when the channel slopes downward in the direction of flow.) In one-�

dimensional flow the velocity magnitude,  is given by the velocity component in the V, x
direction,  Since  and  are independent variables, the third term becomesU . x t
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�U
� t

� g S0 � Sf (14.12)

�
dy
dt

�
dU
dt

� g S0 � Sf (14.13)

in which use has been made of (6.14a). Finally, (12.20) allows us to rewrite the last term in
(14.5) in terms of the friction slope.

Then use of (14.6)�(14.8) in (14.5) and a bit of algebra gives the momentum equation for
unsteady one-dimensional flow.

 
Equations (14.4) and (14.9) are known as the Saint-Venant equations of open channel flow.
When the right side of  (12.20) is used to approximate  they contain  and  as their onlySf , U y
unknowns.

Characteristic Form of the Saint-Venant Equations

Expansion of the first term in (14.4) gives

Multiplication of (14.10) by an unknown parameter,  and addition to (14.9) gives�,

which can be altered slightly to

The directional derivative defined by (13.29) allows (14.12) to be rewritten as a set of
simultaneous ordinary differential equations that hold along a characteristic curve in the x , t
plane.
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dx
dt

�
g � �U

�
� U � �y (14.14)

d U � 2c
dt

� g S0 � Sf along
dx
dt

� U � c

d U � 2c
dt

� g S0 � Sf along dx
dt

� U � c

(14.15 a, b)

c � gy (14.16)

Figure 14.2  Segments of a characteristic grid for subcritical flow.

The time derivatives in (14.13) are calculated along characteristic curves that satisfy the
differential equation

The second of the two equations in (14.14) gives  and use of this result in� � ± g y,
(14.13)�(1.414) gives two equations for each of two separate and distinct families of
characteristic curves in the  plane.x , t

in which

Equations (14.15) show that  is the speed of a disturbance or wave when  Thesec U � 0.
equations also show that, when  a disturbance travels with a speed of along oneU � 0, U � c
family of characteristics and with a speed  along the other family of characteristics. WhenU � c
the flow is subcritical, with  one wave travels downstream and another wave travelsU < c ,
upstream. When the flow is supercritical, with  is positive for both families ofU > c , dx dt
characteristics and waves travel only in the downstream direction. Another way of stating this
result is that conditions at a point in subcritical flow are influenced by boundary conditions both
upstream and downstream from the point in question. On the other hand, conditions at a point
in supercritical flow are influenced only by boundary conditions upstream from the point under
consideration.
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U � 2c � U1 � 2c1 � g �
t

t1

S0 � Sf d t along x � x1 � �
t

t1

U � c dt

U � 2c � U2 � 2c2 � g �
t

t2

S0 � Sf d t along x � x2 � �
t

t2

U � c dt

(14.17 a, b)

Numerical Solution of the Characteristic Equations

The numerical solution of (14.15) can be carried out with a closely spaced set of nodes along the
characteristic curves. Figure 14.2 shows segments of a characteristic grid for subcritical flow.
At an internal point, such as Fig. 14.2 b, Eqs. (14.15 a) and 14.15 b) can be integrated along the
line segments joining point 1 to  and point 2 to , respectively, to obtainx , t x , t

Equations (14.17) are four equations to be solved for unknown values of  at theU , c , x and t
intersection of the two characteristic segments. A second-order Runge-Kutta scheme can be used
to do this with the following two steps:

(1) Approximate the integrals with

�
t

ti

F d t � Fi t � ti

Then solve the resulting linear equations for the first approximations U (1),
 and c (1), x (1) t (1).

(2) Use the first approximations to improve the calculation of the integrals with

�
t

ti

F d t �
1
2

Fi � F (1) t � ti

Then solve the linear equations for the second, and final, approximations for  U, c, x
and t.

People often continue this iteration process until solutions for  cease to changeU, c, x and t
from one cycle to the next. However, this only increases the complexity of the calculation and
not its accuracy since steps 1 and 2 are sufficient to obtain second order accuracy, which is the
same accuracy as the trapezoidal rule that is used to approximate the integrals. Since all variables
must be known at points 1 and 2, we see that both  and  must be prescribed for initialU c
conditions at  along the full length of the channel.t � 0

At the upstream end of the channel, shown in Fig. 14.2 a, we have only the two equations (14.17
b). Since  these equations contain the three unknown values of  on thex � 0, U , c , and t
boundary. Therefore, either  or one functional relationship between  must beU , c U and c
prescribed at the upstream boundary. A similar situation exists at the downstream boundary,
shown in Fig. 14.2 c. Since Eqs. (14.17 a) apply along the segment joining point 1 to  weL , t ,
see that  or one functional relationship between  and  must be prescribed at theU, c U c
downstream boundary.
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Figure 14.3  A typical depth hydrograph for a flood.

In supercritical flow both families of characteristics have positive slopes. This means that  and U c
must be prescribed both for initial conditions along the entire channel length and for boundary
conditions at the upstream boundary. This will be necessary and sufficient to calculate the
solution everywhere else, including the downstream boundary at  Therefore, nox � L.
boundary conditions can be prescribed at a downstream boundary for supercritical flow.

The method of characteristics shows how data must be prescribed to calculate solutions of the
Saint-Venant equations. It also gives what is probably the most generally accurate and stable
numerical method. However, Wylie and Streeter (1982) point out that the method is cumbersome
to apply to slow transients since time steps tend to be small. The irregular spacing of nodes that
is required for natural channel calculations also makes it difficult to obtain satisfactory solutions.
Therefore, they recommend an implicit finite difference method for slow transients in natural
river channels. Most commercially available computer programs use finite difference methods.

Since we are more interested in learning about the physics of fluid motion than in learning about
commercially available computer software, we will use the remainder of this chapter to study an
approximate method known as the kinematic wave approximation. This approximation will be
used to discuss the movement of flood waves down rivers.
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The Kinematic Wave Approximation

The usual engineering approach to flood data acquisition is to measure river depth or stage as a
function of time at a fixed location along the river. River stages are then related to flow rates with
a rating curve that has been obtained from previous measurements of flow rates and stages at that
particular location. The resulting plot of flow versus time for a particular location and flood is
called a hydrograph. The plot of depth versus time, which is not used as often but is more useful
for this discussion, is called a depth hydrograph.

A typical depth hydrograph for a flood is shown in Fig. 14.3. In almost all instances, for reasons
that we will discuss later, the rising limb of the hydrograph has a steeper slope than the falling
limb. For scaling purposes, we will denote the maximum change in depth with  and a timeh,
scale,  will be chosen so that the ratio  gives an order of magnitude for the maximumT, h T
value of  on the falling limb. (The reason for concentrating on the falling rather than rising�y � t
limb will be discussed later.) The value of  decreases as the river catchment area decreases andT
as the average channel slope increases. Thus,  can vary from as little as several hours for smallT
steep catchments to weeks for large catchments with smaller slopes. For most applications  isT
probably of the order of one to ten days.

There is no obvious reference length for  in this problem. However, if we denote a referencex
length by  and if both terms in the continuity equation (14.4) are assumed to be equallyL,
important, we obtain the estimate

in which  is an estimate for the maximum velocity. From (14.18) we obtain an estimate for U0 L.

Equation (14.19) shows that  is the distance travelled by a water particle moving at theL
maximum speed,  during time  In most problems  is very large. For example, ifU0 , T. L

 and  hours, then  km.U0 � 1 m s T � 24 L � 86.4

Scaling terms in the momentum equation (14.9) gives

If we use (14.19) to eliminate  and (12.20) and (12.23) to approximate , Eq. (14.20) becomesT Sf
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Division of (14.21) by  gives relative magnitudes of terms.g S0

in which  maximum Froude number  In rivers  has an order that almostFr � � U0 gh. Fr
never exceeds one.

The kinematic wave approximation assumes that the free surface is nearly parallel to the channel
bottom. In other words, the flow is approximated locally as uniform, and only the bed and
friction slope terms in (14.9) are important. Thus, for a wide shallow channel, the kinematic wave
approximation gives

Equation (14.22) now shows that the kinematic wave approximation, Eq. (14.23), results from
assuming that 

If (14.19) and (14.24) are used to eliminate  and  respectively, from (14.25), theL U0 ,
requirement for validity of the kinematic wave approximation reduces to

For a typical application we might set  Thenf � 0.1, h � 2 m, g � 10 m s 2 and S0 � 1 300.
(14.26) requires that  minutes. If  is reduced to  the requirementT » 4.3 S0 S0 � 1 3000,
becomes  hours. Since most flood hydrographs have values of  that greatly exceedT » 2.3 T
these values, we conclude that Eqs. (14.4) and (14.23) are likely to give an accurate description
of flood wave movement in many, if not most, applications.
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3
2

8
f

g y S0
�y
�x

�
�y
� t

� 0 (14.27)

3
2

U ( y )
�y
�x

�
�y
� t

� 0 (14.28)

dy
dt

� 0 (14.29)

dx
dt

�
3
2

U ( y ) (14.30)

The Behaviour of Kinematic Wave Solutions

By solving (14.23) for  and substituting the result in (14.4) we obtainU

Since the coefficient of the first term in (14.27) is proportional to  calculated from (14.23),U ( y )
we obtain the following significant result:

Use of (13.29) now allows (14.28) to be rewritten in the equivalent form

along the characteristic curves

Equations (14.29)�(14.30) lead immediately to at least four very important observations:

(1) Since (14.29) shows that  is constant along a characteristic, and since y U
depends only on  Eq. (14.30) shows that all characteristics are straight linesy,
with slopes that can be determined, once and for all, at each characteristic initial
point.

(2) Eq. (14.30) shows that disturbances move in the downstream direction only.
Therefore, upstream backwater effects are neglected in the kinematic wave
approximation.

(3) A point of constant depth moves downstream with a speed equal to one and a half
times the local flux velocity.

(4) If  are two different depths in the flood wave, and if  theny2 and y1 y2 > y1 ,
(14.30) shows that the point of greater depth moves downstream faster than the
point of smaller depth. Since U y2 > U y1 .
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Figure 14.4  Development of a flood wave profile with time using the kinematic wave
approximation.

Figure 14.5  Characteristic curves in the  plane when  increases with (x , t ) y0 ( t ) t .

y (0, t ) � y0 ( t ) for � � < t < � (14.31)

y (x , t ) � y0 (� ) for � � < � < � (14.32)

The fourth observation shows why the rising limb of the flood hydrograph in Fig. 14.3 usually
has a steeper slope than the falling limb. If, as shown in Fig. 14.4, the flood wave profile at

 has  a shape that is nearly symmetrical about its peak, then the front portion of the wavet � 0
steepens and the trailing portion of the wave flattens since points of larger depth move
downstream with a greater speed. If the channel is long enough, the front of the wave eventually
develops an overhanging "nose" that gives, in some places, as many as three different values of y
for the same values of  and  as shown in Fig. 14.4 at x t , t � t2 .

The multiple valued behaviour of the solution is also easy to see in the  plane by solving(x , t )
(14.29)�(14.30) subject to the boundary condition

Then (14.29)�(14.30) give
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x �
3
2

U y0 (� ) t � � for � � < � < � (14.33)

�x t , �
��

� 0 (14.34)

0 �
3
2

dU y0

dy

dy0 �

d�
t � � �

3
2

U y0 (14.35)

t � � �

U y0

U � y0 y �

0 �
(14.36)

t � � � 2
y0 (� )

y �

0 (� )
(14.37)

along the characteristic curve

in which  is the initial point on a typical characteristic. When  increases with  the(0, � ) y0 (� ) � ,
straight line characteristics have slopes that also increase with  since these slopes are�

determined at  from  This means that a region will exist in the  plane wherex � 0 y0 (� ). (x , t )
characteristics overlap each other, as shown in Fig. 14.5. Since each characteristic carries a
different value of  along its path, it becomes obvious that the solution is multiple valuedy (x , t )
in the region of overlapping characteristics.

The solution for  is calculated from (14.32)�(14.33) for every point in the right half of the y (x , t ) (x , t )
plane in Fig. (14.5). This is done by choosing a numerical value for  in the range � � � < � < � .
Then the constant value of  along the characteristic is given by (14.32), and the path of they
characteristic is calculated from (14.33). The multiple valued nature of the solution presents no
difficulty at all in this calculation.

The "nose" of the flood wave, shown in Fig. 14.4 at  can be located from (14.32)�(14.33).t � t2 ,
Since the wave profile at  is found by setting  in (14.32)�(14.33) and letting  taket � t2 t �t2 �

on a sufficient number of values in the range  to plot the solution near the nose, we� � < � < �

see that  in (14.33) achieves a relative maximum at the nose when  is varied and  isx ( t , � ) � t
held constant. The mathematical requirement for locating this relative maximum is

Substituting (14.33) into (14.34) gives

Equation (14.35) can be solved for  to obtaint

Use of (14.23) to eliminate  from (14.36) givesU
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* Equations (14.37)–(14.38) give, in parametric form, what is known as the envelope of the characteristic curves
(14.33). Hart (1957) gives a formal and easily understood introduction to the concept of an envelope of a family
of curves.

x � 3
y0 (� )

y �

0 (� )

8
f

g y0 (� )S0 (14.38)

Figure 14.6  A shock used to keep a kinematic wave solution single valued.

Equation (14.37) gives the  coordinate of the nose in the  plane for any value of thet x , t
parameter  in the range  The  coordinate is calculated from (14.23), (14.33) and� � � < � < � . x
(14.37) in the form

Equation (14.38) gives a mathematical proof that a nose and, therefore, a multiple valued
solution can occur only when  When  the  coordinate of the nose isy �

0 (� ) > 0. y �

0 (� ) < 0, x
negative and outside the region of physical interest.*

A multiple valued solution, of course, has no physical interest, and this behaviour is always
prevented in kinematic wave solutions by inserting a vertical discontinuity, called a shock, in the
wave profile. A sketch of a shock is shown with a dashed line in Fig. 14.6. A graphical solution
for the shock location can be obtained by inserting the vertical dashed line so that the two cross
hatched areas in Fig. 14.6 are equal. A numerical solution for the shock location is found by
locating the first point where the shock forms. After this shock initial point is calculated, future
positions of the shock are obtained by requiring conservation of mass across the moving shock.

The shock initial point is calculated from (14.37) by finding the value of  that makes  a� t
minimum. This is the first point at which the free surface tangent becomes vertical, and it is the
point at which  in (14.37) is either an absolute or relative minimum. A relative minimum cant
be found from (14.37) by setting the derivative of  with respect to  equal to zero. If a relativet �

minimum does not occur, then an absolute minimum occurs and can be found by inserting values
for  and calculating corresponding values for � t .
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Figure 14.7  The free surface profile near a kinematic shock.

� � x � xs (� )

� � t
(14.39 a, b)

�

�x
�

�

��

��

�x
�

�

��

�

� t
�

�

��

��

��

��

� t
�

�

��

��

� t
� � �xs (� ) �

��
�

�

��

(14.40 a, b)

�

��
U � �xs (� ) y �

�y
��

� 0 (14.41)

The differential equation that tracks the location of a shock can be obtained by rewriting (14.4)
in a new system of coordinates that moves with the shock. If the kinematic shock location is
denoted by  as shown in Fig. 14.7, the new system of coordinates is defined byx � xs ( t ) ,

in which the new time coordinate,  is unrelated to the parameter  in (14.32)�(14.33). The�, �

chain rule shows that derivatives transform according to

in which a dot is used to denote differentiation with respect to  Thus, (14.4) has the following�.
form in the moving system of coordinates:

Since a solution of (14.41) is to be calculated over the same range for  that was used for  in� t
the  coordinates,  is scaled with  Likewise,  and  are both scaled with  and (x , t ) � T . U �xs U0 , y
is scaled with the change in  across the shock, which we will call  However,  is scaled withy h . �

a length, , that gives an order of magnitude for the shock length, as shown in Fig. 14.7. This�

means that terms in (14.41) have the following magnitudes:
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U0 h

�
�

h
T

� 0 (14.42)

1 �
�

L
� 0 (14.43)

�

��
U � �xs y � 0 (14.44)

U
	
� �xs y

	
� U

�
� �xs y

� (14.45)

�xs (� ) �

U
�

y
�
� U

	
y
	

y
�
� y

	

(14.46)

dxs ( t )

dt
�

y 3/2
�

� y 3/2
	

y
�
� y

	

8
f

g S0 (14.47)

Division of (14.42) by the first term and use of (14.19) to eliminate  gives relativeU0 T
magnitudes.

It is assumed in the kinematic wave approximation that  This means that (14.41)� L « 1.
reduces to

Equation (14.44) shows that  changes only with  across a shock. This requirementU � �xs y �

gives

in which the subscripts + and - denote values of  and  immediately downstream andU y
upstream, respectively, from the shock. [In fact, the kinematic wave approximation (14.23) gives
no information that can be used to fix a value for  and a kinematic wave solution always sets �, � � 0
in (14.43).] A physical interpretation of (14.45) follows by writing velocities relative to the
moving shock and noting that (14.45) requires that flow rates calculated relative to the moving
shock be equal immediately upstream and downstream from the discontinuity in depth. This
procedure was carried out earlier in Example 4.8.

Solution of (14.45) for  gives�xs

Equation (14.23) can be used to eliminate  from (14.46) to obtainU

At the shock initial point, and also as  (14.47) has the indeterminate form  as t � �, 0 0 y
	
� y

�
.

However, l'Hospital's rule can be applied by fixing  and letting  Therefore, fixing y
�

y
	
� y

�
. y

�

in (14.47), differentiating numerator and denominator with respect to  and setting y
	

y
	
� y

�

gives the following finite result:
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dxs
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�
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y 1/2
�
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g S0 �
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U y
�

(14.48)
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��

� U � �xs
�U
��

�
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��

� g S0 �
f
8

U 2
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(14.49)
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h
�

�

U 2
0

�
�

U0
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� g S0 �

f
8

U 2
0
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(14.50)

h
� S0

1 �

U 2
0

gh
�

U 2
0

gh
�

L
� 1 �

f
8

U 2
0

ghS0

(14.51)

Numerical methods are almost always required to integrate (14.47) in a procedure that is
sometimes referred to as "shock tracing".

Now it is easy to discuss why the maximum slope of the falling limb of the hydrograph was used
to obtain the time scale,  for the kinematic wave approximation. The rising limb becomesT ,
steeper and the falling limb becomes flatter as a flood wave moves downstream. This fact,
together with Eq. (14.26) and the physical requirement that the free surface be nearly parallel to
the channel bottom for the kinematic wave approximation to be applicable, suggests that the
accuracy of approximation increases for the falling limb and decreases for the rising limb as a
flood wave moves downstream. Therefore, for flows in which (14.26) is satisfied, the kinematic
wave approximation gives an accurate approximation for the falling limb of the hydrograph
but a relatively poor approximation for the rising limb. In the next section we will rescale the
Saint-Venant equations to obtain a more accurate approximation for the rising limb.

Solution Behaviour Near a Kinematic Shock

The existence of a shock in a kinematic wave solution does not mean that a shock necessarily
occurs in either the physical problem or in the solution of the full set of the Saint-Venant
equations. A shock forms in the kinematic wave solution because some terms that were neglected
to obtain (14.23) become important close to the moving shock. The behaviour of the solution of
the Saint-Venant equations near a kinematic shock can be obtained by rescaling these equations
in a coordinate system that moves with the shock. This has already been done with Eqs.
(14.39)�(14.40) to obtain (14.41) and (14.44)�(14.45) as  becomes small. Applying the same� L
transformation to (14.9) gives

in which  has been approximated with the right side of (14.23). Scaling terms in (14.49) withSf
the same values that were used to obtain (14.44) � � T , U � U0 , �xs � U0 , y � h �

 gives y
	
� y

�
, � � �

Setting  and dividing by  gives relative magnitudes.T � L U0 g S0
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y1 �

y
�
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y
�
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2 (14.55)

y1 < y
�

< y
	 (14.56)

� S0 � D � y � A ln y
	
� y � B ln y � y

�
� C ln y � y1 (14.57)

A �

y 3
	
�

8
f

S0 y
	

y
�

y1

y
	
� y

�
y
	
� y1

(14.58)

Since  becomes infinite at the shock in the kinematic wave solution, it is evident that this�y ��

term must become important near the shock. However, since  in problems described by� L « 1
the kinematic wave approximation, Eq. (14.51) suggests that the time derivative of  can beU
neglected in (14.49) to obtain

The time variable,  appears in (14.44) and (14.52) only as a parameter. In other words,� � t ,
when considering the local behaviour of flow near a kinematic shock, depths and velocities
change much more rapidly with respect to the spacial coordinate than with respect to time.
Integration of (14.44) gives

in which  has been evaluated by using (14.47) and (14.23) either at a point ahead of theF (�)
shock, where  or at a point behind the shock, where  [Either point is shown byy � y

�
, y � y

	
.

(14.45) to give the same result.] Use of (14.47) and (14.53) to eliminate  and  from (14.52)U �xs
gives, after some complicated algebra, the following differential equation for y :

in which the depth  is given byy1

It is easy to show that  satisfy the following inequalities:y1 , y
�

and y
	

The solution of (14.54) has been known for years among hydraulic engineers and applied
mathematicians as the monoclinal rising flood wave. The equation can be integrated in closed
form by separating variables and using partial fractions. The result is

in which  is an unknown function of  and the remaining functions of  are given by theD � �

following equations:
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(14.59)

C �
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(14.60)
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S0 � �1 � 2� h � A ln

1 � �

�
� B ln

1 � �
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� C ln
y
	
� y1 � �h

y
�
� y1 � �h

(14.63)

The qualitative solution behaviour is far easier to deduce from (14.54) than from (14.57). When
 as in Fig. 14.7, the inequality (14.56) shows that the numerator on the right sidey

�
< y < y

	
,

of (14.54) is negative and vanishes at both  Therefore, when the denominatory � y
�

and y � y
	

.
is positive for  the solution is a smooth curve joining the depths  and  on eachy

�
< y < y

	
, y

�
y
	

side of the kinematic shock, as shown in Fig. 14.7. On the other hand, when the denominator
becomes negative for at least some values of  in the range  a smooth curve cannoty y

�
< y < y

	
,

be used to join  and  across the shock. In this case, a shock can be expected to appear in they
�

y
	

solution of the Saint-Venant equations. Since this requires that the denominator of (14.54) be
negative for at least the smallest value of  in the range  a shock will occur in they y

�
< y < y

	
,

solution of the Saint-Venant equations if

Equation (14.55) can be used to put (14.61) in the following more useful form:

Equation (14.62) shows that a shock will occur in the solution of the Saint-Venant equations if y
	

is made large enough relative to  to satisfy the inequality. It also shows that a shock can bey
�

created by either decreasing  or increasing  sufficiently to satisfy (14.62).f S0

Equation (14.57) can be used to obtain an estimate for the shock thickness,  in Fig. 14.7. If �, �

is taken as the difference between  at  and  at  in� y � y
�
� � y

	
� y

�
� y � y

	
� � y

	
� y

�

which  is a small positive constant, Eq. (14.57) gives�
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q 2 (�)

gy 3
c (�)

� 1 (14.68)

in which  change in depth across the kinematic shock. The leading term in theh � y
	
� y

�
�

expansion of (14.63) for  is  and arbitrarily choosing  gives� « 1 A � B ln 1 � , � � 0.05
the following estimate for � :

The solution across the shock requires  for its validity, in which � L « 1 L � U0 T .

Backwater Effects

Upstream backwater effects are neglected in the kinematic wave approximation because all
characteristics have positive slopes that carry disturbances in the downstream direction only. For
example, river and reservoir free surface elevations should be identical where a reservoir exists
at the downstream end of a river. However, the kinematic wave solution determines all depths
along the river from an upstream hydrograph, and this means that the river and reservoir free
surfaces will not generally meet where the river enters the reservoir. This anomaly can be
removed by rescaling the Saint-Venant equations to obtain a locally valid solution. In this case xs
in (14.39)�(14.40) is replaced with the constant  coordinate of the river end, and (14.44) andx
(14.52) reduce to

in which the time variable,  once again appears only as a parameter. These equations are� � t ,
identical with the equations that describe steady flow in gradually varied open channel flow.
Thus, if  and  are the flow rate and depth calculated at the river exit from the kinematicq (�) y

	
(�)

wave approximation, the same manipulations that were used to obtain Eq. (12.37) can be used
to put (14.65)�(14.66) in the form

in which  is defined byyc (�)

Equation (14.67) was integrated by Bresse in 1860 to obtain
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T »
0.1
8

2

9.81 1 300 3
seconds (14.74)

T » 0.073 hours (14.75)

in which the Bresse function,  is given by	 ,

with  = integration constant and  defined by
 z

The entire free surface profile can be calculated either by integrating (14.67) with one of the
numerical techniques introduced in chapter 12 for steady gradually varied flow or by using
(14.69)�(14.71). An estimate for the length,  of the backwater curve can be obtained by setting� ,

 to evaluate  and then setting  to calculate y � y
	
� h at � � 0 
 y � y

	
� �h at � � � � � .

The first order term for  is� « 1

If we arbitrarily choose  Eq. (14.72) gives the following order of magnitude for � � 0.05, � :

A Numerical Example

The kinematic wave approximation will be used to route the inflow depth hydrograph shown in
Fig. 14.8 down a channel that has a friction factor  and a slope  Equationf � 0.1 S0 � 1 300.
(14.26) requires that

Computing the right side of (14.74) and changing time units to hours gives the requirement
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  Figure 14.8  The inflow depth hydrograph used for a numerical example.

dt
d�

� 3 � 2
y0 (�) y ��

0 (�)

y �

0 (�)
2 (14.76)

Since  in Fig. 14.8 is about 10 hours, which is 140 times larger than the right side of (14.75),T
the kinematic wave approximation can be applied with confidence in this example.

The only difficult part of a kinematic wave solution is the calculation of shock coordinates in the x , t
plane. This requires that (14.37)�(14.38) be used to locate the shock initial point on a
characteristic that passes through the point  as shown in Fig. 14.9. Thereafter, shock path0 , �I ,
coordinates are calculated by using (14.32)�(14.33) along each of the two straight line
characteristics that join  to  and  to  together with Eq. (14.47), which0 , �

	
xs , t 0, �

�
xs , t

holds along the curved shock path. This means that five equations hold along three different
curves in the  plane. The equations contain six variables:  and . Anyx , t xs , t , y

	
, y

�
, �

	
�
�

one of these variables may be chosen as independent, and the simultaneous solution of the five
equations gives values for the remaining dependent variables.

The solution of the shock tracing problem in its most general form is difficult. However, two
simplifications can often be made in the inflow hydrograph that make this problem easy to solve.
These simplifications have been made in Fig. 14.8 and are (1) a constant inflow depth for values
of  less than the time at which depths first start to increase on the rising limb of the hydrographt
and (2) either a zero or negative curvature  on the rising limb. Differentiation ofy ��

0 (t ) � 0
(14.37) gives
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Figure 14.9  Different curves used for calculation of the shock path.

t � 4 � 2
1

0.35 0.05
� 4.29 hours

x � 3 3600

0.35 0.05

8
0.1

(9.81)(1) 1 300 � 2,495 metres

(14.77 a, b)

Equation (14.76) shows that  on the rising limb since  Therefore, thedt d� > 0 y ��

0 (�) � 0.
minimum value of the right side of (14.37) is an absolute rather than relative minimum that
occurs at the beginning of the interval along which Eq. (14.37) is applied. This means that the
shock initial point, which is calculated by setting  in (14.37)�(14.38), lies on the� � �I
characteristic that passes through the point  in which  is the time at which x , t � 0, �I �I y ��

0 (t )
changes from zero to a positive value. This is the point  hours for the examplex � 0 and t � 4
shown in Fig. 14.8. Setting  hours in (14.37)�(14.38) gives the following coordinates for� � 4
the shock initial point:

Since the shock initial point lies on the characteristic that passes through the point  in0 , �I
which  is the value of  where  first starts to increase from its initially constant value,�I � y0 (�)
and since values of  in Fig. 14.9 are less than  we see that  in Fig. 14.9 is always equal�

�
�I , y

�

to the constant initial value of  Therefore, a second advantage of using a simplified inflowy0 (�).
hydrograph is that  becomes a known constant. This reduces the shock tracing problem to they

�

simultaneous solution of (14.32)�(14.33) along the characteristic joining  with0 , �
	

to xs , t
(14.47) along the shock path. These three equations contain the four variables xs , t , y

	
and �

	
.

It will be convenient to choose  as the independent variable when solving these equations.�
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Figure 14.10  Curves used for calculation of the shock
path when using the simplified inflow hydrograph.

A �
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d t 1

�

dxs

d t 2

(14.78)

xs2
� xs1

�
A
2

t2 � t1 (14.79)

xs2
�

3
2

U3 t2 � t3 (14.80)

Curves used for calculation of the shock path when using the simplified inflow hydrograph are
shown in Fig. 14.10. The  coordinates and depths  are known at point 1, and wex , t y

	
and y

�

will obtain a set of equations that give a direct solution for these variables at point 2. The depth y
�

at points 1 and 2 equals the known constant initial value of  Since  is shown byy0 t . y x , t
(14.32) to be constant along the characteristic joining points 2 and 3, and since  has been�

	
� t3

selected as the independent variable, the depth  at point 2 equals the known value y
	

y3 .
Therefore,  can be calculated from the right side of (14.47) at both points 1 and 2 anddxs d t
these two values of  can be added to obtaindxs d t

Then use of the trapezoidal rule to integrate (14.47) along the shock path gives

Equation (14.79) contains  as its two unknowns, and a second equation with thesexs2
and t2

same two unknowns is obtained from (14.32)�(14.33).
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t2 �

2xs1
� 3U3 t3 � A t1

3U3 � A
(14.81)

t � � �
2
3

x
U y0 �

(14.82)

Since  is determined from (14.23) as a function of  and since  is constant along aU y , y
characteristic,  is calculated from the known value of  Elimination of  fromU3 y3 . xs2
(14.79)�(14.80) gives .t2

The value of  can then be calculated from either (14.79) or (14.80). A Fortran computerxs2
program that calculates the entire shock path from a simplified inflow depth hydrograph is shown
in Figs. 14.11�14.12. The computed shock path and characteristics are plotted as a solid line and
dashed lines, respectively, in Fig. 14.13.

Values of  at any point  are calculated from (14.32)�(14.33) after the shock path has beeny x , t
obtained. In particular, the depth hydrograph for any specified value of  is calculated by solvingx
(14.33) for t .

Substituting any value of  and the corresponding value of  in the right sides of (14.32) and� y0 (�)
(14.82) gives values of  for the specified value of  Care must be taken, though,y x , t and t x .
to set  equal to its constant initial value for values of  that are less than the time of arrival fory t
the shock. Depth hydrographs for the numerical example are plotted in Fig. 14.14 for different
values of  and shock arrival times, x ta .

A kinematic shock first appears at  The shock path, which is shown as a solid curvex � 2.5 km.
in Fig. 14.13, keeps the solution single valued by preventing characteristics from passing through
it. Since all characteristics carry a constant value of  in Fig. 14.9, and sincey x , t � y0 (�)

 constant for  the depth  immediately downstream from the shock is alwaysy0 (�) � � � �I , y
�

equal to the constant initial depth of one metre. Since characteristics meeting the upper side of
the shock path carry the constant depth  for  in Fig. 14.9, we see that the depth y0 �	 �

	
� �I y

	

immediately upstream from the shock will at first increase as  increases, then attain ay0 �	
maximum of  metres at  hours and thereafter decrease as  decreases fory

�
� 3 �

	
� 5 y0 �

	

 hours. If the inflow depth hydrograph ultimately approaches the same constant depth that�
	

> 5
existed before  started to increase, then the depth discontinuity across the shock willy0 (�)
approach zero and the shock path will become asymptotic to a characteristic as time becomes
infinite, as shown by Eq. (14.48). In this particular problem, Eq. (14.62) shows that a shock will
not occur in the solution of the Saint-Venant equations since  and the right side8S0 f � 0.267,
of (14.62) has a minimum value of 0.829 for  metres.y

�
� 1 and y

	
� 3

A more accurate depth variation across the kinematic shock is plotted in Fig. 14.15 from
Eq. (14.57) for  The function  in (14.57) was fixed by arbitrarily settingxs � 13.3 km. D (�)

 metres at  An order of magnitude for the shock thickness is calculated fromy � 1.8 � � 0.
(14.64) to be  which is very close to the value shown inS0 � � 3 A � B � 16.9 metres ,
Fig. 14.15. This gives a value of  The value of  computed� � 16.9(300) 1000 � 5.07 km. L
from (14.19) and (14.24) is 82.3 km, which gives  Therefore, the assumption� L � 0.062.

 that was used to obtain (14.57) is justified in this case.� L « 1
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_DSA1 1 4:[CIVL233]SHOCKTRACER.FOR;7

C THIS CALCULATES KINEMATIC WAVE SHOCK COORDINATES FOR A SIMPLIFIED INFLOW
C DEPTH HYDROGRAPH. It assumes a constant depth at X=0 for all values of
C time less than the time at which DY/DT changes from zero to a positive
C value. It also assumes a negative curvature for the rising limb of the
C hydrograph. Definitions for the input variables follow:
C Y(I)=inflow depth (metres) at time TAU(I) (hours) for I=1,N
C F=constant friction factor
C S=constant channel slope
C The first value of Y(I) must be the constant initial depth, and the first
C value of TAU(I) must be the time at which DY/DT changes from zero to a
C positive value. Output variables include the shock coordinate, X, at
C time T.
C

DIMENSION Y(100),TAU(100)
OPEN(UNIT=1,FILE='INPUT.DAT',STATUS='OLD')
OPEN(UNIT=2,FILE='OUTPUT.DAT',STATUS='NEW')

C
C Data is entered and written out. 
C

READ(1,*) N,F,S
WRITE(2 1000) N,F,S

1000 FORMAT(iX,'N=',I3,2X,'F=',F7.4,2X,'S=',F10.7//2X,'I',3X,
      1 'TAU(hours)',2X,'Y(metres)')

DO 100 I=1,N
READ(1,*) J,TAU(I),Y(I)
WRITE(2,3000) I,TAU(I),Y(I)

 100 CONTINUE
C
C The shock initial point is calculated.
C

DYDT=(Y(2)-Y(l))/(TAU(2)-TAU(l))
T=TAU(1)+2*Y(1)/DYDT 
X=3*(Y(l)/DYDT)*SQRT(8*9.81*Y(l)*S/F)*3600 
WRITE(2,2000) 1,TAU(l),Y(l),X,T

 2000 FORMAT(2X,'I',3X,'TAU(hours)',2X,'Y(metres)',2x,'X(metres)'
          1 5X,'T(hours)'//lX,I3,4X,F7.2,4X,F6.2,3X,E10.3,2X,E10.3)

U=SQRT(8*9.81*Y(1)*S/F)*3600
DXDT1=1.5*U

C
C The remaining shock coordinates
C

DO 200 I=2,N
U=SQRT(8*9.81*Y(I)*S/F)*3600
DXDT2=(Y(I)**1.5-Y(1)**1.5)/(Y(I)-Y(1))
DXDT2=DXDT2*SQRT(8*9.81*S/F)*3600
A=DXDT1+DXDT2
DXDT1=DXDT2
T=(2*X+3*U*TAU(I)-A*T)/(3*U-A)
X=1.5*U*(T-TAU(I))
WRITE(2,3000) I,TAU(I),Y(I),X,T

3000 FORMAT(lX,I3,4X,F7.2,4X,F6.2,3X,E10.3,2X,E10.3)
 200 CONTINUE

END

Figure 14.11  Computer program used to calculate the shock path for a simplified
inflow hydrograph.
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_DSA11 4:[CIVL233]0UTPUT.DAT;95

N= 31  F= 0.1000     S= 0.0033333
I    TAU(hours)  Y(metres)
1 4.00 1.00
2 4.05 1.35
3 4.10 1 70
4 4.15 1 93
5 4.20 2.10
6 4.25 2.27
7 4.30 2.45
8 4.35 2 56
9 4.40 2 70
10 4.50 2.83
11 4.60 2.91
12 4 70 2.96
13 4.80 2.98
14 4.90 3.00
15 5.00 3.00
16 5 20 2 98
17 5 50 2 94
18 6.00 2.83
19 7.00 2.54
20 8.00 2.25
21 9 00 1 96
22 10 00 1 70
23 11.00 1.46
24 11 50 1.36
25 12 00 1.27
26 12 50 1 19
27 13 00 1 13
28 13.50 1.08 
29 14.00 1.05 
30 14.50 1.02 
31 15.00 1.01
I TAU(hours)     Y(metres)   X(metres) T(hours)

1 4.00 1.00 0.250E+04 0.429E+01
2 4.05 1.35 0.339E+04 0.438E+01
3 4.10 1.70 0.434E+04 0.448E+01
4 4.15 1.93 0.618E+04 0.466E+01
5 4.20 2.10 0.815E+04 0.484E+01
6 4.25 2.27 0.981E+04 0.500E+01
7 4.30 2.45 0.112E+05 0.512E+01
8 4.35 2.56 0.133E+05 0.530E+01
9 4.40 2.70 0.148E+05 0.543E+01
10 4.50 2.83 0.195E+05 0.583E+01
11 4.60 2.91 0.246E+05 0.625E+01
12 4.70 2.96 0.300E+05 0.670E+01
13 4.80 2.98 0.359E+05 0.718E+01
14 4.90 3.00 0.417E+05 0.766E+01
15 5.00 3.00 0.480E+05 0.818E+01
16 5.20 2.98 0.615E+05 0.928E+01
17 5.50 2.94 0.827E+05 0.ll0E+02
18 6.00 2.83 0.123E+06 0.144E+02
19 7.00 2.54 0.233E+06 0.238E+02
20 8.00 2.25 0.401E+06 0.386E+02
21 9.00 1.96 0.701E+06 0.663E+02
22 10.00 1.70 0.129E+07 0.124E+03
23 11.00 1.46 0.288E+07 0.284E+03
24 11.50 1.36 0.453E+07 0.457E+03
25 12.00 1.27 0.779E+07 0.804E+03
26 12.50 1 19 0.154E+08 0.162E+04
27 13.00 1.13 0.325E+08 0.351E+04
28 13.50 1.08 0.883E+08 0.974E+04

Figure 14.12  Output from the computer program shown in Fig. 14.11 for the numerical
example.
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Figure 14.13  The shock path and characteristics for the numerical example.
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The kinematic wave approximation originated in a well known paper by Lighthill and Whitham
(1955). Much of the material in this chapter, apart from scaling arguments and the discussion of
backwater effects, can be found in a slightly different form in the book by Whitham (1974).
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WATER

Temp.
�C

Density
kg/m3

� �

Dynamic
Viscosity
N - s/m2

103µ �

Kinematic
Viscosity

m2/s
106

� �

Surface
Tension

N/m
102

� �

Vapour
Pressure

(Absolute)
N/m2

10	3 p �

Bulk
Modulus of
Elasticity

N/m2

10	9E �

0 1000 1.79 1.79 7.62 0.6 2.04

5 1000 1.52 1.52 7.54 0.9 2.06

10 1000 1.31 1.31 7.48 1.2 2.11

15 999 1.14 1.14 7.41 1.7 2.14

20 998 1.01 1.01 7.36 2.5 2.20

25 997 0.894 0.897 7.26 3.2 2.22

30 996 0.801 0.804 7.18 4.3 2.23

35 994 0.723 0.727 7.10 5.7 2.24

40 992 0.656 0.661 7.01 7.5 2.27

45 990 0.599 0.605 6.92 9.6 2.29

50 988 0.549 0.556 6.82 12.4 2.30

55 986 0.506 0.513 6.74 15.8 2.31

60 983 0.469 0.477 6.68 19.9 2.28

65 981 0.436 0.444 6.58 25.1 2.26

70 978 0.406 0.415 6.50 31.4 2.25

75 975 0.380 0.390 6.40 38.8 2.23

80 972 0.357 0.367 6.30 47.7 2.21

85 969 0.336 0.347 6.20 58.1 2.17

90 965 0.317 0.328 6.12 70.4 2.16

95 962 0.299 0.311 6.02 84.5 2.11

100 958 0.284 0.296 5.94 101.3 2.07

SEA WATER

20 1024 1.07 1.04 7.3 2.34 2.30



Appendix I � Physical Properties of Water and Air

AIR
(Standard Atmospheric Pressure at Sea Level)

Temp.
�C

Density
kg/m3

� �

Dynamic
Viscosity
N - s/m2

103µ �

Kinematic
Viscosity

m2/s
106

� �

-10 1.34 0.0164 12.3

0 1.29 0.0171 13.3

10 1.25 0.0176 14.2

20 1.20 0.0181 15.1

30 1.17 0.0185 15.9

40 1.13 0.0190 16.9

50 1.09 0.0195 17.9

60 1.07 0.0199 18.6

70 1.04 0.0204 19.7

80 1.01 0.0208 20.8

90 0.974 0.0213 21.8

100 0.946 0.0217 22.9
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INDEX

acceleration
fluid 1.8, 2.4, 4.21�4.23
gravity 1.3
rigid body 3.30

added mass 7.6�7.7, 9.7�9.9
adverse pressure gradient 8.14�8.15
angular velocity 1.17
Archimedes' principle 3.19
backwater curve 12.19�12.32, 14.18�14.19
Bernoulli equation 2.8�2.9, 4.1, 6.6, 11.1
Borda's mouthpiece 6.31
bound vortex 9.15�9.17
boundary layer separation 8.14�8.19, 9.3�9.5
boundary layer 5.5�5.6, 8.1�8.23
boundary element method 6.15
boundary-layer control 8.17, 9.5
Bresse function 14.18�14.19
buoyancy force 3.19, 7.5�7.6
cavitation 9.18, 10.7
centroids 3.6�3.7
characteristics (method of) 13.1, 13.7�13.27, 14.1�14.29
choked flow 12.10, 12.12
circular cylinder 6.11�6.14
circulation 6.1�6.3, 6.8, 9.3, 9.13�9.16
coefficient of permeability 6.19�6.20, 7.8�7.13
compressible flow 2.9, 13.1
continuity equation 2.1�2.3, 4.1
contraction coefficient 4.12�4.14, 6.31�6.33, 12.4, 12.6�12.7
control volume 2.1, 4.1
critical depth 12.3, 12.13
curl 1.16
D'Alembert's paradox 6.12, 8.17, 9.2�9.3
Darcy's law 6.19, 7.8
del 1.10
derivatives

ordinary 1.9
partial 1.9
material 2.3
substantial 2.3

dimensional analysis 10.1�10.22
directional derivative 1.13�1.14, 4.2
discharge coefficient 6.34
divergence theorem 1.10, 1.15



Index

divergence 1.15
doublet 6.9�6.10
drag coefficient 7.4�7.5, 8.6�8.11, 9.1, 9.5�9.12, 10.4
drag force 7.4�7.6, 8.4�8.9, 9.1�9.12, 10.1�10.4, 10.14�10.17
dynamic pressure 10.11�10.13
energy losses 4.4�4.5, 7.3, 7.15, 11.1
energy grade line 11.3
envelope 14.12
Euler number 5.2, 10.4, 10.6
Euler's equations 6.1
Fanning friction factor 7.19�7.20
favourable pressure gradient 8.14�8.15
fetch 8.12
flood routing 14.1, 14.7�14.29
flow net 6.20�6.27
flow control 12.22�12.23
flow profile analysis 12.23�12.28
form drag 9.1
free streamline 6.28�6.34
free overfall 12.22�12.24
friction slope 12.14, 14.8
friction factor (Darcy-Weisbach)

laminar flow 7.3�7.4
turbulent flow 7.20�7.22

friction losses 11.1, 13.23
Froude number 10.6, 10.15, 14.8

densimetric 10.7, 10.12
gradient 1.10�1.13
gradually varied flow 12.1, 12.18�12.32
groundwater flow 6.19�6.20, 7.7�7.13
half body 6.19
Hele-Shaw experiment 7.8�7.13
hydraulic machinery 11.8
hydraulic jump 4.18�4.20
hydraulic grade line 11.3
hydraulic radius 7.20, 12.14�12.15
hydrograph 14.7, 14.15, 14.19�14.20
incompressible flow 2.3, 5.1
integral equation 6.15
intrinsic permeability 7.8
inviscid flow 5.4�5.5
irrotational flow 1.17�1.18, 5.5, 6.1�6.34



Index

jets
free 4.4, 6.28�6.32, 4.10�4.16
submerged 7.21, 7.23�7.24, 10.17�10.22

Kelvin's circulation theorem 6.2, 6.8, 9.15
kinematic wave approximation 14.7�14.29
Kutta condition 9.15
laminar flow 7.1�7.13
lift coefficient 9.12�9.15
lift 9.3, 9.12�9.25
local losses 11.1�11.3
Manning equation 12.16�12.17
mass density 1.2, 10.12�10.13
metacentric height 3.26
minor losses 11.1�11.3
mixing 7.15�7.18
model similitude 10.4
model scaling 9.9�9.10, 10.1, 10.4, 10.7�10.10, 10.14�10.17
moments of inertia 3.8
momentum equation 2.4�2.8, 4.1
monoclinal rising flood wave 14.16�14.18, 14.28
natural channels 12.32
Navier-Stokes equations 2.5�2.6, 5.1
Newton's method 12.8�12.9
one dimensional flow approximation 4.4
open channel flow 12.1�12.32
order of magnitude 5.1
oscillations 9.19�9.25
pathline 1.8
pathline 1.6�1.7, 2.9, 4.1
piezometric head 2.5, 4.1
pipe networks 11.13�11.24
pipe flow 4.5, 11.1�11.24, 13.1�13.27
Pitot tube 4.2
potential flow 5.5
potential function 1.14, 1.18, 6.1�6.23
power 4.26, 9.11, 11.8, 11.11�11.13
pressure drag 9.1, 10.15
pressure 1.4, 3.1�3.6

dynamic 10.11�10.13
principal axes 3.8
product of inertia 3.8
pump characteristic curve 11.8�11.10
rapidly varied flow 12.1�12.12
repeating variables 10.6



Index

resonance 9.20�9.25
Reynolds number 5.2, 7.3�7.4, 7.13�7.15, 8.1, 10.4, 10.6, 10.15
roughness (boundary) 7.18�7.19
roughness 7.19, 7.21, 8.9, 8.11, 11.19, 12.15�12.16
Runge-Kutta method 12.29�12.30, 14.5
Saint-Venant equations 14.1�14.6, 14.23
scale analysis 5.2
secondary flows 8.19�8.22
separation 4.5�4.6, 6.27�6.28, 8.14�8.19, 9.3�9.5
setup (wind) 8.12
ship model 10.14�10.17
shock 4.23�4.24, 13.13

kinematic 14.12�14.18, 14.20�14.28
sink 6.8, 6.10
skin friction drag 9.1
slope (open channel)

adverse 12.20�12.22
horizontal 12.20�12.22
mild 12.20�12.22
steep 12.20�12.22

sluice gate 4.16, 12.4, 12.6�12.7
source 6.8, 6.10
specific energy 12.2
spillway 10.7�10.10
stability

floating bodies 3.23�3.29
fluid motion 7.13�7.15

stall 9.13
starting vortex 9.15�9.17
steady flow 1.8, 2.8, 4.1, 5.1
steady flow 1.8
Stoke's law 7.4�7.8
stream function 6.15�6.28
streamline 1.7, 6.4, 6.15�6.29
Strouhal number 9.20, 10.7
subcritical flow 12.4, 14.4�14.6
sublayer (laminar) 7.18�7.19
supercritical flow 12.4, 14.4�14.6
superposition 6.9�6.19
surface tension 1.3, 3.4, 10.7
surface drag 9.1, 10.15
surge 4.23�4.24
Tacoma Narrows Bridge 9.19
turbulence 4.5, 5.6, 7.13�7.24, 10.13



Index

uniform flow 4.2�4.4, 6.7, 6.10, 12.1, 12.12�12.18
unsteady flow 1.8, 13.1�13.27, 14.1�14.29
vapour pressure 1.4, 10.10
velocity 1.6, 4.21
viscosity 1.2, 10.1, 10.13
vortex 6.8, 6.10
vortex trail 9.19
vorticity 1.17, 6.4
waterhammer 13.1, 13.5, 13.27
Weber number 10.7
wetted perimeter 7.19�7.21, 12.13�12.15
wing chord 9.12�9.13
wing-tip vortices 9.18�9.19
zone of capture 6.20


