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Abstract

This paper reviews the basic concepts of sensitivity analysis and points out their limitations. A case is then made for logarithmic
sensitivity. The magnitude of logarithmic sensitivity alone does not determine the accuracy of an aquifer parameter estimate, es-
pecially when the relative measurement errors are not uniform throughout space and time. Deterministic parameter correlations and
plausible relative errors in parameter estimates are introduced as imperfect measures of information content in measurements. A
plausible relative error in the parameter estimate combines the effect of logarithmic sensitivity with that of relative measurement
error. Minimizing the plausible relative errors rather than maximizing the corresponding sensitivities should serve as a guide to
identifying the measurements most useful for parameter estimation or as candidate measurements for optimal sampling. Fur-
thermore, avoiding among them measurements with high parameter correlations as much as possible may help ensure that the
sensitivity matrix X (or XTX) is well-conditioned and, thus, that the parameter estimates are accurate.

The discussed concepts are then applied to a model of a pumping test conducted on a fully penetrating well situated in a confined
aquifer. The model accounts for the wellbore storage and an infinitesimal skin. In contrast to the traditional and normalized
sensitivities, the logarithmic sensitivities of the drawdown in the pumping well, the drawdown in an observation well, and the
wellface flowrate to transmissivity, 7, storativity, .S, and the skin factor, 5, depend on a small number of parameters. They can thus
be represented by a single type curve or a family of a relatively few type curves. The plausible relative errors in 7, S, and 7 estimated
from wellbore drawdown rapidly decrease during the wellbore storage phase and reach a plateau or slowly decrease outside the
wellbore storage phase. The plausible relative errors from the wellface flowrate rapidly decrease during the wellbore storage phase
before reaching a minimum (around the time when the wellface flowrate is equal to about half the pumping rate) and then rapidly
increase. This means that transient flowmeter test measurements of drawdown and wellface flowrate should not be made during the
early times of the wellbore storage phase. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction error to a model of a pumping test conducted on a fully
penetrating well, with wellbore storage and infinitesimal
Dimensionless sensitivity analysis via logarithmic skin, situated in a confined aquifer.
sensitivities has been widely used in sciences because it

allows one to compare the sensitivity of one output with

respect to one parameter with the sensitivity of another
output with respect to yet another parameter. Although
very attractive, this approach has been underutilized in
hydrology.

The objectives of this paper are: (i) to review the basic
concepts of sensitivity analysis and their limitations, (ii)
to introduce the concept of a plausible relative error in a
parameter estimate, and (iii) to apply logarithmic sen-
sitivity, deterministic correlation, and plausible relative
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2. General sensitivity and error analysis

Most engineering, physical, chemical, and biological
systems can be viewed as input—output models that re-
late the output information to the appropriate input
parameters. If the model parameters were known per-
fectly, the output could be calculated. Since this is rarely
the case, a question arises: How do the errors in the
input parameters influence the outputs, or, in particular,
does a small input perturbation cause a large change in
the output? Sensitivity analysis was devised to study
such questions and, in general, to study the influence of
uncertainties in the input data on the outputs.
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Stemming from engineering and applied mathemat-
ics, sensitivity analysis is now being widely applied in all
sciences. Indeed, a “‘sensitivity analysis” key word
search of the Science Citation Index data base yields
well above 500 journal articles published in 1999 and
1998 alone and over 120 articles published in major
hydrologic journals in the years 1992-1999. Therefore,
only a selective literature review directly relevant to the
topic is presented.

The focus here is on pumping tests conducted in
homogeneous aquifers — all system parameters are
therefore treated as constants rather than functions of
space and time, and thus, there is no need for using
functional sensitivities (equivalent to Frechet deriva-
tives) [23,27,37-39,51].

2.1. Basic concepts of sensitivity analysis

A number of books [4,8,15,21,24,26,72] and papers
([16,45,63,69,73,74] and many others) present the prin-
ciples of sensitivity analysis and different approaches to
calculating sensitivities. All these principles stem from
the concept of a differential.

Consider the evolution of a system whose output
O(x,t; #4,...,2,) depends on spatial location x, time ¢
and n input parameters Z;. The output, for example, can
be the pumping well drawdown, observation well
drawdown, wellface flowrate, or other measurable
quantity, whereas the parameters may include trans-
missivity (or hydraulic conductivity) and storativity (or
specific storage) of the aquifer or different zones in it as
well as the skin factor, leakage factor, etc. The total
differential of the output, as a function of spatial loca-
tion x and time ¢,
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gives rise to the concept of traditional sensitivity (or
sensitivity coefficient), understood as the derivative of
the output with respect to an input parameter
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When this sensitivity is large in magnitude, the output
may be significantly affected even by a small perturba-
tion in the parameter 2.

The reader should note that traditional sensitivities
should not be used to compare the influence of one
parameter to the influence of another one when the two
have different dimensions. Yet, some authors still make
such comparisons. For example, Knopman and Voss
[40] state that “‘sensitivity [of concentration] to disper-
sion [0c/0D] is generally an order of magnitude less than
sensitivity to velocity [Oc/0v]...” This statement may
generally be true when one adopts the meter as a unit of
length and measures dispersion in meters squared per

time and velocity in meters per time, as did these
authors. The reverse is true, however, when one adopts
the hectometer (100 m) as a unit of length.

Introduced in groundwater literature by McElwee
[54], normalized sensitivity,

0 a0 o @
laﬁiiag’i//?iialn(?]i)’

can be used to compare the influence of one parameter
with the influence of another one when the two have
different dimensions because, as is apparent from its
definition, it measures the influence that the fractional
change in the parameter, or its relative error, exerts on
the output. (This type of sensitivity is more or less
standard in parameter estimation algorithms.)

In turn, the normalized sensitivities should not be
used to compare the influence of one or more parame-
ters on different outputs when the outputs are measured
in different units (e.g., drawdown and flowrate). How-
ever, logarithmic sensitivity, defined as
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can do just that, because it measures the influence that
the fractional change in the parameter, or its relative
error, has on the fractional change in the output, or its
relative error.

Note that it is the first form in (4) that defines the
logarithmic sensitivity. It is valid for both positive and
negative outputs and parameters. The last form in (4) is
obviously less general and is equivalent to the first one
only for positive outputs and positive parameters. Yet, it
is the last form that gives this sensitivity its name.
Logarithmic sensitivity may not be suitable when the
output function reaches zero; in such a case normalized
or traditional sensitivity might be advantageous. Thus,
one should not argue that one type of sensitivity is
generally better than another.

2.2. Approaches to calculating sensitivities

Four approaches to calculating sensitivities are most
often used: perturbation, analytical, direct, and adjoint
methods.

The perturbation approach is the simplest. It ap-
proximates the traditional sensitivity of an output vari-
able to a given parameter by a differential quotient of
the output perturbation, calculated as the difference
between the output with the parameter perturbed and
the output with all parameters unperturbed, to the
parameter perturbation. This sensitivity can be appro-
priately scaled to obtain other types of sensitivities.
Establishing the right size of the parameter perturbation
may not be trivial. The perturbation approach could be
prohibitively expensive when sensitivities to numerous
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parameters are to be calculated or when their evolution
in space and/or time is to be studied.

The analytical approach is useful when an analytic
representation of a model is available and the sensitivity
of an output variable to a given parameter can be ex-
plicitly calculated.

The direct approach relies on differentiating the sys-
tem of equations describing the model with respect to
the parameters. The resulting systems of sensitivity
equations have a similar structure to the original one
and are solved numerically in conjunction with it. The
direct method is particularly efficient when the original
nonlinear equations are solved via the Newton—Raph-
son technique. This approach was used by Cho et al.
[17], Kabala and Milly [37-39], Reuven et al. [64], and
others.

The adjoint method for calculating sensitivities is a
popular alternative to the direct method. The system
and its sensitivities are described by the governing
equation and its adjoint. By solving both numerically,
one can extract the sensitivities. The direct and adjoint
methods are discussed by Cacuci et al. [14] and Cacuci
[13]. The latter provides guidelines for choosing between
the two. Typical applications of the adjoint method are
provided by Sykes et al. [69], Yeh and Zhang [78], Yeh
[79] and others.

In this paper, we use the semi-analytic approach, a
variant of the analytical approach, to calculate sensi-
tivities. The model and its sensitivities are all calculated
in the Laplace domain and are then numerically inverted
to the time domain.

2.3. The role of sensitivities in parameter estimation

Once the n-parameter model O(x,t; 24,...,2,), dis-
cussed earlier, is established to represent a considered
system, the values of its parameters may need to be
found. Typically, the system is stressed and its output
measured at m > n different points. Let
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be the ith output measurement at the measurement
point (x;, %), O; be the value of the model at this point,
and ¢; be the ith (unknown) measurement error.

A number of methods exist to obtain unbiased,
minimum-variance, maximume-likelihood, or other esti-
mates of the parameters from these measurements, es-
pecially when the statistical nature of the measurement
errors is known or could be deduced. In addition, many
related approaches are available to optimally select (in
some sense) the m measurement points [22,66].

When the measurement errors are Gaussian or of
unknown distribution, however, one commonly used
way to estimate the system parameters is to minimize the

sum-of-squares objective function (or sum of squared
errors),

E= Z[@i(‘g}lv"w‘g]n) _yi]z' (6)
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Let us consider first the linear system and then gen-
eralize the results to a nonlinear system.

2.3.1. Special case: linear system
For a system linear in its parameters, (5) reduces to
"\ 00,

Yi= ay_=@j+eia
=1 97

1<i<m (7)

with constant traditional sensitivities, 0¢;/02;, and (6)
becomes
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The objective function (8) obviously has one mini-
mum, which can be found by solving the system of n
equations,

E [ o0, a0,
= 2 lp | L
37, ; L_l oz, ” y’] R

i.e., by solving
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Alternatively, the linear system (7) can be written
approximately (without the error terms) as

XP =Y, (10)
where

is a rectangular m x n sensitivity matrix, also known as a
Jacobian, P = {9’1,...,97’,,}T is the column vector of
system parameters, and Y = {y, ..., ym}T is the column
vector of output measurements. Multiplication of (10)
by X', the transpose of X, leads to

X'XP = XY, (12)

which is the matrix form of (9). Since X"X is a square
n x n matrix, (12) can be formally solved for the
parameter vector, and we thus arrive at the well-known
result [22,60]

P = [(X"X)"'X")Y. (13)

The term in the brackets is known as a generalized in-
verse of X; for a square matrix, it is identical to a regular
inverse. Since (12) and (9) are the same, (13) is also a
solution of the latter and thus minimizes the objective
function (8).
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The result (13) was obtained without invoking
any assumption about the stochastic nature of the
measurement errors, ¢;. It is well known, however, that if
the measurement errors are Gaussian, (13) is an unbi-
ased estimator, and if they are Gaussian and uncorre-
lated, (13) 1is furthermore the minimum-variance
estimator [22,66]. The use of the least-squares method,
as described above, to obtain parameter estimates im-
plies the expectation that the measurement errors are
Gaussian and uncorrelated. Variants of the least-squares
method also exist for correlated measurements [22,66].

What if we provide different weights to different
measurements? It follows from

2
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and the described relation of (8) to (10) that introducing
a weight o? in the objective function, (14), is equivalent
to rescaling the corresponding measurement equation in
(10), or in (5) by «; or, more precisely, is equivalent to
rescaling by o; the ith row in the sensitivity matrix X
(correspondingly, the ith column in X') and the ith
measurement in Y.

We note in passing that, for the system with more
than one parameter, the measurement equations em-
bedded in (10), or in (5), cannot generally be rescaled for
the sensitivity matrix X to contain the normalized or
logarithmic sensitivities, (3) or (4) — this would require
the weights to be j-dependent (o, = 2; or o; = 2;/0),
which is impossible. Thus, the parameter estimates are
usually obtained from (13), with X being the matrix of
traditional sensitivities, (2), possibly rescaled.

2.3.2. General case: nonlinear system

Given a sufficiently close approximation, P, of the
true, yet unknown, parameter vector, P*, a system
nonlinear in its parameters, (5), can be linearized (in
vector form) as

X(P'—P)=Y -0, (15)

where O ={0,,...,0,}" and the sensitivity matrix
X = [00,/02;] are both evaluated at P. Since (15) is
analogous to (10), the solution for the correction,
analogous to (13), is

P —P = [(X"X)"'X")(Y - 0). (16)

We note in passing that, when a close approximation
of P* is not available, which is typically the case, the
linearization (15), or its variant, could be applied itera-
tively. A number of different methods exist to find
nonlinear least-squares estimates [22,66]. In comparison
to a linear system, however, all of them share a major

complication: as opposed to the linear objective func-
tion, (8), the nonlinear objective function, (6), may have
multiple minima. Thus, an iterative solution based on
(15) or other approaches may lead to its local rather
than global minimum [22,66].

It is important to note from (13) and (16) that,
whether the system is linear or nonlinear, the quality of
the least-squares parameter estimates is controlled by
the nature of the sensitivity matrix X, (11), or, more
precisely, by the nature of X'X. In fact, the existence of
the least-squares parameter estimates is predicated on
the existence of the inverse of X'X; when this matrix is
singular or ill-conditioned, the solution does not exist or
is highly inaccurate, respectively.

2.4. Perspectives of sensitivity analysis

There are two different perspectives of sensitivity
analysis present in the literature: the parameter-estima-
tion perspective and the the sensitivity-only perspective.

The parameter-estimation perspective focuses on
parameter estimation via solving an appropriate inverse
problem, which involves calculation of sensitivities, and/
or formulating an optimal sampling design. In the pro-
cess, a number of simplifying assumptions about the
statistical structure of the measurement errors (inde-
pendent, Gaussian, constant variance, etc.) are invoked,
and parameter correlation is accounted for. In this
perspective, the main question is: Given system
measurements, what are the parameter estimates and their
variances? In subsurface hydrology, the parameter-esti-
mation perspective was adopted by Butler and Liu
[11,12], Cob et al. [18], Knopman and Voss [40,41,43],
Knopman et al. [44], McElwee [54], McElwee et al.
[55,56], McElwee and Yukler [57], and others.

In the sensitivity-only perspective, the focus is on the
inherent nature of sensitivities, and the study does not
involve parameter estimation. In this perspective, the
main questions (directly related to each other, as will be
seen shortly) are: How much does a small, deterministic
perturbation of a parameter (input) affect the system
(output)? or What is the sensitivity of the system to its
parameters? The deterministic perturbation is usually
given as a typical measurement error, specified for an
instrument (such as a pressure transducer or a flow-
meter) by the manufacturer. Statistical characterization
of the measurement errors is neither given, nor assumed,
nor considered. Ideally, the nature of the whole sensi-
tivity matrix, X, given in (11), or better still, the nature
of X™X, should be studied. Practically, however, study-
ing the sensitivities and the deterministic parameter
correlations provides useful insights into the nature of
these matrices.

The sensitivity-only perspective was adopted in books
by Chatterjee and Hadi [15] and Deif [21] and in papers
by Chen et al. [16], Cho et al. [17], Koda et al. [45],
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Rabitz [63], Reuven et al. [64], Ungureanu et al. [73],
Vajda and Rabitz [74], and many others. In subsurface
hydrology it was adopted by Kabala and Milly [37-39]
and to a large degree by Cob et al. [18], McElwee et al.
[56], and others. This perspective can provide qualitative
information about which model parameters are likely to
be accurately estimated and which measurement points
(in space or time) should be considered as candidates for
the sampling design.

The sensitivity-only perspective is adopted for this

paper.

3. Selected applications of sensitivity analysis in hydrol-
ogy

Sensitivity analysis has been applied in solving inverse
problems and estimating model parameters, in finding
optimal sampling designs, as well as in studying sensi-
tivities for their own sake. The large-perturbation ap-
proach and traditional sensitivities have been widely
used in hydrologic problems, whereas normalized sen-
sitivities and, especially, logarithmic sensitivities are
used less often.

3.1. Sensitivity analysis in inverse modeling and sampling
design

In the parameter-estimation perspective, sensitivities
are used to define an appropriate Jacobian and to solve
an inverse problem, i.e., to estimate model parameters
from available measurements. This approach has been
used by Hughson and Yeh [32,33], Kool and Parker [47],
Kool et al. [48,49], Parker et al. [62], Shah et al. [67], Yeh
and Zhang [78], Yeh [79] and many others.

Sensitivity analysis can also be used quantitatively in
finding an optimal sampling design. A number of opti-
mality criteria exist that are believed to be important for
experimental designs [66]. Each criterion is labeled in the
literature by a single letter; the criteria are known jointly
as “alphabet optimality”. For example, D-optimality
minimizes the volume of the confidence region of the
regression parameters. G-optimality, also known as a
minimax criterion, minimizes the maximum output
variance over all inputs in the experimental region,
whereas A-optimality minimizes the average variance of
the regression parameters. Other alphabet optimality
criteria exist (E, I, and J) and are discussed by Ryan [66].
They are generally not equivalent to one another.
Although the D-optimal sampling design is most widely
used, it is not necessarily an equileverage design (or,
equivalently, G-optimal design [66]), i.e., not all its de-
sign points exert equal influence on the determination of
regression parameters, as one would wish. However, a
sampling design may be both D- and G-optimal [66].

Some of the alphabet optimality criteria have already
been applied to hydrology. For example, Knopman and
Voss [40,41,43] and Knopman et al. [44] explored ap-
plications of D-optimality in sampling design of con-
taminant transport in groundwater, whereas Knopman
and Voss [43] commented on the A-optimality of such
designs. Yet none of the existing hydrologic sampling
designs seems to be both D- and G-optimal.

One should recognize that any algorithm for selecting
an optimal sampling design will produce one that is
optimal only on the finite number of considered candi-
date measurement points and, thus, a design that is not
necessarily globally optimal [66]. One should also
recognize that the alphabet optimality criteria, which
involve sensitivity matrices, require invoking an
assumption about the statistical structure of the
measurement errors. Usually, it is assumed that these
errors are independent, of equal and constant variance,
and either normally or log-normally distributed [66]. Yet
none of these assumptions needs to be true.

3.2. Large-perturbation approach — a study of output
variation due to input variation

A number of researchers do not use the formalism of
sensitivity analysis and prefer to directly vary the
parameters within their ranges and calculate the corre-
sponding changes in the output. Although this ap-
proach does not suffer from the small-perturbation
assumption of the first-order sensitivity analysis, (2)—(4),
it does not provide the same level of local generality as
do the definitions (2)-(4). The large-perturbation
approach has been used by many researchers. A few
examples follow.

Griggs and Peterson [29] applied this approach to the
atoll subsurface hydrology model to find out that the
modeled depth to the 50% salinity contour is most
sensitive to permeability, and the transition-zone thick-
ness is most sensitive to transverse dispersivity. Corap-
cioglu and Choi [19] found that the aqueous phase
colloid concentration is quite sensitive to changes in
the rate coefficient of colloidal deposition on the solid
matrix in colloid transport in unsaturated porous media.
Abboud and Corapcioglu [1,2] studied the effect of mud
penetration on borehole skin properties. Minsker and
Shoemaker [58] quantified the economic and environ-
mental effects of uncertainty in biological parameter
values in optimal in-situ bioremediation design. Lahm
et al. [50] found that increasing dispersivity causes an
increase in the variable-density effects in their two-
dimensional numerical transport model of brine dis-
placement by infiltrating meteoric water. Ruan and
Illangasekare [65] revealed that the interaction of
macropore flow and overland flow is significant in their
numerical model coupling overland flow and infiltration
into the vadose zone with macropores. Bolster et al. [7]
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conducted miscible displacement experiments in sand
columns to determine the variability of bacterial de-
position scale within aquifer sediments, and used the
large-perturbation approach sensitivity analysis to study
the effects of an influent suspension with two subpopu-
lations of bacteria on the decrease of deposited bacteria
with flow path length. Also, Boateng and Cawlfield [5]
applied the large-perturbation approach sensitivity
analysis to two-dimensional contaminant transport in
the unsaturated zone.

3.3. Applications of traditional sensitivities

Traditional sensitivities, (2), are the most often ap-
plied tools of sensitivity analysis. Numerous applica-
tions are available. Selected examples follow.

Vemuri et al. [76] applied traditional sensitivities to
system identification and pointed out its potential in
hydrologic research. Similarly, McCuen [53] stressed
the usefulness of sensitivity analysis for dealing with
complex water resources systems. McElwee and Yulker
[57] studied the sensitivity of groundwater models to
variations in transmissivity and storage. Cob et al. [18§]
extended this analysis to leaky aquifers. Knopman and
Voss [40] studied the behavior of sensitivities and their
implications for parameter estimation in the one-
dimensional convection—dispersion equation. Butler
and Liu [11] demonstrated the importance of temporal
and spatial placement of observations for interpreting
pumping tests conducted in linear infinite strip aqui-
fers. They found that changes in drawdown are sensi-
tive to the transmissivity and storativity of the strip
only for a limited time and extremely limited time,
respectively.

Sim and Chrysikopoulos [68] developed a one-di-
mensional porous media model for virus transport in
saturated porous media. Their sensitivity analysis re-
vealed that the estimation of pseudo first-order inacti-
vation rate coefficients from field observations requires
data collection near the source during the initial stages
of virus transport. Vasco and Datta-Gupta [75] devel-
oped a tracer tomography technique that involves cal-
culating tracer concentration sensitivities to porosity,
permeability, and pressure gradient and used them for
inversion of tracer data. They employed a numerical-
perturbation approach and the asymptotic semianalytic
approach along a streamline to calculate traditional
sensitivities of concentration to permeability and con-
centration to porosity. Belitz and Dripps [3] found that
the response of the slugged well is mostly sensitive to
radial hydraulic conductivity, and less sensitive to an-
isotropy and the conductivity of the borehole skin, and
nearly insensitive to specific storage, whereas the re-
sponses of the observation wells are sensitive to all four
parameters.

3.4. Applications of normalized sensitivity

Normalized sensitivity, (3), has been successfully ap-
plied in analyzing well tests. McElwee [54] reviewed the
principles of sensitivity analysis and approaches to cal-
culate traditional and normalized sensitivities, gave ex-
amples of traditional sensitivities for the Theis and
Hantush models and discussed the boundary effects on
sensitivities as well as the role of sensitivities in the es-
timation of aquifer parameters and associated confi-
dence intervals. Bohling and McElwee [6] coded
sensitivity analysis of pumping tests. Their program aids
in the design and analysis of pumping tests and slug
tests. Following up the research of Butler and Liu [11]
for strip aquifers, Butler and Liu [12] found analogous
results for pumping tests in a nonuniform aquifer con-
ceptualized as a uniform matrix with a disk of anom-
alous properties placed at an arbitrary location with
respect to the pumping well. In particular, they found
that changes in drawdown are sensitive to the hydraulic
properties of the disk for a limited time only and that, at
observation wells located at moderate to large distances
from the pumping well, the effect of spatial variations in
flow properties is negligible. They further confirmed that
constant rate pumping tests are not effective in charac-
terizing lateral variations in flow properties. McElwee
et al. [55] studied slug tests and found that their sensi-
tivity to storativity is much lower than that to trans-
missivity and that the two parameters are highly
correlated. McElwee et al. [56] demonstrated that the
use of one or more observation wells can vastly improve
the parameter estimates, particularly the storativity. Jiao
and Lerner [34] used normalized sensitivities to deter-
mine how to zone the parameters in ground water flow
models. Jiao and Zheng [35] found that an upstream
observation well can produce information on storativity
both upstream and downstream, but it can produce little
information on transmissivity downstream.

3.5. Applications of logarithmic sensitivity

Dimensionless in its nature, logarithmic sensitivity
has been widely used in sciences. For example, Zhou and
Stone [80] utilized it in a climate model study to describe
the sensitivity of eddy heat flux to temperature gradient,
Chen et al. [16] used it to describe ozone concentration
sensitivity to changes in chemical reaction rates, Filip-
petti et al. [25] used it in hardness theory to evaluate
the transferability of semi-local pseudopotentials, and
Okuyama et al. [60] used it to describe the change in an
interface barrier height (tunnel current) to hydrogen gas.
It has also been widely used in economics ([9,10] and
many others).

Surprisingly, the powerful concept of logarithmic
sensitivity, (4), has not yet been widely used in
hydrology. Liou and Yeh [52] used it (but plotted
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transformed logarithmic sensitivities only) to evaluate
risk in one-dimensional groundwater transport models
with uncertain groundwater velocity and longitudinal
dispersivity. They found that the mean longitudinal
dispersivity is the most sensitive parameter and the
variance of longitudinal dispersivity is generally the
least sensitive. Munoz-Carpena et al. [59] employed
logarithmic sensitivity in modeling hydrology and
sediment transport in vegetative filter strips — they
plotted percent change in outputs (runoff volume, peak
runoff rate, and delay time) to the percent change in
inputs (saturated hydraulic conductivity, initial mois-
ture content, media spacing, etc.).

Note in passing that, although Butler and Liu [12]
and Jiao and Zheng [35] applied the normalized sensi-
tivity concept to the nondimensionalized drawdown,
their dimensionless sensitivity differs significantly in its
interpretation from logarithmic sensitivity.

4. A case for logarithmic sensitivities and a new measure
of information content

The main drawback of the normalized sensitivity, (3),
and traditional sensitivity, (2), is their dimensional
character. As mentioned earlier, neither concept is ap-
plicable when two different outputs are measured, such
as wellbore drawdown and wellface flowrate in the
flowmeter test. The dimensionless logarithmic sensitivi-
ty, (4), however, is useful in such cases. In fact, it has an
appealing interpretation.

Consider again an evolution of a system
O(x,t; #1,...,2,). For a nonzero output, its total dif-
ferential as a function of x and ¢, (1), can be rearranged
as

) n pP. ) pP.
%:Z<Z%>g, (17)
O “=\002) 2
which naturally gives rise to logarithmic sensitivities (4).
Each logarithmic sensitivity can thus be interpreted as a
transfer coefficient between the relative error in the input
parameter and the relative error this input parameter
alone induces in the output.

4.1. Relative measurement error in the output

Assume now that we measure the output with some
typical measurement error, for example, an absolute
maximum measurement error A(, as often specified for
instruments (such as pressure transducers or flow-
meters). This error may generally vary with the output
0. The corresponding relative measurement error in the
output is

AO

= =10, (18)

where f(0) is the calibration curve of the instrument
used in the measurements. This curve should be pro-
vided by the instrument manufacturer or could be ob-
tained by calibrating the instrument. Given the
calibration curve, (17) can be written as

" P00\ d2,
10=> (%)% (19)

i=1

4.2. The maximum sensitivity principle for selecting
measurements

Knopman and Voss [40], who performed sensitivity
analysis of the convection—dispersion equation, and
McElwee [54] demonstrated and emphasized the use-
fulness of sensitivities in estimating variance, confidence
intervals, and/or confidence regions. In addition, they
formulated what amounts to the maximum sensitivity
principle for selecting measurement points in time and
location. Indeed, Knopman and Voss [40] listed among
“several principles [that] emerge from [their] analysis™:

Information about a physical parameter may be
most accurately gained at points in space and time
with a high sensitivity to the parameter. Taking ob-
servations at [these points] tends to yield relatively
low variance in the estimate of the parameter. ..

McElwee [54] argued for maximizing model sensitiv-
ities as a way of improving parameter estimation and
provided the corresponding maximum sensitivity prin-
ciple for pumping tests:

Some general guidelines can be given for increasing
the model sensitivity, leading to more accurate
parameter estimation. For maximum sensitivity,
the measurements of head should occur at locations
and times where the sensitivity coefficients are near
their maximum values.

The “weak form” of the maximum sensitivity prin-
ciple for selecting measurement points was given by an
anonymous reviewer in the following pithy maxim:

Measurement points with high sensitivities can
never be bad.

Following the maximum sensitivity principle is sup-
posed to ensure optimal or nearly optimal parameter
estimation. Knopman and Voss [41] relied on it when
they stated that “the peak of the sensitivity curve is the
most desirable point to make an observation for the
accurate observation of velocity”. Similarly, Sim and
Chrysikopoulos [68] relied on the maximum sensitivity
principle when they concluded that “the virus transport
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data collected in the vicinity of the source of contami-
nation at early time are most reliable for estimation of
inactivation rate coefficients”. Also, McElwee et al.
[55,56] claimed that ““The best estimates for 7 and S are
obtained by ... and sampling at points of maximum
sensitivity”’. The maximum sensitivity principle seems to
have been generally accepted by these and other
researchers ([35] and others).

As follows from (19), however, the maximum sensi-
tivity principle is true only under the rather unrealistic
assumption that the relative error in the output
measurements is the same for all output values. Indeed,
selecting measurements at times and locations around
the maximum sensitivity cannot in itself ensure the most
accurate parameter estimation, especially, when the
measurements at these times or locations are biased by
significantly larger errors than at other times or loca-
tions. A simple counterexample to the maximum sensi-
tivity principle is a system whose output has the highest
sensitivity at times when (or at spatial locations where)
the output measurements are still below the detection
limit, i.e., when (or where) they are biased by very large
relative errors. The model considered later in this paper
provides such counterexamples.

Generally, one should thus focus not on sensitivities
alone, but rather consider them together with the rela-
tive measurement errors. This is especially the case when
statistical characterization of the measurement errors is
not available while the typical (average, maximum) error
is known. A new information-content measure that
combines output sensitivity to a parameter with the
relative measurement error in the output may be useful
for this purpose.

4.3. Imprecise measures of information content in the
system output

As mentioned earlier, the quality of the least-squares
parameter estimates depends on the nature of the sen-
sitivity matrix X, (11), and, more generally, on the
nature of X'X.

One global measure of the parameter estimates’
quality could be the matrix condition number [28]

cond(X"X) = [[(X"X)] | (X"X) "

; (20)

where || - || is the matrix norm, for example, the maxi-
mum norm or the Euclidean norm. Multiplication of the
norm of a matrix and the norm of its inverse provides a
normalizing effect. Thus, only for an ill-conditioned
system is the condition number large. The condition
number is used, for example, to provide bounds for the
relative error in the norm of the solution of a linear
system [28, p. 111] and thus could be used in specifying
the bounds for the relative error in the norm of P in (13).
Although such bounds provide information about the

quality of the whole parameter vector, they say nothing
about the quality of its components. Insights about the
latter could be gleaned from studying the sensitivities of
the parameter vector components.

When the number of measurements is equal to the
number of parameters, n = m, it suffices to consider only
the sensitivity matrix X and its condition number,
cond(X). For this case, Stoer and Bulirsch [70, p. 13]
observed that large absolute values of logarithmic sen-
sitivities, rather than traditional sensitivities, are possible
signatures of an ill-conditioned problem. This provides
one more reason to study logarithmic sensitivities.

However, the sensitivities alone do not tell the whole
story. Their relation to each other and their relation to
the relative measurement error, f(¢), are also im-
portant.

Whenever a number (larger than one) of parameters
are estimated simultaneously, their accuracy depends
not only on measurement noise and the magnitude of
the parameter sensitivities, but also on the deterministic
correlation (or co-variance) between the parameters. Not
to be confused with the statistical correlation of two
random variables, deterministic correlation is deter-
mined solely by the parameter sensitivities. Indeed,
consider how an error d2; in 2; would affect 2;, given a
perfect measurement and perfect knowledge of all the
other parameters. From (1) we arrive at the deterministic
correlation of the parameter #; with the parameter #; as
the ratio of traditional sensitivities, (2),

Ry 9270 _20/02,
BT A, 00 09,

(1)

The main drawback of this expression is its dimen-
sionality.

In an analogous manner, from (17) we arrive at the
deterministic logarithmic correlation of the parameter 2,
with the parameter #; as the ratio of the logarithmic
sensitivities, (4),

e _ 42/ (2,/0)00/032;
PPy d2,/2;  (2,/0)00/32;"

(22)
This correlation is dimensionless. Note that R}éf,%j is large
in magnitude when the logarithmic sensitivity to 2; is
larger in magnitude than the logarithmic sensitivity to
2;. Usually, the absolute values of relative errors and
correlations are used.

Now, consider how the relative measurement error
translates into the parameter estimation error for the
two parameters, given that the correlation Riﬁl’_}g,/_ is high
and knowledge of all the other parameters is perfect. It
follows from (22) that a small change in the relative
error in #; will lead then to a much larger change in
magnitude in the relative error in #;, rendering the es-
timate of the latter much less reliable. Thus, large cor-
relations of a parameter with other parameters lead to
large parameter uncertainties, in spite of high absolute
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values of sensitivities. In fact, if, for all measurements, a
given parameter is highly correlated with one or more
other parameters, then its estimate will have large un-
certainty. Thus, in selecting the measurement points, we
should strive to ensure, if possible, that at least at one of
these points each parameter will have low correlations to
other parameters.

In an inverse problem, we want to estimate all » input
parameters 2; from the measured evolution record of
the output (. That the logarithmic (as well as traditional
and normalized) sensitivities cannot tell the whole story
about the quality of these parameter estimates is now
clearly apparent from (19), which involves not only the
sensitivities, but also the relative measurement error
1(0).

Therefore, another measure is introduced to account
for output sensitivity to a parameter and for the relative
measurement error in the output. Relation (19) provides
inspiration for it. Consider again an input parameter,
#;, estimated from the evolution of a system output,
O(x,t; 2,...,%?,), measured with the relative error,
f(O). The plausible relative error in 2; is

dz, /(P 00
510/ (%) &

As follows from (19) and (23), it can be interpreted as
a relative error in the input parameter that one would
obtain from the relative measurement error of the out-
put, f(0), given perfect knowledge of all the other
parameters.

Plausible relative error provides a measure of infor-
mation content about the parameter contained in a
single output measurement — the larger the plausible
relative error in the parameter, the less information
about it is contained in the output measurement.

It should be emphasized that the defined plausible
relative error in #; does not have to be, and generally is
not, equal to the actual error in the estimate of ;. In
fact, the actual error in the parameter estimate is based
on the temporal record (or spatial record, or both) or its
part of the measured outputs, whereas the plausible
relative error at time ¢ describes the information content
about the parameter contained in one measurement
point, O(x,t; #y,...,2,), obtained at this very time z.

In the course of this paper, it will be further illus-
trated that the plausible relative error, as a measure of
information content about #; contained in ¢, is more
suitable than the traditional, normalized or logarithmic
sensitivities to serve as a guide in identifying the useful
portions of the measured output record for parameter
estimation. In fact, with the earlier cited observation of
Stoer and Bulirsch [70, p. 13] that large absolute values
of logarithmic sensitivities are possible signs of an ill-
conditioned problem, we can replace the earlier dis-
cussed maximum sensitivity principle for selecting
measurement points with

Heuristic guidelines for measurement selection:

Minimizing the plausible relative errors rather than
maximizing the corresponding sensitivities should
serve as a guide to identifying the measurements
most useful for parameter estimation or as candi-
date measurements for optimal sampling. Further-
more, avoiding among them as much as possible
the measurements with high parameter correlations
may help ensure that the sensitivity matrix X (11),
(or X"X) is well-conditioned and thus that the par-
ameter estimates are accurate.

4.4. Fixed absolute measurement error model

It follows from (18) that the absolute measurement
error, AO = Of (0), is generally a function of the output
O (depending on conditions, such as temperature and
pressure, one can have different calibration curves for
the same instrument). However, in the absence of the
calibration curve, the instrument manufacturer provides
a typical or maximum absolute measurement error
AOq.. In such a case, one could assume that

A0 = const = A(Qmax (24)

is independent of the measurement ¢ and thus define an
approximate calibration curve as

A(Om‘ X
For this relative measurement error model, the defi-
nition of the plausible relative error in the parameter,
(23), that is compatible with the measurement error re-
duces itself to

dZ; o0
- = ) P
»J?i A(/max/ (?l a(@l) . (26)

In this paper, (25) and (26) will be mostly used.
However, the presented methodology is general and,
with (23), it can accommodate an arbitrary form of the
calibration curve, f(0).

(25)

5. Semi-analytic pumping test model

Consider a fully penetrating well situated in a con-
fined homogeneous aquifer [31] of horizontally infinite
extent. The initial boundary value problem (IBVP) for
the well response that accounts for wellbore storage and
infinitesimal skin is

62s+1637S6s
o ror TOot

S|r:0 =0, (28)
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S|r::>c = 07 (29)
Os
Sw ‘r:rw - nrwa_ ,:"“7 (30)
Os 5 dsy
q—ZTEera rrw(QTU”Cdt), (31)

where s(r, ) is the drawdown at the distance r from the
pumping well and time z, S aquifer storativity, 7 = Kb
aquifer transmissivity, K aquifer hydraulic conductivity,
b aquifer thickness, r, well radius, s, wellbore draw-
down, 7, radius of the well casing, # skin factor, Q total
pumping rate, and ¢ the wellface flowrate.

Note in passing that the prevalent heterogeneities are
much more important in contaminant transport than in
water flow through the subsurface. For the latter the
concept of an “effective porous medium” (i.e., a hypo-
thetical homogeneous medium that provides virtually
the same response as the given heterogeneous medium)
has been long in use in subsurface hydrology. It is in this
sense that the aquifer homogeneity assumption makes
the considered model applicable to real aquifers.
Although very interesting, the issue of aquifer hetero-
geneity is beyond the scope of this paper.

Let us introduce the following dimensionless par-
ameters

s

- 2
Sp rwa (3 )
Swp = (33)
r
Py
Tt
T= S7, (35)
b = é, (36)
2
-
o= r—‘;S, (37)
277y
Y= T. 38
0 (38)

The dimensionless analog of IBVP (27)—(31) is

ast 1 aSD - aSD

PPN il (39)

SD|1:O = O’ (40)

SD|p:oo =0, (41)
aSD

SwD = SD|r:rW - n& ﬂ:]’ (42)

— asiD -1 ldSWD
=T T 2 de

p=1

(43)

The IBVP (39)—(43) can be solved straightforwardly
after applying the Laplace transform with respect to 7,
ie, Z{(o),t — p} = [, (o)e 7 dr. Laplace-transformed
(39)-(41) implies that the solution in the Laplace do-
main, denoted by a bar, is of the form 5p = 4Ky (\/p),
where Ky (x) is the zero-order modified Bessel function of
the second kind. The factor 4 follows from the Laplace-
transformed (42) and (43).

The solutions in the Laplace domain for wellbore
drawdown, drawdown at an observation well located at
the dimensionless distance p from the pumping well, and
the wellface flowrate are, respectively,

Swp (P37, 0,1) = % {P{Ko(ﬁﬁiﬁwﬁ) - %] }1

1_

— Sl (44)
< " e (en Ko(p\/P)
PP ) = S P ) ) R

1_
- ;SD‘V:l (45)

and
i (prom) — — 5 Ko(yp) 17
qD(pv 7’7)_ /WD|:’1+\/ﬁK1(\/]—?):|

\/}7) + i’]\/ﬁK1(\/ﬁ) 200

where K (x) is the first-order modified Bessel function of
the second kind.

The notation after the second equality sign in (44)
simply emphasizes the structure of the solution — it in-
volves the fraction 1/y and a part (syp|,_,) that does not
depend on 7. The solution (45) has a similar structure,
whereas the solution (46) does not depend on 7.

The reader should note that, for n = 0, (44) and (45)
reduce to the Papadopulos and Cooper [61] model;
whereas for &« =# =0 and large times (small-p limit,
lim,_ /pKi(\/p) = 1), they reduce to the Theis [71]
model.

For the remainder of the paper, it is assumed that the
considered pumping test model has been identified as
appropriate and thus no modeling errors are present —
measurement errors are the only errors. Such identifi-
cation may be based on the hydrologist’s experience,
on a model discrimination methodology [42], or on a
formal model-selection criterion [7,46].

_ _{ [KO( VPKi(v/P) +P}
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6. Measurement domains
6.1. Drawdown measurements

Consider drawdown measurements s(r,¢) in an ob-
servation well with a pressure transducer characterized
by the maximum absolute measurement error Asy,, and
the maximum allowable drawdown sp,.. The useful
measurements with this instrument are those that fulfill

ASmax <5 < Smax- (47)

Now, let us introduce two additional dimensionless
numbers

_ Asmax

€, Py (48)
and

Smax
&= P (49)
It follows from (47)-(49), (32), and (45) that
VEs g SDly:l g st (50)

For drawdown measurements s, (¢) in the pumping
well an analogous inequality arises

Ve.v g SWD|V:1 g yév (51)

6.2. Flowrate measurements

Consider flowrate measurements ¢(¢) in the pumping
well with a flowmeter characterized by the maximum
absolute measurement error Agp,, and the maximum
allowable flow rate gn.c. With additional dimensionless
numbers

Agmax
€, = —— 52
q Q ( )
and

Qmax
Cg= 0 (53)
we obtain the flowrate analog of (50) and (51)
6q < qp < éq' <54>

7. Sensitivity analysis of the pumping test data

It follows from (32), (33) and (36), and (44)—(46) that

sw(t; T,8,1) = rwswn(2(6; T, 8), y(T), (), n), (55)
s(r,t;T,8,n) = rusp(p, ©(t; T,8), 9(T), (S),n), (56)
q(;T,8,n) = Qqp(t(t; T,S), u(S), n). (57)

Egs. (35), (37), and (38) imply that

%:%. (61)

The logarithmic sensitivity, (4), of drawdown with
respect to transmissivity follows via the chain rule from
(32), (45), (56), (58), and (60)

T os T |0Osp ar+6sD oy
s OT sp| ot T 09y oT

Sty T (L)
= =~ | =spl,—
sD|y:1 6‘5 SD|y:1/’y 6y V D/ !

T aSD |y:l

a SD|},:1 ot

Similarly, chain rule and (32), (56), (59), and (61)
imply that

1. (62)

§ Q —— T asD'VZI % asD|”y‘:1 (63)
s 0S SD|,},:1 ot SD|3,:1 Qo '’

and (56) and (32) give

nds  n Ospl

T2 _ =l 64
s on sD\},:1 on (64)
Analogously, we obtain

T Osy T OSwpl,_,

— = — — 65
Sy 0T st|},:] ot ’ (65)
S0y _ 1 Oswpl,— o Oswpl,_ (66)
Sw GS o SWD|}’:] ot SwD|y:1 Ou. ?

N Osy n  Oswpl,_

4 2w _ , 67
Sy On st|V:1 on (67)
T oq t Ogp

ST o 0t (68)
S Oq T Ogp o Ogp

—— =t — 69
q oS gp 0t  ¢gp Ou (69)
and

ndq _ 1 Ogp

414 _ 1 24D 70
q0n gp On (70)

Note that the logarithmic sensitivities of the draw-
down in the pumping well, drawdown in an observation
well, and the wellface flowrate to transmissivity, 7, and
storativity, S, specified in (62)—(70), are independent of y
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and, are thus independent of T, O, and ry,. They depend
on the wellbore storage factor, o, and the skin factor, 7,
and are only functions of dimensionless time, 7, and, in
case of the observation well drawdown sensitivities, of
the dimensionless distance to the pumping well, p.
Furthermore, for the no-wellbore storage and no-skin
case, i.e., for the Theis [71] and Hantush and Jacob [30]
models, these logarithmic sensitivities are independent
not only of 7, Q, and ry, but also of S and thus, in con-
trast to the corresponding traditional and normalized
sensitivities ([54] and others), can be represented by a
single type curve or a family of type curves indexed by p.

The normalized sensitivities (62)—(70) can be calcu-
lated by numerical inversion of the Laplace transform
via the De Hoog algorithm [20] in the Mathematica
environment [77]. In particular, all  and 5 derivatives in
(62)—(70) are calculated by first taking these derivatives
in the Laplace p-domain, and then inverting them nu-
merically to the dimensionless time t-domain. There is
no need to explicitly list any o or u derivatives of (44),
(45), or (46) — they can be calculated straightforwardly,
or one may let Mathematica calculate them symboli-
cally, as we do. Due to the zero initial conditions, the t
derivatives are calculated by numerically inverting to the
t-domain the appropriate products of p and (44), (45),
or (46). For example,

ast

ot

:gil{p§WD(p; T7S71/I)7 p—>‘C} (71)

8. Pumping test plausible relative errors under the fixed
absolute measurement error model

Although the plausible relative errors in aquifer
parameter estimates for the simple measurement model
of (25) can be calculated from (26), we obtain them di-
rectly from (23) utilizing the already calculated loga-
rithmic sensitivities. Thus it follows from these
equations and from (62) that

Tt /(T )
T s s oT
_ ASmax /( T 65D71_1>
"wSpl,_1 /7 spl,.; Ot
or

dr dspl,_, - dr
T:yg(r 617/ _SD|V—1> = 7¢, 7},63:1 . (72)

Similarly, (23) and (25), and (63) and (64) lead to

d_S . B T@sD|},:1 i aaSD|?:1 -1 . d_S
s e ot ool A

dn ( Osp,_, )_l dn
- — 1 es s = 9 es —_— . 74
ot Uiy ] o (74)

The plausible relative errors in parameter estimates from
wellbore drawdown measurements are analogous in
form to the above-listed plausible relative errors in
parameter estimates from drawdown measurements
in an observation well, i.e.,
>7
yes=1

dr (Ol T (4T
T = Y& ot wD |y=1 = V& T
ds aSWD|~,:1 0SwD y=1 B ds

-1 —+a - =v&| <
S ot ot "\ S

o — V&

dﬂ ( aSWD|~:1 )_1 d17

— = )& - =76 | — , 77
PR Uy 1 - (77)

and so are the plausible relative errors in parameter
estimates from the wellface flowrate measurements

dr [ oqp\ ' dT

7 = Gq <T¥) = EqT quI, (78)
ds dp  Oqp\ ' dS
?_eq(_TEJF“W) “9 (79)
and

dn ( 6qo)1 dn

— =€, n—= =€, — 80
o\ on R P (80)

Note that one way to cut the plausible relative errors in
transmissivity, storativity, and the skin factor estimated
from the wellbore drawdown is to decrease the value of y
in (72)—(77). As follows from (38), to cut these plausible
relative errors in half, one needs to re-run the pumping
test with doubled pumping rate (which may not always be
possible). Also note from (78)—(80) that doubling
pumping rate will not effect more accurate parameter
estimates from the wellface flowrate. Another way to cut
the plausible relative errors, applicable to estimates from
the wellbore drawdown as well as from wellface flowrate,
is to cut the measurement errors (and thus ¢, or ¢,) by
using more accurate measurement instruments. Cutting
the maximum measurement errors (Asy,, Or Agm,y) in half
cuts in half the corresponding plausible relative errors.

9. Results

Although logarithmic sensitivities define the log-
arithmic correlations between parameters, (22), and
plausible relative errors, (23), it is still instructive to
plot all of them rather than just the sensitivities.
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In Figs. 1 and 2, we plot the logarithmic sensitivities
of wellbore drawdown and wellface flowrate to trans-
missivity, storativity, and skin factor; the corresponding
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plausible relative errors in the three parameters; and the
corresponding logarithmic correlations between these
parameters. Fig. 1 presents these relations for a small
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Fig. 1. (a) Sensitivities (with respect to transmissivity 7, storativity S, and skin factor #) of wellbore drawdown, (b) sensitivities of wellface flowrate,
(c) corresponding plausible relative errors from wellbore drawdown, (d) corresponding plausible relative errors from wellface flowrate, (e) log-
arithmic correlations from wellbore drawdown, and (f) logarithmic correlations from wellface flowrate; n = 0.3 and the wellbore storage
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skin factor of # = 0.3, whereas Fig. 2 presents them for a
large n = 3. For reference, to define the extent of the
wellbore storage phase in the pumping test, we also plot
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there the dimensionless flowrate. It is apparent that the
magnitude of the wellbore drawdown sensitivities grows
rapidly with time during the wellbore storage phase
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Fig. 2. (a) Sensitivities (with respect to transmissivity 7, storativity S, and skin factor #) of wellbore drawdown, (b) sensitivities of wellface flowrate,
(c) corresponding plausible relative errors from wellbore drawdown, (d) corresponding plausible relative errors from wellface flowrate, (e) log-
arithmic correlations from wellbore drawdown, and (f) logarithmic correlations from wellface flowrate; 7 =3 and the wellbore storage
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(until —gp =~ 1) to reach a plateau or to begin a slow
decrease. The wellface flowrate sensitivities behave dif-
ferently. The magnitude of the T-sensitivity grows
slowly throughout most of the wellbore storage phase,
whereas the magnitudes of the S- and 5-sensitivities keep
mostly decreasing. As expected, the magnitudes of all
three wellface flowrate sensitivities decay rapidly when
the wellbore storage phase approaches an end.

For wellbore drawdown data and the small skin
factor (7 = 0.3), the magnitude of the S-T correlation,
RYE, grows from about 3 to 30 throughout the consid-
ered time domain (Figs. 1(e)), whereas for the large skin
factor (7 = 3) it varies between 10 and 30 in the same
time domain (Fig. 2(e)). For wellface flowrate data this
correlation is similar during the wellbore storage phase
(Figs. 1(f) and 2(f)); however, it rapidly increases after-
wards. It follows from (22) that the magnitude of the
relative error in S is larger than the magnitude of the
relative error in 7" by the same factors.

For the small skin factor, the magnitude of the y-T
correlation, Rl,fﬁ, behaves similarly to that of the S—-T
correlation for both the wellbore drawdown data and
the wellface flowrate data from the wellbore storage
phase (Figs. 1(e) and (f)). However, for the large skin
factor, RL"Tg varies only between 1 and 5 throughout the
considered time domain (Fig. 2(e)). It follows that more
accurate estimates could be obtained for the large skin
factors than for the small ones.

The #n-S correlation, Rl,,"sg = —R};’ﬁ JRSE,  follows
from the other two correlations and is also plotted in
Figs. 1(f) and 2(f).

It is evident from Figs. 1 and 2 that the plausible
relative error in transmissivity is more than an order of
magnitude smaller than the plausible relative error in
storativity. For small skin factors (y =~ 0.3) the plausible
relative error in the skin factor is larger than that in

2| 0=10"; 1=0.3; p=50

P/O 30/6P

-T/s,, 8s 0T
-S/s,, 3s /88
-1/s, ds,/on
_qD

10° 10"

(a)

storativity, whereas for large skin factors (n = 3) it is
smaller by more than half an order of magnitude.

The fallacy of the principle of maximum sensitivity
for calibration curve model (25) is demonstrated in
Figs. 1(b) and (d) and 2(b) and (d). It is apparent that
flux measurements should not be made at very early
times to estimate storativity and the skin factor as the
principle of maximum sensitivity implies. Even though
the flux sensitivities to storativity and skin factor are the
largest at the early times (Figs. 1(b) and 2(b)), the flux
measurements are biased by the very large relative errors
at these times. It is clear from the corresponding plau-
sible relative errors (Figs. 1(d) and 2(d)) that the flow-
rate measurements contain the most information about
the parameters when the wellface flowrate reaches about
half the total pumping rate (—gp = 0.5 for # = 0.3 and
—gp ~ 0.6 for n = 3). Note that, at this stage, the cor-
responding plausible relative errors in parameter esti-
mates from the wellbore drawdown (Figs. 1(c) and 2(c))
are still about half an order of magnitude larger than
they become after the wellbore storage phase is over.
Thus, the wellbore drawdown data should be collected
only after the wellbore storage phase ends. Also, note
that the principle of maximum sensitivity implies that
taking drawdown measurements at any time after the
wellbore storage phase is fine — the T-sensitivity is then
constant and at its highest value (Fig. 1(a)). However,
the plausible error in T keeps decreasing with time. In
other words, contrary to the implications from the
principle of maximum sensitivity, the longer one waits
for the drawdown measurement the more information
about transmissivity one obtains.

At times when appreciable drawdown can be re-
corded, as seen from Figs. 3 and 4, the relative magni-
tudes of T-, S-, and n-sensitivities for the drawdown in
an observation well are analogous throughout most of

10" o =
10°
5 10"
S /s, 8s, /0T
© 10 /! — -T/s, 85 /5T
O / ,/ w
T // 7 — -8/s,, 8s,/0S
10° ~ / — -ns,, ds /N
_ ] - _qD
10" L/
I'I - SD|y=1
10° 2i 2 5 \s T
10 10 10 10 10
T
(b)

Fig. 3. Sensitivities (with respect to transmissivity 7, storativity S, and skin factor #) of observation-well drawdown at the distance p = 50 from the
pumping well for # = 0.3; (a) log-linear coordinates, (b) log-log coordinates.
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the time domain to those for wellbore drawdown
(Figs. 1 and 2). However, for an observation well,
T-sensitivity undergoes a change of sign, whereas for
wellbore drawdown it does not.

The variability of the 7- and S-sensitivities with the
wellbore storage factor is presented in Figs. 5 and 6,
respectively. As expected, the smaller the wellbore
storage parameter, o, the longer the wellbore storage
phase for the sensitivities. The reader should note in
Figs. 5(a) and 6(a) that the model sensitivities for
o = 1 = 0 do not reduce themselves fully to those of the
Theis [71] model. They are only identical for sufficiently
large times (t > 5 x 10° for T-sensitivities and © > 10?
for S-sensitivities). This is to be expected since the Theis
[71] model is derived under a large time (small-p limit)
simplifying assumption [31,36] that was not invoked in
the derivation of the model (44)—(46) and its sensitivities.

0=10"; n=3; p=50

P/O 30/5P

-T/s,, 8s, /0T
-Sls,, 8s,/0S
-1/s,, 8s, /o
_qD

L
10

10

8

10

(@)

Fig. 4. Sensitivities (with respect to transmissivity 7, storativity S, and skin factor #) of observation-well drawdown at the distance p = 50 from the

pumping well for # = 3; (a) log-linear coordinates, (b) log-log coordinates.
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Fig. 7 demonstrates that the magnitudes of T-sensi-
tivities of wellbore drawdown decrease with increasing 7
throughout the wellbore storage phase and converge to
the same value beyond this phase. The magnitudes of
the T-sensitivities of wellface flowrate, on the other
hand, grow with an increasing skin factor throughout
most of the wellbore storage phase and decline rapidly
at its end.

The magnitudes of both the S-sensitivities of wellbore
drawdown and wellface flowrate decrease with increas-
ing skin factor, as seen from Fig. 8.

10. Synthetic example 1

Consider a hypothetical pumping test with a constant
total pumping rate of Q=15 m*h=0.001389 m?%/s con-

& 7\

S 7 - T/s, 0s/0T
o Wi ll — -Tls, 8,/8T
N | — -Sls,, 8s,/5S
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Fig. 5. Sensitivity with respect to transmissivity 7" (for a varying wellbore storage o) of (a) wellbore drawdown and (b) wellface flowrate.
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Fig. 6. Sensitivity with respect to storativity S (for a varying wellbore storage o) of (a) wellbore drawdown and (b) wellface flowrate.
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Fig. 7. Sensitivity with respect to transmissivity 7 (for a varying skin factor #) of (a) wellbore drawdown and (b) wellface flowrate.
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Fig. 8. Sensitivity with respect to storativity S (for a varying skin factor #) of (a) wellbore drawdown and (b) wellface flowrate.
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ducted on a well of radius r, = r. = 0.1 m situated in a
sandy confined aquifer. Assume that the test lasted
tmax = 0.4 h and that the data were collected in the
pumping well using
e a 30-psig pressure transducer with Asg.,, = 0.03 m
and sy, = 21 m, and
e a flowmeter with Agm. = 0.25 m*/h and @ua =
20 m*/h.
Note that the flowmeter accuracy is identical to that
of the state-of-the-art Tisco electromagnetic flowmeter.
Assume that the test can be described exactly by the
pumping test model for a confined aquifer and that a
type-curve or least-squares fitting of the collected well-
bore drawdown data yields the following parameter es-
timates:

T=437x10"%m?/s, n=03, anda=S=10".

The related dimensionless numbers follow from (37),
(38), (48), (49), (52), and (53):

o=1075,
& =210,

y=0.1977,
e, = 0.05,

e = 0.3,

‘s (81)

The dimensionless duration of the pumping test is about

Ttmax 8
Tmax — W = 10°. (82)

In order to evaluate the plausible relative errors in the
parameters, a set of type curves, such as those in Figs. 1
and 2, should be generated. However, since the esti-
mated 7 and « in the example are identical to those in
Fig. 1, we use the type curves contained in it.

As follows from (51) and (81), the meaningful well-
bore drawdown measurements are those for times such
that ye, = 0.05931 stDL/,:l <y& =41.52, which, in
turn, along with Fig. 1(b) and (82), implies that
3.1 x 10° <7 < Tyay = 108, This time domain is marked
by circles on the syp curve in Fig. 1(b).

Similarly, it follows from (54) and (81) that mean-
ingful wellface flowrate measurements are those for
times such that 0.05 < gp <4, which, in turn, along with
Fig. 1(d) and (82), implies that 1.3 x10*<«
< Tmax = 10%. This time domain is marked by squares on
the ¢gp curve in Fig. 1(d).

As is apparent from Fig. 1(b), during most of the
wellbore storage phase the plausible relative errors in
parameter estimates from wellbore drawdown are huge,
and thus, there is not much information about the
parameters contained in the wellbore drawdown.
Beyond the wellbore storage phase, the plausible relative
errors in storativity and skin factor become constant
with time, while the error in transmissivity continues to
decrease slightly. From Fig. 1(b), plotted for ye; = 1, we
read off the plausible relative errors in 7, S, and # at time

Tmax- Lhey are 0.105, 1.97, and 3.30, respectively. As
required by (75)—(77), we scale them by

yes =~ 0.059
to obtain
dr ds
— =0.0062 ~ 0.6%, — =0.116 = 12%,
T S
dn (83)

o = 0.195 = 19.5%.

As is apparent from Fig. 1(d), the plausible relative
errors in parameter estimates from wellface flowrate
reach a minimum in the middle of the wellbore storage
phase (—¢gp ~0.5), i.e., around t=2.7 x 10°. If our
parameters were estimated from the wellface flowrate
collected around that time, then we can read off the
plausible relative errors in 7, S, and n from Fig. 1(d)
(3.04, 38.7 and 64.9) and, as required by (78)—(80), scale
them by ¢, ~ 0.05 to obtain

T
dT —0.152 ~ 15%, %S — 1.935 ~ 194%,

(84)
% = 3.245 = 325%.

Note that the plausible relative errors in aquifer
parameters from flowrate measurements are signifi-
cantly larger than those from the drawdown measure-
ments. This means that whenever both types of
measurements are used, as is the case in the flowmeter
test, the results will be biased by the dominant flowrate
errors. The flowrate measurements here represent a
bottleneck. This bottleneck is analogous to that in an
IBVP solved numerically by a mixed scheme of first-
order and second-order finite difference approximations
— even when all governing equations and initial and
boundary conditions are second-order accurate with the
exception of just one equation or boundary condition
that is first-order accurate, the solution remains first-
order accurate rather than second-order accurate.

11. Synthetic example 2

Consider the same pumping test with the same in-
struments as in the previous example. Assume again that
the test can be described exactly by the pumping test
model for a confined aquifer; and this time, assume that
a type-curve or least-squares fitting of the collected
wellbore drawdown data (or wellface flowrate data)
yields the following estimates:

T=437x10"%m?/s, n=3, anda=S5=10".

The related dimensionless numbers are the same as in

(81) and (82). Since the estimated 1 and « are identical to
those used to generate Fig. 2, we use its type curves.
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The meaningful wellbore drawdown measurements
are again those for which ye, = 0.05931 gst|v:1 <
y& = 41.52, which, along with Fig. 2(b) and (82), im-
plies that 2.8 x 103 <1 < tpmax = 103, Similarly, it follows
from (54) and (81) that meaningful wellface flowrate
measurements are those for times such that
0.05 < gp <4, which, along with Fig. 2(d) and (82),
implies that 2.0 x 10* <7< Tpax = 108,

For the system parameters estimated from wellbore
drawdown, we read off from Fig. 2(b), plotted for
ye; = 1, the plausible relative errors in 7, S, and # at time
Tmax (0.078, 2.02, and 0.32). Again, as required by (75)-
(77), we scale them by ye, ~ 0.059 to obtain

dTT = 0.0046 = 0.46%, %S —0.12 = 12%,

(85)
% =0.0189 = 1.9%.

If our parameters were estimated from the wellface
flowrate collected around the time when it reaches ap-
proximately half the total pumping rate (z = 4.7 x 10%),
then we would read off the plausible relative errors in 7,
S, and n from Fig. 2(d) (2.87, 53.7, and 8.98) and, as
required by (78)—(80), scale them by ¢, ~ 0.05 to obtain

dTT —0.144 = 14.4%, %S = 2.69 = 269%,

(86)
% = 0.449 = 44.9%.

Again, the plausible relative errors in aquifer
parameters from flowrate measurements are significantly
larger than those from the drawdown measurement.

12. Extension to the model for a leaky aquifer

An extension to the pumping test in a leaky aquifer is
straightforward [31]. Eq. (27) would be replaced by

62s+l Os s Sos
o ror B TOot
where B> = Kb/(K'/I'), K' is the aquitard conductivity
and 4’ is the aquitard thickness; one more dimensionless
number would be introduced,

p==, (88)

all \/p in (44)—(46) would be replaced by \/p + B2, and
expressions in (55)—(57) would depend on B or f.
However, the relations (62)—(70) would remain un-
changed.

(87)

13. Conclusions

The logarithmic sensitivity, (4), naturally arises in a
normalized total differential. It can be interpreted as a
transfer coefficient between the relative error in an input

parameter and the relative error this input parameter
alone induces in the output. All logarithmic sensitivities
are dimensionless and thus can be compared to one
another, as opposed to traditional sensitivities of an
output to parameters of different dimensions and as
opposed to normalized sensitivities of outputs of dif-
ferent dimensions.

Although the nature of the whole sensitivity matrix
(Jacobian) X, (11), may need to be studied to determine
the quality of the parameter estimates, the magnitudes
of individual logarithmic sensitivities (4), deterministic
parameter correlations (22), and plausible relative errors
(23) may have, by themselves, significant implications
for parameter estimation and sampling design. Com-
bining the effects of logarithmic sensitivity and relative
measurement error, plausible relative errors are es-
pecially useful when the relative measurement errors are
not uniform through space and time, which is typically
the case. Their consideration leads to:

Heuristic guidelines for measurement selection:

Minimizing the plausible relative errors rather than
maximizing the corresponding sensitivities should
serve as a guide to identifying the measurements
most useful for parameter estimation or as candi-
date measurements for optimal sampling. Further-
more, avoiding among them as much as possible
the measurements with the high parameter correla-
tions may help ensure that the sensitivity matrix X
(11) (or X™X) is well-conditioned and thus, that
the parameter estimates are accurate.

That one should minimize the plausible relative errors
rather than maximize the sensitivities is clearly demon-
strated in Figs. 1(b) and 2(b), which present the sensi-
tivities of wellface flowrate with respect to storativity
and skin factor as decreasing throughout most of the
time domain. All of these sensitivities reach the near-
maximum values for impractically small times, during
which the pressure transducer or the flowmeter
measurements are biased by the largest relative
measurement errors. The corresponding plausible rela-
tive errors in parameter estimates (Figs. 1(d) and 2 (d))
clearly identify the later-time points around which the
measurements contain the most information about the
parameters.

A model, accounting for the wellbore storage and
infinitesimal skin, of a pumping test conducted on a
fully penetrating well situated in a confined aquifer is
considered. Logarithmic sensitivities of its drawdown
and wellface flowrate are calculated. The logarithmic
sensitivities of drawdown in the pumping well, draw-
down in an observation well, and wellface flowrate to
transmissivity, 7, storativity, S, and the skin factor, #,
specified in (62)—(70), are independent of 7, Q, and r,.
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They depend on the wellbore storage factor, o, and the

skin factor, #, and are functions of dimensionless time, .

The observation well drawdown sensitivities also depend

on dimensionless distance to the pumping well, p. Fur-

thermore, for the no-wellbore storage and no-skin case,

i.e., for the Theis [71] and Hantush and Jacob [30]

models, these logarithmic sensitivities are independent

of S. Thus, in contrast to the corresponding traditional
and normalized sensitivities [18,54,57], the logarithmic
sensitivities can be represented by a single type curve or

a family of type curves.

Particular conclusions from this research include:

1. The magnitude of the wellbore drawdown sensitivi-
ties grows rapidly with time during the wellbore
storage phase (until the wellface flowrate, ¢, equals
approximately the pumping rate, Q, i.e., until
—gp = q/Q = 1) and then reaches a plateau or begins
a slow decrease. The magnitudes of the wellface flow-
rate sensitivities behave differently. T-sensitivity
grows slowly throughout most of the wellbore storage
phase, whereas S- and n-sensitivities mostly decrease.
The magnitudes of all three wellface flowrate sensitiv-
ities decay rapidly when the wellbore storage phase
approaches an end.

2. The magnitudes of T-sensitivities of wellbore draw-
down decrease with increasing skin factor, 7,
throughout the wellbore storage phase and converge
to a single value beyond this phase. The magnitudes
of the T-sensitivities of wellface flowrate, on the other
hand, grow with an increasing skin factor throughout
most of the wellbore storage phase and decline rap-
idly at its end.

3. The magnitudes of the S-sensitivities of both wellbore
drawdown and wellface flowrate decrease with an in-
creasing skin factor.

4. The magnitude of the S—T correlation, R, for well-
bore drawdown data mostly increases with time and
at large times exceeds 10-30. For wellface flowrate
data, R?ﬁ is similar during the wellbore storage phase
and rapidly increases afterwards. For the small skin
factor, the magnitude of the #—T correlation, R:fﬁ, be-
haves similarly to that of the S—T correlation. For the
large skin factor, R;"Tg varies only up to half an order
of magnitude. Thus, more accurate estimates could
be obtained for the large skin factors than for the
small ones. The #—S correlation follows via (22) from
the other two, i.e., R:fsg = —RL"Tg/R?Tg.

5. At times when appreciable drawdown can be re-
corded, the relative magnitudes of 7-, S-, and y-sensi-
tivities for the drawdown in an observation well are
analogous throughout most of the domain to those
for wellbore drawdown. However, for an observation
well, the T-sensitivity undergoes a change of sign,
whereas for wellbore drawdown it does not.

6. The plausible relative errors in 7, S, and 7 estimated
from wellbore drawdown rapidly decrease during the

wellbore storage phase (until —gp = 1); the S- and
n-errors reach a plateau, whereas the 7T-errors contin-
ue to slowly decrease outside the wellbore storage
phase. On the other hand, the plausible relative errors
in 7, S, and 7 estimated from wellface flowrate rapid-
ly decrease during the wellbore storage phase before
reaching a minimum (when —gp = 0.5) and then rap-
idly increase. The practical implication for the tran-
sient flowmeter test is that measurements of
drawdown and wellface flowrate should not be made
during the early times of the wellbore storage phase
(when —gp < 0.5). This conclusion is also expected
to be true for the multi-stage layered reservoir tests
used in petroleum engineering [67].

7. The magnitude of the plausible relative error in 7 es-
timated from wellbore drawdown and from wellface
flowrate is about an order of magnitude smaller than
the corresponding plausible relative error in S. The
corresponding plausible relative error in 7 decreases
with increasing skin factor. For small 5 (<0.3), it is
even larger than the plausible relative error in S,
whereas for large # (>3), it may approach the plaus-
ible relative error in 7.

8. Other practical implications follow from (38), and
(72)—(77) — the plausible relative errors in transmissiv-
ity, storativity, and skin factor estimated from well-
bore drawdown can be cut by an arbitrary factor
(within the limits of applicability of the model)
through increasing the pumping rate by this factor
(in the next test). However, it follows from (78)-
(80) that doubling pumping rate will not effect more
accurate parameter estimates from the wellface flow-
rate. The plausible relative errors in these parameters
estimated from either wellbore drawdown or wellface
flowrate can also be decreased by using more accurate
drawdown or flowrate measurement instruments.
Cutting their maximum measurement errors (Asyax
or Agm.x) by a factor cuts the corresponding plausible
relative errors by the same factor.

9. The plausible relative errors in aquifer parameters
from flowrate measurements are significantly larger
than those from the drawdown measurements. Thus,
the flowrate measurements represent a bottleneck of
the flowmeter test. In order to improve flowmeter test
measurements, more accurate flowmeters need to be
built.
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