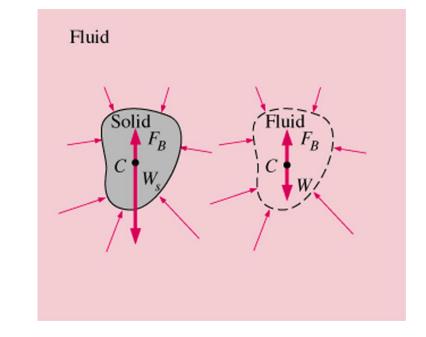


Environmental Hydraulics 2025_2026

X=	Name	E1	E2	Е3	E4	E 5	Ext.	Test	Σ	Results
1	Aznar-Etchepare Gilen	4	4						8	
2	Eslami Talemi Zeynab	4							4	
3	Hanif Muhammad Tayyab								0	
4	Chaure Anmol	4							4	
5	Kabeleka Chisenga								0	
6	Khan Ijaz Azeem	4	3						7	
7	Mensching Una Milena	4	4						8	
8	Naghizadeh Avilagh Fariba	4							4	
9	Oluwatudimu Olayinka Anita								0	
10	Thorand Jean-Noé	4							4	
11	Thu Kaung Si	4							4	
12										

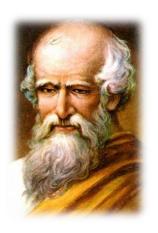
ARCHIMEDES' PRINCIPLE

The buoyant force acting on a submerged object is equal to the weight of the fluid the object displaces.

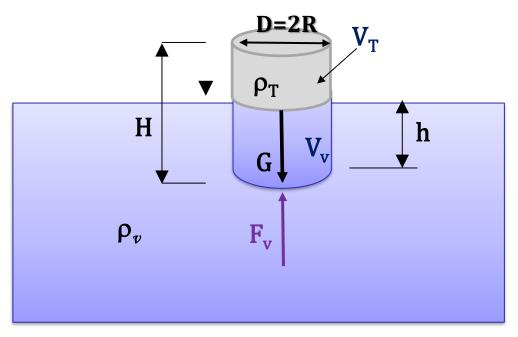

ARCHIMEDES' PRINCIPLE states that the **WEIGHT** of the amount of water displaced is **equal** to the **BUOYANT FORCE**.

BUOYANCY

The tendency of fluid to exert a supporting force on a body placed in the fluid.


The force = weight of the fluid displaced by the body. Its act upward through centroid of the displaced volume.

$$F_B = \rho_f \cdot g \cdot V_f$$



Density of fluid

Buoyancy

Archimédés (287-212)

F_b – buoyancy force

G – gravity force (weight of body)

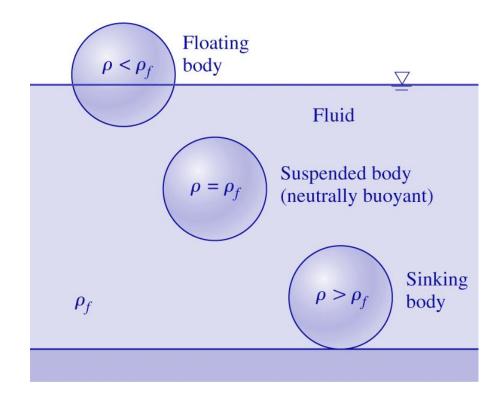
 $V_{\rm v}$ - volume of the submerged part of the body

Laws of buoyancy discovered by Archimedes:

A body immersed in a fluid experiences a vertical buoyant force equal to the weight of the fluid it displaces

A floating body displaces its own weight in the fluid in which it floats

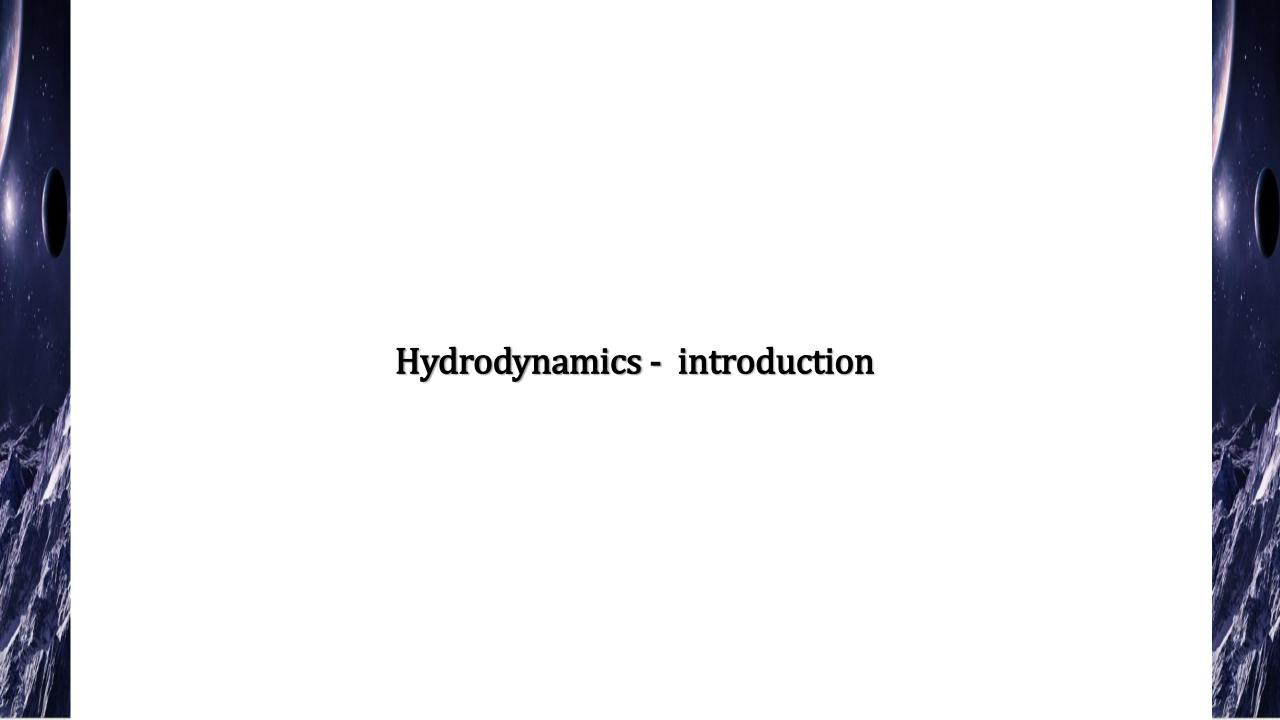
$$F_b = G = \rho_{WATER} g V_W = \rho_{SOLID} g V_T$$


$$V_W = \pi R^2 h$$

$$V_T = \pi R^2 H$$

 ρ_{WATER} - density of liquid

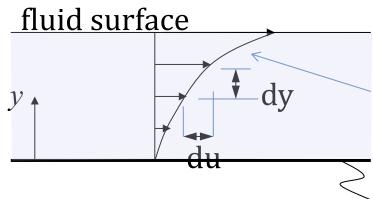
 ρ_{SOLID} - density of body


BUOYANCY AND STABILITY

- Buoyancy force F_B is equal only to the displaced volume $\rho_\phi g V_{displaced}$.
- Three scenarios possible
 - 1. $\rho_{\beta ody} < \rho_{\phi luid}$: Floating body
 - *2.* $\rho_{body} = \rho_{fluid}$: **Neutrally** buoyant
 - *3.* $\rho_{\beta odv} > \rho_{\phi luid}$: Sinking body

BUOYANCY

- BUOYANCY = the ability to float in a fluid.
- Examples of fluids = water, air
- BUOYANT FORCE = the upward force that acts on a submerged object.
 - It acts opposite of gravity


NEWTON'S EQUATION OF VISCOSITY

Viscosity is a measure of the resistance of a fluid to deform under shear stress.

Shear stress due to viscosity between layers: $\tau = \mu \frac{du}{dy}$

 μ - dynamic viscosity (coeff. of viscosity)

$$v = \frac{\mu}{\rho}$$
 - kinematic viscosity

u(y) (velocity profile)

Fixed no-slip plate

Use definition of shear force:

$$F = \tau A = \mu A \frac{du}{dy}$$

VISCOSITY

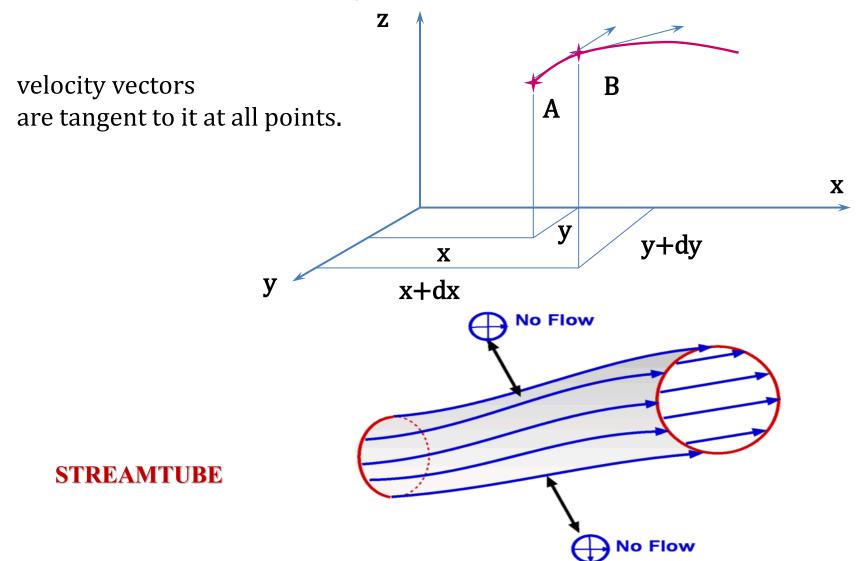
	Dynamic Viscosity (Pa·s)		Dynamic Viscosity (Pa·s)	
Gases		Heat Transfer Liquids		
Air	18.3 x 10 ⁻⁶	FC-87	0.4 x 10 ⁻³	
Nitrogen	17.8 x 10 ⁻⁶	Galden ZT 85	0.8 x 10 ⁻³	
Oxygen	20.2 x 10 ⁻⁶	R134a	0.2 x 10 ⁻³	
Hydrogen	8.8 x 10 ⁻⁶	Ammonia	0.12 x 10 ⁻³	
Xenon	21.2 x 10 ⁻⁶	Other Liquids		
Ammonia	9.8 x 10 ⁻⁶	Glycerol	934 x 10 ⁻³	
Liquids		Olive oil	80	
Water	0.28 x 10 ⁻³	Ketchup	50	
Ethanol	1.1 × 10 ⁻³	Peanut butter	150	
Acetone	0.31 x 10 ⁻³	'Solids'	10 ⁵	

Viscosity (Temp)

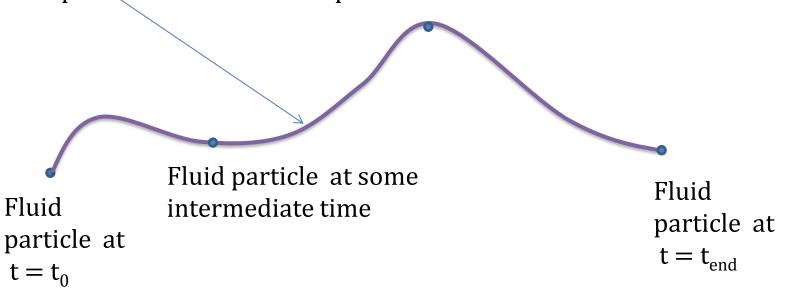
Water

Air

Temp. (°C)	Viscosity, μ (Pas ×10 ⁵)	Kinematic viscosity, v (m²/s ×10 ⁶)	Viscosity, μ (Pas ×10 ⁵)	Kinematic viscosity, ν (m ² /s ×10 ⁶)
0	179.2	1.792	1.724	13.33
10	130.7	1.307	1.773	14.21
20	100.2	1.004	1.822	15.12
30	79.7	0.801	1.869	16.04
40	65.3	0.658	1.915	16.98

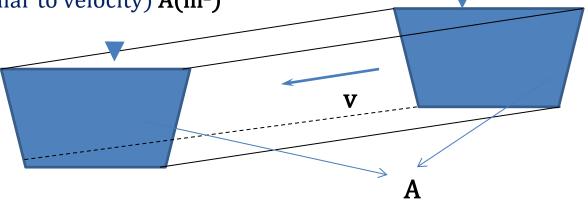

Fluid

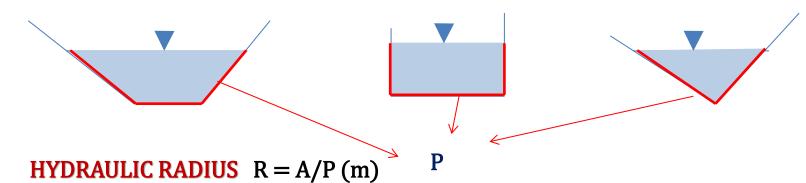
Dynamic Viscosity (Pa.s)**


Water
$$\mu_{W} = \left(\frac{997.2}{2.443299 \times 10^{-2} \times T - 6.153676}\right)$$
Oil
$$\mu_{o} = 0.6402 + 18.9612 \times e^{(-0.074 \times T)}$$
Air
$$\mu_{g} = 2.8 \times 10^{-7} \times T^{0.735476}$$

STREAMLINE; STREAMTUBE

STREAMLINE is a curve that is everywhere tangent to the *instantaneous local velocity vector.*


A **PATHLINE** (**TRAJECTORY**) is the actual path traveled by an individual fluid particle over some time period.

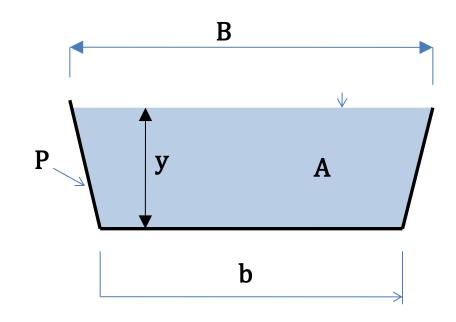

For **steady flow**, **streamlines** and **pathlines** are **identical**. For **unsteady flow**, they can be **very different**.

Flow area, CROSS SECTIONAL AREA

(perpendicular to velocity) A(m²)

WETTED PERIMETER P (m)

circular pipeline with diameter D:


$$R = \frac{A}{P} = \frac{\pi D^2}{4 \pi D} = \frac{D}{4}$$

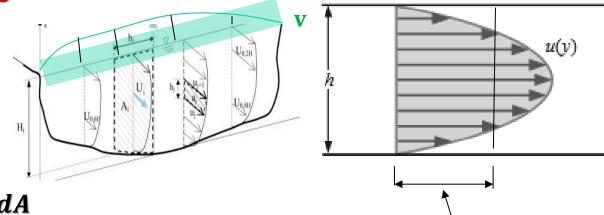
Depth y, h [m]

Channel width at bottom b [m],

Channel width at water level B [m]

Mean depth $y_m = A/B [m]$

Discharge (mass, volume discharge) Q_M (kg.s⁻¹)


$$Q_{v}$$
 (m³.s⁻¹) = Q

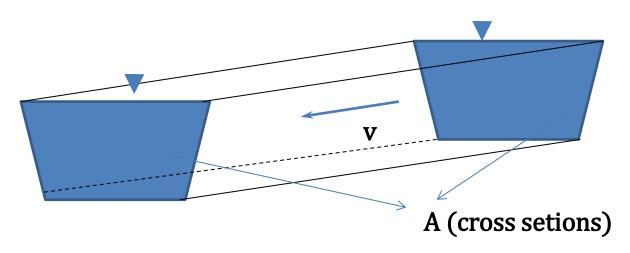
POINT VELOCITY

$$u = \frac{ds}{dt}$$

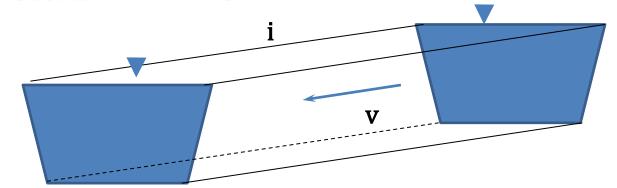
THE AVERAGE (MEAN)

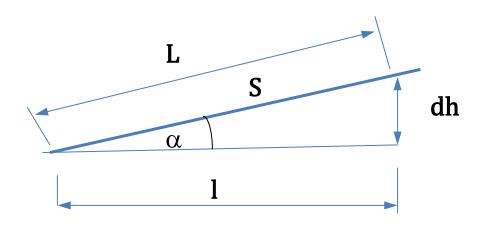
VELOCITY - v - is defined as the average speed through a cross section.

elementary volume discharge


$$dQ = u dA$$

MEAN VELOCITY v=Q/A


DISCHARGE (mass) = $\rho . v. A$


MASS RATE PAST A CROSS-SECTION: Q_m (kg/s)

DISCHARGE (volume) = $\mathbf{v} \cdot \mathbf{A} = \mathbf{Q}$ VOLUME FLOW RATE PAST A CROSS- SECTION: Q (m³/s)

SLOPE of bottom - **S**

α	sin(α)	tan(\alpha)
00	0	0
50	0.087	0.087
100	0.174	0.176
20°	0.342	0.346
300	0.500	0.577
400	0.643	0.839
50°	0.766	1.192

$$S = \frac{dh}{L} \quad \Rightarrow \quad \frac{dh}{l}$$

For small α (cca 8-10°)

$$sin\alpha \approx tg\alpha$$

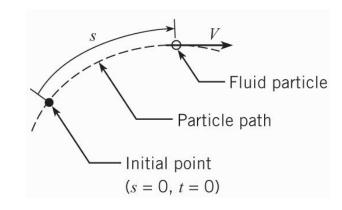
KINDS AND FORMS OF FLOW

UNSTEADY FLOW
$$Q = Q(t)$$
, $v = v(t)$

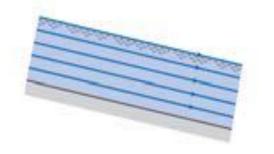
STEADY FLOW Q = const.

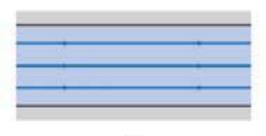
- a) **UNIFORM** flow ... A=const. v=const.
- b) **NON UNIFORM** flow $A \neq const.$ $v \neq const.$
- •WITH FREE LEVEL flow limited by solid walls, free level on surface, motion caused by own weight of liquid
- **PRESSURE** flow limited by solid walls from all sides, motion caused by difference of pressures
- **JETS** limited by liquid or gas surroundings, motion by own weight or by delayed action

(inertia)

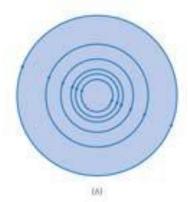

SOLUTION OF FLOW:

- **SPACE FLOW** (3D numeric models)
- **PLANAR FLOW** (2D simplified solution)
- **ONE DIMENSIONAL** (1D current routine calculations of pipelines, channels, structures)

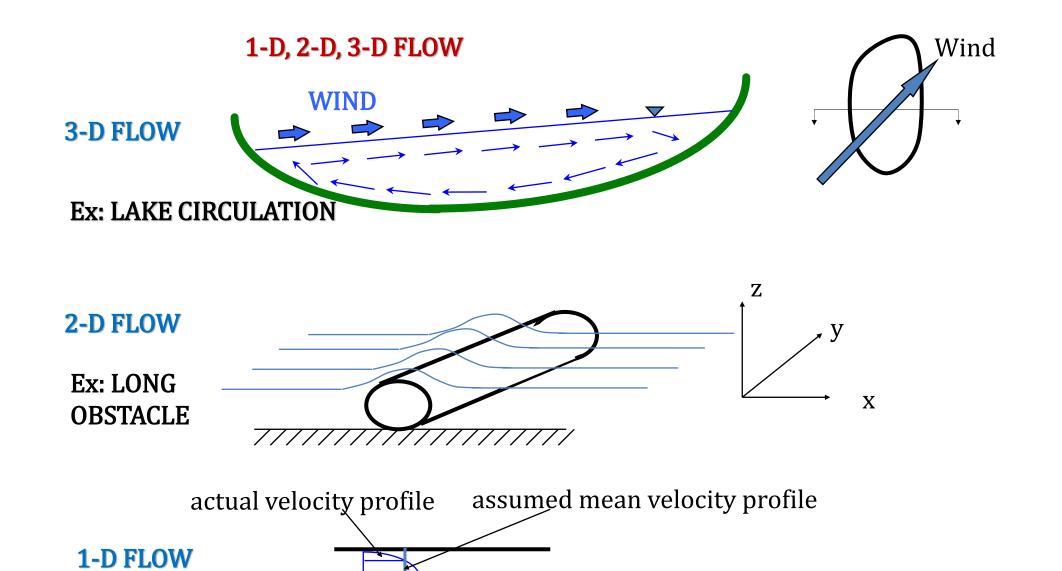

TYPES OF STEADY FLOW


Express velocity v = v(s,t)

Uniform: Velocity is constant along a streamline (Streamlines are *straight and parallel*)


$$\frac{\partial V}{\partial s} = 0$$

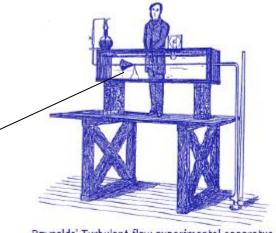
Non-uniform: Velocity changes along a streamline (Streamlines *are curved* and/or not parallel)


$$\frac{\partial V}{\partial s} \neq 0$$

Vortex flow

FLOW DIMENSIONALITY

- Most of the real flows are3-dimensional and unsteady: u (x,y,z,t)
- For many situations simplifications can be made:
 - 2-dimensional unsteady and steady flow u (x,y,t)
 - 1-dimensional unsteady and steady flow u (x,t)

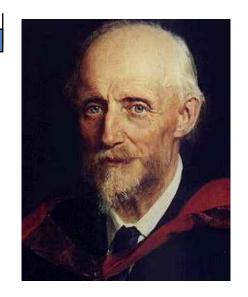


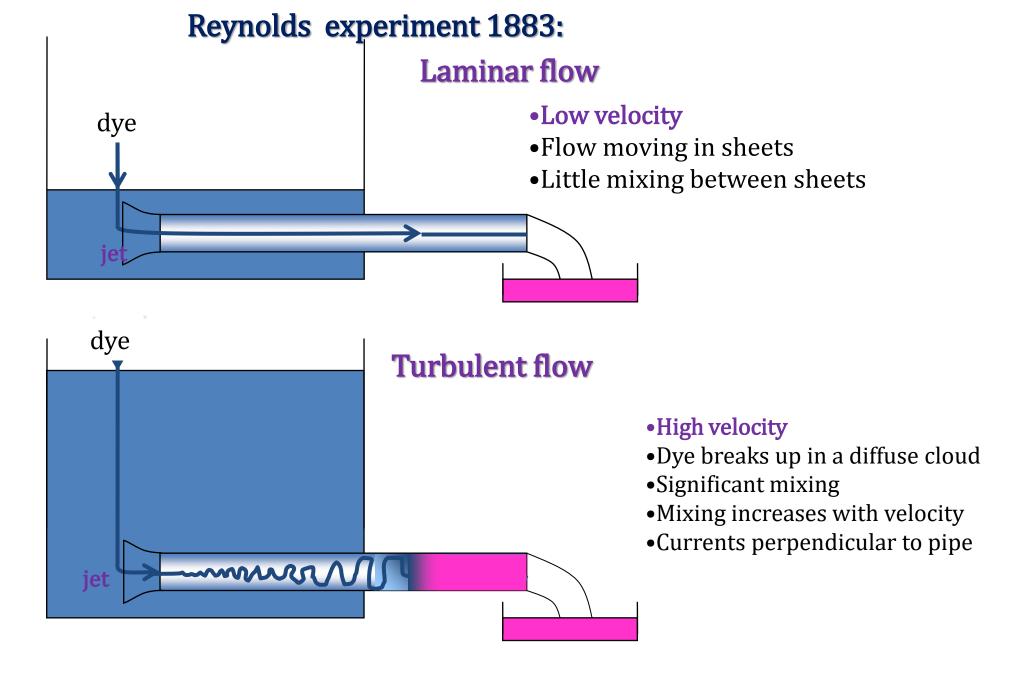
Ex: PIPE FLOW

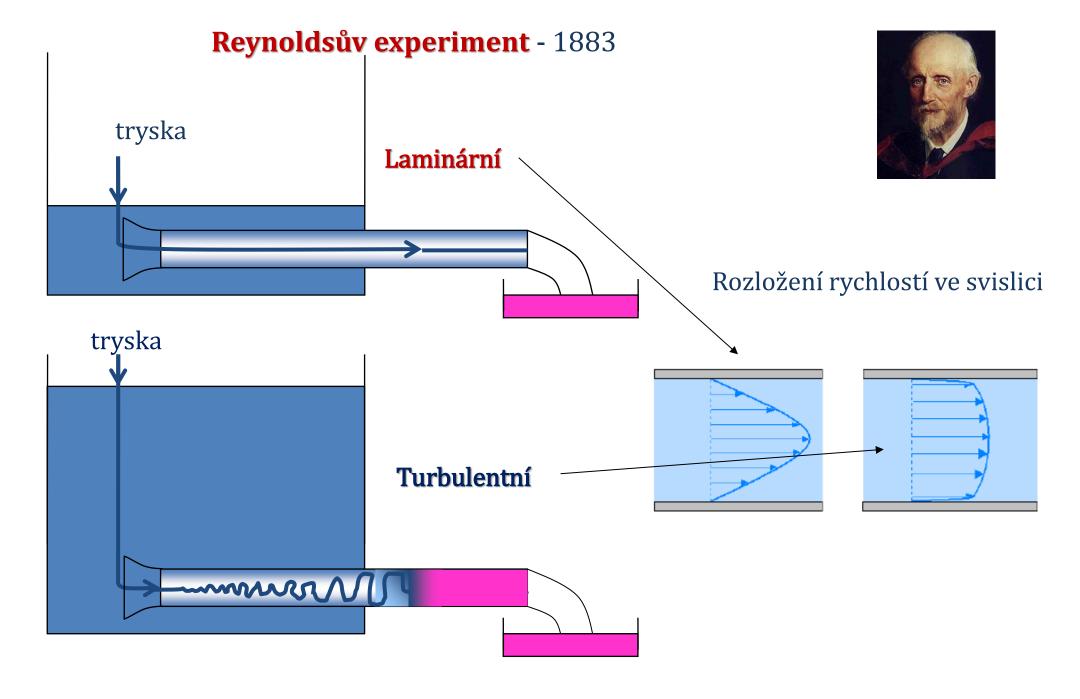
REAL FLUID

LAMINAR AND TURBULENT FLOW

Reynolds experiment 1883: Variable surface level



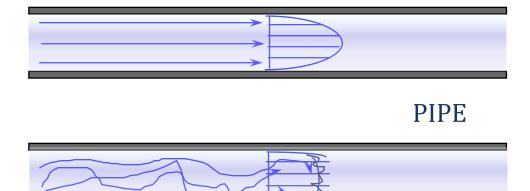

Reynolds' Turbulent flow experimental apparatus


Osborne Reynolds (1842-1912)

- A) LAMINAR FLOW
- B) TURBULENT FLOW

DEFINITIONS

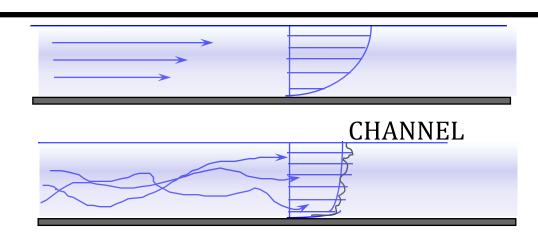
- LAMINAR: FLOW IS LAMINAR IF PARTICLES MOVE IN DEFINED LAYERS IN DEFINED PATH, (NO CROSSING OF LAYERS, flow on a skin)
- **TURBULENT:** PARTICLES MOVE IN A ZIG- ZAG WAY (PARTICLES CROSS EACH OTHER/ LAYERS, high speed flow in pipe)


LAMINAR AND TURBULENT FLOW

• LAMINAR

FLOW

• TURBULENT


FLOW

• LAMINAR

FLOW

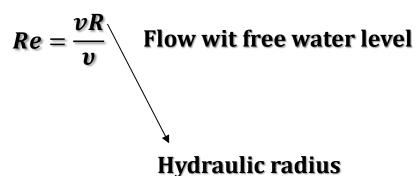
• TURBULENT FLOW

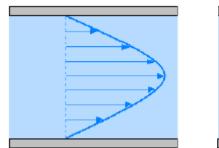
LAMINAR AND TURBULENT FLOW

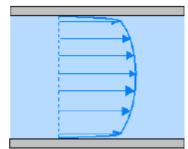
- LAMINAR particles of liquid move at parallel paths
- TURBULENT motion of particles of liquid: irregular and

inordinate, fluctuations of velocity vector in time and space, mixing inside flow

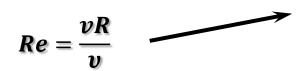
• Criterion – Reynolds number

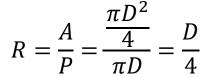

L – characteristic length:


diameter D for pipelines, hydraulic radius R


Critical Reynolds Number - for pipe $Re_{cr} = 2320$

for open channel $Re_{cr} = 580$ for groundwater flow $Re_{cr} = 1$

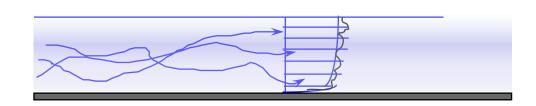

$$Re = \frac{vD}{v}$$
 pipe $Re = \frac{\rho vD}{\mu}$



OPEN CHANNEL FLOW

For flow in open channel

Re < 580 laminar


580 < Re < 1000 transitional

Re>1000 ... turbulent

laminar

turbulent

REYNOLDS NUMBER

The *Reynolds number* can be used as a criterion to distinguish between laminar and turbulent flow:

$$Re = \frac{\rho \ v \ D}{\mu} = \frac{v \ D}{v}$$

v=mean velocity in pipe D=diameter of pipe ν =kinematic viscosity μ = dynamic viscosity ρ = density

For flow in a pipe

- **Laminar** flow if Re < 2320
- **Turbulent** flow if Re > 4000
- Transitional flow if 2320 < Re < 4000
- For very high Reynolds numbers, viscous forces are negligible: inviscid flow
- ➤ For very low Reynolds numbers (Re<<1) viscous forces are dominant: *creeping flow*

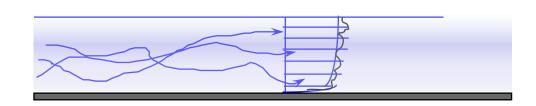
OPEN CHANNEL FLOW

$$Re = \frac{vR}{v}$$

$$R = \frac{A}{P} = \frac{\frac{\pi D^2}{4}}{\pi D} = \frac{D}{4}$$

For flow in open channel

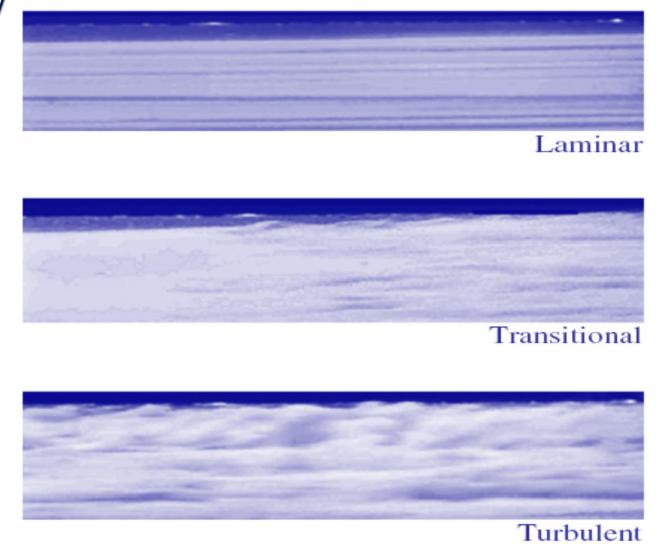
Re < 580 laminar


580 < Re < 1000 transitional

Re>1000 ... turbulent

laminar

turbulent

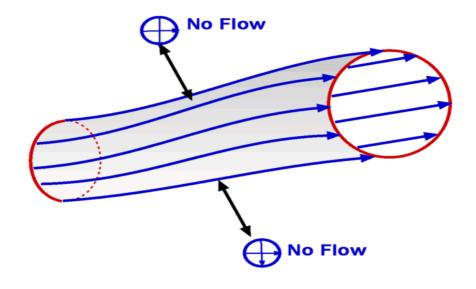


LAMINAR VERSUS TURBULENT FLOW

Laminar flow: The highly ordered fluid motion characterized by smooth layers of fluid. The flow of high-viscosity fluids such as oils at low velocities is typically laminar.

Turbulent flow: The highly disordered fluid motion that typically occurs at high velocities and is characterized by velocity fluctuations. The flow of low-viscosity fluids such as air at high velocities is typically turbulent.

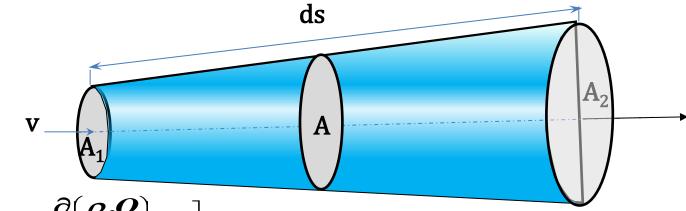
Transitional flow: A flow that alternates between being laminar and turbulent.



Laminar, transitional, and turbulent flows over a flat plate.

CONTINUITY EQUATION

STREAM-TUBE AND CONTINUITY EQUATION

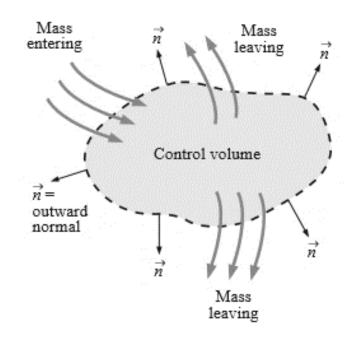

- STREAM-TUBE
- CONTINUITY EQUATION

Is the surface formed instantaneously by all the streamlines that pass through a given closed curve in the fluid.

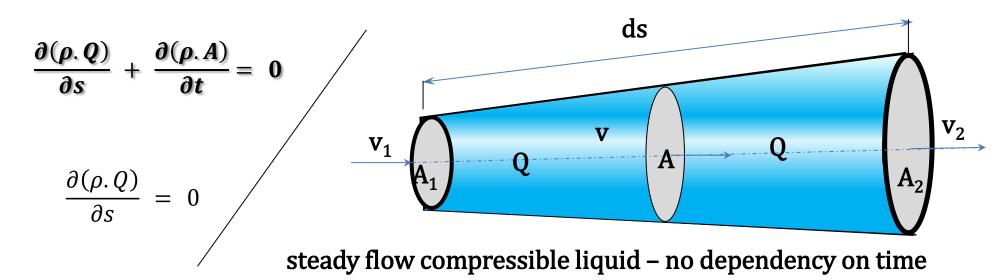
CONTINUITY EQUATION

mass leaving - mass entering = - rate of increase of mass in cv

Input mass $A_1 : \rho.Q.dt$


Output mass
$$A_2 : \left[(\rho \cdot Q) + \frac{\partial (\rho \cdot Q)}{\partial s} ds \right] dt$$

Change of mass inside V in time dt


$$\frac{\partial(\rho.A.ds)}{\partial t}dt$$

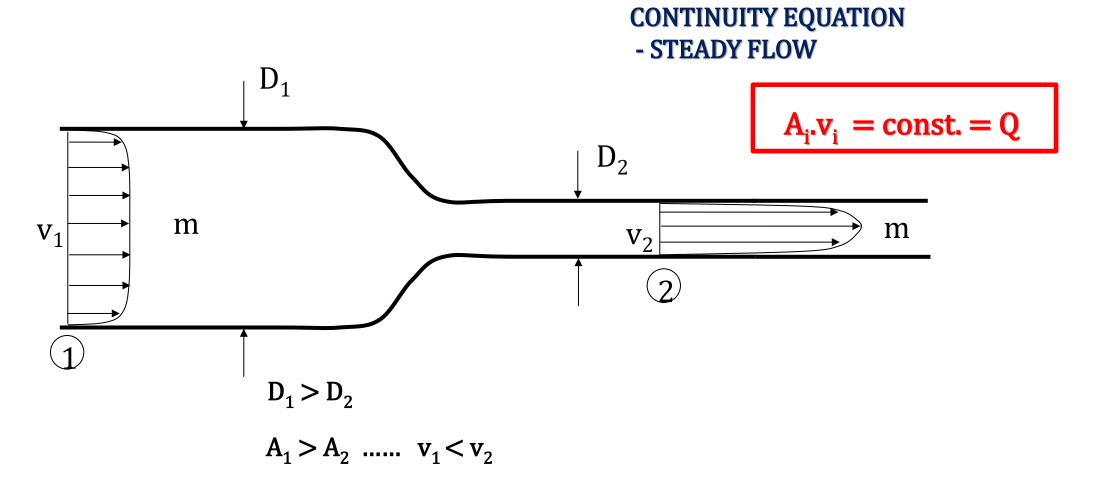
CONTINUITY EQUATION FOR AN UNSTEADY FLOW

$$\frac{\partial(\boldsymbol{\rho}.\boldsymbol{Q})}{\partial s} + \frac{\partial(\boldsymbol{\rho}.\boldsymbol{A})}{\partial t} = 0$$

CONTINUITY EQUATION - STEADY FLOW

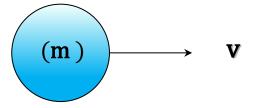
$$\rho.Q = const.$$

$$Q = \rho_1 A_1 v_1 = \rho_2 A_2 v_2 = \rho_i A_i v_i = const$$


STEADY FLOW of incompressible liquid

CONTINUITY EQUATION - STEADY FLOW

$$Q = const.$$
 $\rho = const.$
$$A_1.v_1 = A_2.v_2 = \dots A_i.v_i = const. = Q_v$$


$$A_i \cdot v_i = const. = Q$$

■ For pipes with **variable diameter**, m is still the same due to conservation of mass, but $v_1 \neq v_2$

BERNOULLI'S EQUATION

(G = mg)

Kinetic energy ... ½ mv² kinetic energy per unit weight v²/2g

x(1/mg)

Potential energy ... mgh

Pressure energy (h = p/ ρ g).... Pressure energy per unit weight ... p/ ρ g x (1/mg)

Elevation energy ... mgh Elevation energy per unit weight \mathbf{h} \mathbf{x} (1/mg)

Bernoulli's equation (Ideal fluid)

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = const.$$

Total (mechanical) energy per unit weight

BERNOULLI EQUATION FOR IDEAL FLUID

expresses the **principle of conservation of energy**

The Bernoulli Equation is a statement of the conservation of mechanical energy

$$h + \frac{p}{\rho g} + \frac{v^2}{2g}$$

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = Const. = ME$$

$$\frac{p}{\rho g} = \text{PRESSURE HEAD} \qquad z + \frac{p}{\rho g} = \text{Piezometric head}$$

$$h = \text{ELEVATION (GEODETIC)HEAD} \qquad h + \frac{p}{\rho g} = \text{HYDRAULIC GRADE LINE - HGL}$$
or PRESSURE GRADE LINE - PGL"
$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = \text{Total head - ENERGY GRADE LINE - EGL}$$

Each term in the BE is called "head"

BERNOULLI EQUATION FOR IDEAL FLUID

$$h + \frac{p}{\rho g} + \frac{v^2}{2g} = const. = E$$
EGL

PGL - pressure grade line

EGL - energy grade line

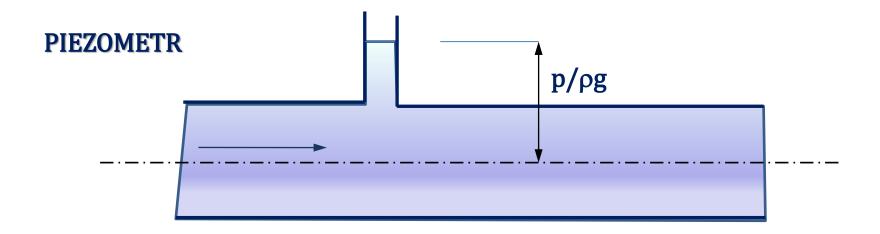

EH – energy horizont

pressure head
$$(p/\rho g)$$
 !!!! $p = p_{out} + \rho g z$!!!

PGL = (pressure head) + (elevation head)

EGL = (elevation head) + (pressure head) + (velocity head)

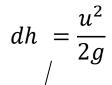
BERNOULLI EQ. FOR IDEAL FLUID

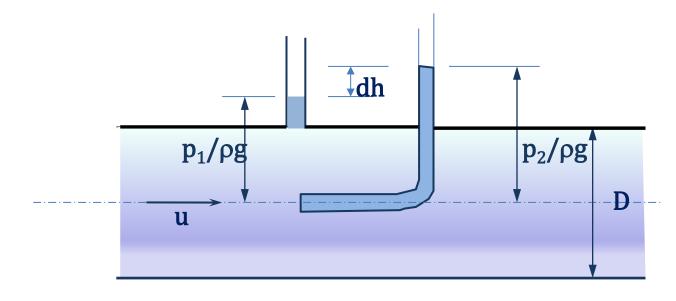


h – elevation (geodetic) head **p/ρg** - pressure head

v²/2g - velocity head

APPLICATION OF THE B.E.


PIEZOMETER TUBE - (measure piezometric head)



APPLICATION OF THE B.E.

(measure velocity head)

$$\frac{p_1}{\rho g} + \frac{u^2}{2g} = \frac{p_2}{\rho g}$$

$$\frac{p_2 - p_1}{\rho g} = dh = \frac{u^2}{2g}$$

$$u = \sqrt{2g \ dh}$$

Pitot formula

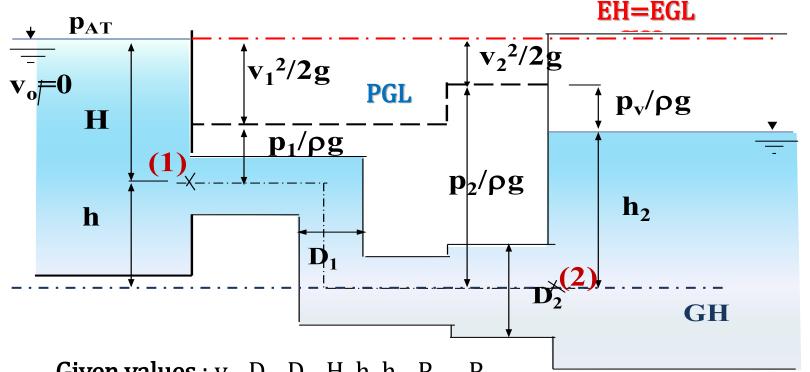
IDEAL FLUID

HYDRAULIC CALCULATIONS OF PIPELINES

2 kinds of equations:

Bernoulli equation ← elevations and pressure relations,

Continuity equation - boundary conditions


calculation: Q, v, D, L, H, p

PGL, EGL

BERNOULLI EQ. FOR IDEAL FLUID

Procedure:

- 1. GH.
- 2. Choose (A) and (B).
- 3. BE for (A) and (B).
- 4. Sections.
- 5. Calculation v and Q
- 6. EGL and PGL

Given values : V_0 , D_1 , D_2 , H, h, h_2 , P_{AT} , P_V

$$h+H+\frac{p_{AT}}{\rho g}+\frac{v_o^2}{2g}=h_2+\frac{p_V}{\rho g}+\frac{v_2^2}{2g}$$

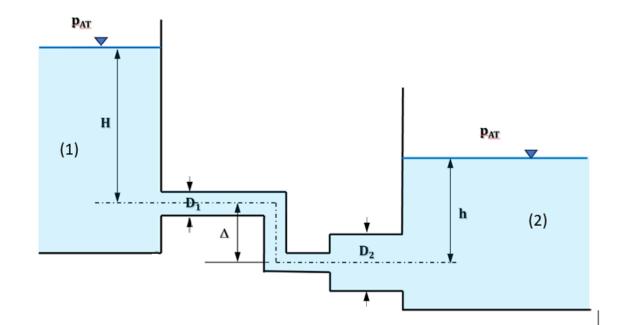
$$v_2 = \sqrt{2g \cdot \left[\left(h + H + \frac{p_{AT}}{\rho g} + \frac{v_o^2}{2g} \right) - \left(h_2 + \frac{p_V}{\rho g} \right) \right]}$$
 Discharge:

$$S_2 = \frac{\pi D_2}{4}$$

$$Q = v_2.S_2$$

EGL and PGL for ideal fluid

absolute pressure EH = EGL $p_{AT}/\rho g$ 10 m $p_{AT}/\rho g$ relative pressure EH=EGL p_{AT} $v_2^2/2g$ $v_1^2/2g$ **PGL** $p_v/\rho g$ H $p_1/\rho g$ $p_2/\rho g$ h_2 h GH


Environmental Hydraulics 2025/2026

Example 3a

Water flows steadily from reservoir (1) to reservoir (2) (**Ideal fluid**). Determine the discharge and the mean velocities. Draw energy grade line (**EGL**) and pressure grade line (**PGL**)

Known parameters:

$$\Delta = 2 \text{ m}$$
; H = $(2 + 0.1 \text{ .} \text{ X}) \text{ m}$; h = 3 m; $v_0 = 0.1 \text{ m.s}^{-1}$; $D_1 = 0.2 \text{ m}$; $D_2 = 0.25 \text{ m}$; $p_{AT} = 1.013 \text{ .} 10^5 \text{ Pa}$; $\rho = 1000 \text{ kg.m}^{-3}$;

