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Abstract

Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for
anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to
the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table
aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width
and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so
that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions
are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral.
To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small
relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur
instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical
comparisons of the new solutions are made with known closed-form solutions. Published by Elsevier Science B.V.
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1. Introduction

Increased demand for water associated with popu-
lation growth has heightened public awareness of the
importance of the proper management of limited
water resources. With this awareness has come a
recognition by the public that ground-water reservoirs
and surface-water supplies are connected to one

another, and that the use of one can affect the quantity
and quality of the other. It is perhaps because of this
that water-resource managers have taken considerable
interest in quantification of the interaction of surface
water and ground water. Analytical models are helpful
tools in this endeavor.

One perceived difficulty in the use of analytical
models is the fact that the necessary boundary con-
ditions—stream stage and regional recharge or
evapotranspiration—change continuously. While it
is recognized that the effects of variable boundary
conditions can be simulated with numerical models,
it is not widely appreciated that these variations can
also be effectively simulated by combining analytical
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Nomenclature

Symbol Definition [dimension (L, length; T, time)]

a Streambank leakance [L]
A Dimensionless streambank leakance
b Thickness of aquifer (or saturated thickness for water-table aquifer) [L]
b0 Thickness of aquitard (or saturated thickness for water-table aquitard) [L]
c Instantaneous step change in water level of stream [L]
d Thickness of semiprevious streambank material [L]
h Head in aquifer [L]
h0 Head in aquitard [L]
hD Dimensionless step-response function for head in aquifer
�hD Dimensionless Laplace transform step-response function for head in aquifer
�hp
D Dimensionless Laplace transform average head in a partially penetrating observation well
�̂hD Dimensionless Laplace transform average head in a fully penetrating observation well
hi Initial water level (or potentiometric surface) in stream–aquifer system [L]
h0 Water level in stream after step change [L]
K Hydraulic conductivity of confined and leaky aquifers [L/T]
KD Dimensionless ratio of vertical to horizontal hydraulic conductivity
Ks Hydraulic conductivity of semipervious streambank material [L/T]
Kx; Kz Horizontal and vertical hydraulic conductivity of water-table aquifers, respectively [L/T]
K 0 Vertical hydraulic conductivity of aquitard [L/T]
m Dimensionless grouping
n Integer counter in infinite summations
p Laplace transform variable [dimensionless]
qn Terms in the Laplace transform solutions for water-table aquifers [dimensionless]
q0 Volumetric flow rate to or from aquifer per unit volume of aquifer [1/T]
�qD Dimensionless Laplace transform leakage between aquifer and aquitard
Q Seepage rate per unit length of stream [L2/T]
QD Dimensionless seepage between stream and aquifer
�QD Dimensionless Laplace transform seepage between stream and aquifer
S Storativity (storage coefficient) of aquifer [dimensionless]
Ss Specific storage of aquifer [1/L]
S0s Specific storage of aquitard [1/L]
Sy Specific yield of aquifer [dimensionless]
S0y Specific yield of aquitard [dimensionless]
t Time [T]
tD Dimensionless time
tDy Dimensionless time with respect to specific yield
T Transmissivity of aquifer [L2/T]
W Term for aquifer width in Laplace transform solutions for confined and leaky aquifers [dimensionless]
Wn Term for aquifer width in Laplace transform solutions for water-table aquifers [dimensionless]
x Horizontal coordinate [L]
xD Dimensionless horizontal coordinate
xL Width of aquifer [L]



models of stream–aquifer systems with the method of
convolution (superposition). The analytical approach
is often the simplest and quickest way to obtain answers
to questions posed by water-resource managers.
Analytical models can also be instrumental in improv-
ing our understanding of physical processes occurring
within a ground-water flow system. The analytical
approach can be used to predict short-term water-
table fluctuations in response to a passing flood
wave, the flux of water between the aquifer and
stream, cumulative bank storage, and stream base
flow during periods of little or no precipitation.
Analytical models can also be used to estimate aquifer
hydraulic properties and recharge.

The literature is replete with analytical solutions for
the interaction of confined, leaky, and water-table
aquifers with an adjoining stream. A detailed but not
fully comprehensive review of these solutions and
their applications is provided by Barlow and Moench
(1998) and will not be repeated here. Because they
involve one-dimensional horizontal flow in the aqui-
fer and one-dimensional vertical flow in the aquitard,
solutions for confined and leaky aquifers are relatively
simple mathematically. Nevertheless, they have been
found to be quite practical and are often cited in the
literature. Solutions for confined aquifers have even

been used for unconfined aquifers, replacing the
confined-aquifer storage coefficient (storativity) with
specific yield. This latter approach has limitations,
however, because it neglects vertical components of
flow and improperly defines the behavior of the free
surface.

In this paper, Laplace transform step-response
functions are presented for several confined, leaky,
and water-table aquifer configurations. The Laplace
domain solutions are numerically inverted to the
real-time domain with the Stehfest (1970) algorithm
(see Moench and Ogata, 1984). Following Hall and
Moench (1972), the stream is assumed to penetrate the
full thickness of an aquifer, the aquifer may be semi-
infinite or finite in width, and the stream channel may
or may not be lined with materials that have hydraulic
properties different from those of the aquifer (semi-
pervious streambank).

The homogeneous aquifer models described in this
paper involve one-dimensional flow (perpendicular to
the stream) in confined and leaky aquifers, and two-
dimensional flow (in a vertical plane perpendicular to
the stream) in water-table aquifers. All aquifers are
assumed to be bounded below by a horizontal,
impermeable base. The leaky aquifers: (1) are
overlain by aquitards that are bounded above by either
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xLD Dimensionless width of aquifer
x0 Distance from middle of stream–aquifer boundary (half-width of stream) [L]
x0D Dimensionless distance to streambank
z Vertical coordinate [L]
z1 Vertical coordinate of bottom of screened interval of observation well [L]
z2 Vertical coordinate of top of screened interval of observation well [L]
zD Dimensionless vertical coordinate in aquifer
zD1 Dimensionless vertical coordinate of bottom of screened interval of observation well
zD2 Dimensionless vertical coordinate of top of screened interval of observation well
zp Vertical coordinate of observation piezometer opening [L]
Greek letters
b0 Dimensionless product of anisotropic ratio of vertical to horizontal hydraulic conductivity and

square of dimensionless distance to streambank
en Roots of equations in Laplace transform solutions for water-table aquifers [dimensionless]
g1 Dimensionless ratio of aquitard to aquifer hydraulic conductivity
t Time variable of integration (delay time) [T]
s Dimensionless ratio of aquifer storativity to aquifer specific yield
s1 Dimensionless ratio of aquitard to aquifer storativity
s 0 Dimensionless ratio of aquifer storativity to aquitard specific yield



an impermeable layer or a constant-head source bed;
or (2) are overlain by a water-table aquitard. The
water-table aquifers are overlain by a thick unsa-
turated zone from which water drains or imbibes
instantaneously in response to a fluctuating water
table. Moisture redistribution in the unsaturated
zone is assumed to be unaffected by hysteresis.
The several solutions presented in this paper differ
from previously developed analytical approaches
primarily in the wide range of aquifer types to
which they can be applied.

Though developed for the condition of a sudden
change of the water level in a stream relative to that
of the aquifer, the step-response functions are
equally applicable to the condition of a sudden
change of the water level in an aquifer relative to
that of the stream, caused, for example, by basin-
wide recharge, irrigation, or evapotranspiration (see,
for example Kraijenhoff van de Leur (1958), Rora-
baugh (1960, 1964), Singh (1969), Singh and Stall
(1971), Daniel (1976) and Rutledge (1993, 1997)).
Because stream-stage fluctuations often occur
simultaneously with recharge or evapotrans-
piration, it is important to consider the combined
effect of such simultaneous stresses on the stream–
aquifer interaction.

In the companion paper by Barlow et al. (2000), the
various step-response functions are combined with the
convolution method to demonstrate time-varying
head, seepage at the streambank, and cumulative
bank storage that occur as a result of a hypothetical sinu-
soidal stream-stage hydrograph. In addition, Barlow et al.
(2000) apply the methodology to two field sites.

2. Mathematical development

This section describes the simplifying assumptions
and boundary-value problems for each of the confined,
leaky, and water-table aquifer configurations leading
to the Laplace transform step-response functions.
Detailed derivations of the Laplace transform
solutions for all aquifer types are given by Barlow
and Moench (1998, Attachment 1). The following
assumptions apply to all aquifer configurations in
this paper.

1. Each aquifer is homogeneous and of uniform
thickness.

2. The lower boundary of each aquifer is horizontal
and impermeable.

3. Hydraulic properties of the aquifers do not change
with time.

4. The porous medium and fluid are slightly com-
pressible.

5. Observation wells or piezometers are infinitesimal
in diameter and respond instantly to pressure
changes in the aquifer.

6. The water level in the stream is initially at the same
elevation as the water level everywhere in the aqui-
fer and aquitard.

7. The semipervious streambank material, if present,
is homogeneous, isotropic, and has negligible
capacity to store water.

8. The stream forms a vertical boundary to the aquifer
and fully penetrates the aquifer.

9. The stream flows in a straight line (that is, without
sinuoisity).

The assumption that the stream fully penetrates the
aquifer is a common assumption made to simplify the
mathematics. The assumption was discussed by
Hantush (1965) who stated that, to be valid, the obser-
vation piezometers should be at least the distance of
1.5b away from the streambank (whereb is the aquifer
thickness). In this paper, the fitting parameter,a, for
semipervious streambank material is used to loosely
account for constricted flow at the streambank due to
partial penetration and effects of other idealizations.
Hantush (1965) describes the parameter,a, as the
effective width of aquifer material required to cause
the same head loss as the semipervious streambank
itself. For a recent analysis of a finite-width stream
that slightly penetrates a water-table aquifer the reader
is referred to Zlotnik and Huang (1999).

2.1. Confined and leaky aquifers

Figs. 1–4 are diagrammatic cross-sections through
the idealized semi-infinite confined and leaky aquifer
configurations, with and without a semipervious
streambank, for which analytical solutions are
presented. Analogous figures could be drawn for
finite-width aquifers by placing a vertical imperme-
able boundary at some distancex� xL : The aquifers
are bounded below by impermeable material and
above by either impermeable material (confined
case, Fig. 1) or by a poorly permeable aquitard
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(leaky case, Figs. 2–4). Laplace transform solutions
for the step-response functions are presented for
confined aquifers and for three types of leaky aquifers.
The leaky aquifers differ from one another by the
condition at the upper boundary of the aquitard as
follows: (1) a source bed with a constant head over-
lying the aquitard (leaky aquifer case 1, Fig. 2); (2) an
impermeable layer overlying the aquitard (leaky aqui-
fer case 2, Fig. 3); and (3) an aquifer that is overlain
by a water-table aquitard (leaky aquifer case 3, Fig. 4).
The flow in each type of aquifer is horizontal and one-
dimensional. The figures show the location of the
origin of the coordinate system at the base of the
aquifer and middle of the stream. To the general
assumptions listed above, one must add the following
assumptions regarding the aquitard.

1. The aquitard is homogeneous, isotropic, and of
uniform thickness.

2. The hydraulic conductivity of the aquitard must be
much smaller than the hydraulic conductivity of
the underlying aquifer and flow in the aquitard is
strictly vertical.

3. For case 3, that of a leaky aquifer overlain by a
water-table aquitard, water in the zone above the
free surface is released (or taken up) instant-
aneously in a vertical direction in response to a
decline (or rise) in the elevation of the water
table. In addition, the change in saturated thickness
of the water-table aquitard due to stream-stage
fluctuations or recharge is small compared with
the initial saturated thickness of the aquitard.
Finally, pressure changes caused by recharge are
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Fig. 1. Semi-infinite, confined aquifer: (A) without semipervious
streambank material; and (B) with semipervious streambank
material.

Fig. 2. Semi-infinite, leaky aquifer with constant head overlying the
aquitard (case 1): (A) without semipervious streambank material;
and (B) with semipervious streambank material.



propagated nearly instantaneously by virtue of
aquitard diffusivity to the underlying aquifer.

Validity of assumption 2 requires a large contrast in
hydraulic conductivity between the aquifer and aqui-
tard. Neuman and Witherspoon (1969) found that the
errors introduced by this assumption are usually less
than 5% if the hydraulic conductivity of the aquifer is
100 times the hydraulic conductivity of the aquitard.

2.1.1. Boundary-value problems

2.1.1.1. Aquifer. The governing partial differential
equation describing one-dimensional, horizontal

ground-water flow in a confined or leaky aquifer is

22h

2x2 �
Ss

K
2h
2t

1 q0; �1�

whereh is the vertically averaged head in the aquifer;
x the horizontal coordinate;Ss the specific storage of
the aquifer; K the hydraulic conductivity of the
confined or leaky aquifer;t the time;q0 is the source
term and equals2�K 0=Kb���2h0=2z�z�b�; K 0 is the
vertical hydraulic conductivity of the aquitard; and
h0 is the head in the aquitard. For confined aquifers,
K 0 � 0; henceq0 � 0: The domain for Eq. (1) for
semi-infinite aquifers isx0 # x , ∞ and for finite-
width aquifers isx0 # x # xL ; wherexL is the width
of a finite-width aquifer. In Eq. (1),h is a function ofx
andt, andh0 is a function ofz and t.
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EXPLANATION

AQUIFER

AQUITARD

IMPERMEABLE LAYER
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Fig. 3. Semi-infinite, leaky aquifer with impermeable layer over-
lying the aquitard (case 2): (A) without semipervious streambank
material; and (B) with semipervious streambank material.

EXPLANATION
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Fig. 4. Semi-infinite, leaky aquifer overlain by a water-table aqui-
tard (case 3): (A) without semipervious streambank material; and
(B) with semipervious streambank material.



The initial condition for all boundary-value
problems is

h�x; 0� � hi �2�
wherehi is the initial water level (or potentiometric
surface) in the stream–aquifer system.

Several boundary conditions are used for the
confined and leaky aquifers; the particular set of
boundary conditions used for each system depends on
the conditions being modeled. For a semi-infinite aqui-
fer, the boundary condition asx approaches infinity is

h�∞; t� � hi ; �3�
whereas for a finite-width aquifer, the boundary con-
dition atx� xL is

2h
2x
�xL ; t� � 0: �4�

The boundary condition used at the stream–aquifer
interface depends upon the presence or absence of
semipervious streambank material. For conditions of
no semipervious streambank material, a specified
head is used atx0

h�x0; t� � h0; �5�
where h0 is the water level in the stream after the
instantaneous step change. For conditions in which
semipervious streambank material is present, a head-
dependent flux boundary condition is used atx0

2h�x0; t�
2x

� 2
1
a
�h0 2 h�x0; t��; �6�

wherea is streambank leakance and�h0 2 h�x0; t�� is
the change in head across the semipervious streambank
material. Streambank leakance is defined as

a� Kd
Ks

; �7�

whered is the thickness of the semipervious stream-
bank material andKs is the hydraulic conductivity of
the semipervious streambank material. The ratioKs=d
can and should be considered a single fluid-transfer
parameter. The use ofa is similar to the concept in
well hydraulics of an infinitesimally thin well-bore
skin at a pumped well.

2.1.1.2. Aquitard.For leaky aquifer conditions, a
governing partial differential equation describing
one-dimensional, vertical flow in the overlying
aquitard must be solved with appropriate boundary
conditions and coupled with Eq. (1) This equation is

22h0

2z2 �
S0s
K 0

2h0

2t
; �8�

where S0s is the specific storage of the aquitard. The
domain for which Eq. (8) is applicable isb # z # b 1 b0:

The initial condition for head in the aquitard for all
boundary-value problems is

h0�z;0� � hi : �9�
The boundary condition along the aquitard–aquifer

boundary�z� b� is

h0�b; t� � h: �10�
Alternative boundary conditions are used for the

top of the aquitard�z� b 1 b0� that depend upon
the presence and hydraulic conditions of the overlying
bed. For the condition of constant head overlying the
aquitard (case 1), the boundary condition at the top of
the aquitard is

h0�b 1 b0; t� � hi : �11�
For the condition of an impermeable layer overlying
the aquitard (case 2) the boundary condition is

2h0

2z
�b 1 b0; t� � 0: �12�

For the condition in which the overlying material is
unsaturated, the aquitard is under water-table condi-
tions (case 3, modeled after Cooley and Case (1973)).
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Table 1
Dimensionless variables and variable groupings for confined and
leaky and aquifers

Dimensionless variable
or grouping

Definition

xD x=x0

xLD xL =x0

x0D x0=b
hD �hi 2 h�=c
tD Kt=Ssx

2
0

A Kd=Ksx0

s1 S0sb
0
=Ssb

s 0 Ssb=S
0
y

g1 x0=b
0 ����������K 0b0=Kb
p

m s1p=g 2
1



In this case, the boundary condition at the water table
is

2h0

2z
�b 1 b0; t� � 2

S0y
K 0

2h0

2t
�b 1 b0; t�; �13�

whereS0y is the specific yield of the aquitard.

2.1.2. Laplace transform step-response functions
The dimensional boundary-value problems

described by Eqs. (1)–(13) are made dimensionless
by substituting the dimensionless variables and vari-
able groupings shown in Table 1. The mathematical
development is outlined in Attachment 1 in Barlow
and Moench (1998). The Laplace transform step-
response functions for all confined and leaky aquifer
types can be written in the most general form as

�hD � W exp�2 ���������
p 1 �qD
p �xD 2 1��

p{1 1
���������
p 1 �qD
p

A tanh� ���������
p 1 �qD
p �xLD 2 1��} ;

�14�
where�hD is the dimensionless Laplace transform step-
response function at any point (xD) in a vertical cross-
section of the aquifer. The bar over the step-response
function (hD) represents the Laplace transform. The
Laplace transform variable,p, is inversely related to
dimensionless timetD. For semi-infinite aquifers,xLD

goes to infinity and the hyperbolic tangent in Eq. (14)
is unity. ParameterW is a function of the width of the
aquifer perpendicular to the stream and is defined as

W � exp�22
���������
p 1 �qD
p �xLD 2 xD��1 1

exp�22
���������
p 1 �qD
p �xLD 2 1��1 1

:

Wequals 1 for semi-infinite conditions. ParameterA is
dimensionless streambank leakance

A� a
x0

;

wherea, streambank leakance, is defined by Eq. (7).
For conditions in which there is no semipervious
streambank material,A� 0:

Parameter (or source term)�qD accounts for leakage
between the aquifer and overlying aquitard and takes
on different forms depending upon the type of leaky
aquifer. In fact, mathematical expressions for�qD can
also be derived for completely different aquifer types
(e.g. various double-porosity aquifer geometries such
as those described by Moench (1984) for well hydrau-

lics and applied to stream–aquifer interaction by Onder
(1998)) that are beyond the scope of this paper. For a
confined aquifer with no overlying aquitard

�qD � 0;

for a leaky aquifer with constant head overlying the
aquitard (case 1)

�qD � g2
1
���
m
p

coth� ���
m
p �;

for a leaky aquifer with an impermeable layer over-
lying the aquitard (case 2)

�qD � g2
1
���
m
p

tanh� ���
m
p �;

and for a leaky aquifer overlain by a water-table aqui-
tard (case 3)

�qD � g2
1
���
m
p � ���

m
p �s 0g 2

1� tanh� ���
m
p �1 p�

� ���
m
p �s 0g 2

1�1 p tanh� ���
m
p �� :

Parametersg1;m;s 0 are defined in Table 1.
Eq. (14) is the general solution for all of the

confined and leaky aquifer types. For example, for a
semi-infinite, confined aquifer with no semipervious
streambank material between the aquifer and stream,
W � 1; A� 0; and �qD � 0: Under these conditions,
Eq. (14) becomes

�hD �
exp�2 ��

p
p �xD 2 1��

p
; �15�

which can be analytically inverted from the Laplace
domain and written in the real-time domain as

hD � erfc
�xD 2 1�
�4tD� 1=2

� �
�16�

Eq. (16) is the form most often cited in the literature
for the condition in which the origin of the coordinate
system is atx0 � 0 (Hall and Moench, 1972; Neuman,
1981).

The Laplace transform solution for seepage
between the stream and aquifer can be determined
by finding the gradient of the step-response solution
at the stream–aquifer boundary (i.e. atxD � 1). This
gradient is found by differentiation of Eq. (14) with
respect toxD and evaluation of the resulting solution at
xD � 1

�QD � 2
d�hD

dxD

�����
xD�1

�17�
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where �QD is dimensionless seepage in the Laplace
domain. As described in Barlow and Moench (1998,
Attachment 1), the gradient at the stream–aquifer
boundary for the confined and leaky aquifers, based
on Eq. (14), is

�QD � 2
���������
p 1 �qD
p

p{1 1
���������
p 1 �qD
p

A tanh� ���������
p 1 �qD
p �xLD 2 1��}

�
(

exp�22
���������
p 1 �qD
p �xLD 2 1��2 1

exp�22
���������
p 1 �qD
p �xLD 2 1��1 1

)
: (18)

For a semi-infinite, confined aquifer with no semi-
pervious streambank material between the aquifer and
stream,A� 0; �qD � 0; and the exponential terms in

the brackets equal21. Under these conditions, Eq.
(18) becomes

�QD �
��
p
p
p

; �19�

which can be analytically inverted from the Laplace
domain and written in the real-time domain as

QD � 2
1

�ptD�1=2
� �

; �20�

whereQD is dimensionless seepage in the real-time
domain. Eq. (20) is identical to that given by Hall and
Moench (1972).

2.2. Water-table aquifers

Fig. 5 shows diagrammatic cross-sections through
idealized semi-infinite water-table aquifers, with and
without a semipervious streambank, for which analy-
tical solutions are presented. An analogous figure
could be drawn for a finite-width aquifer (with an
impermeable boundary atx� xL). Each aquifer is
bounded by a stream with a depth that extends from
the impermeable boundary underlying the aquifer
�z� 0� to the water table atz� b: Except for the
addition of the finite-width aquifer and the stream
with a semipervious streambank, the solution
presented here is equivalent to the solution presented
by Neuman (1981). Ground-water flow is assumed to
be two-dimensional in thex, z plane perpendicular to
the stream for each of the water-table aquifers. As
with the confined and leaky aquifers, the distance
from the middle of the stream to the stream–aquifer
boundary isx0 (Fig. 5). To the general assumptions
listed above, one must add the following assumptions
regarding models for the water-table aquifers.

1. Each aquifer can be anisotropic, provided that the
principal directions of the hydraulic conductivity
tensor are parallel to thex, z coordinate axes.

2. Water is released (or taken up) instantaneously in a
vertical direction from (or into) the zone above the
water table in response to a decline (or rise) in the
elevation of the water table.

3. The change in saturated thickness of the aquifer
due to stream-stage fluctuations or recharge is
small compared with the initial saturated thickness.

4. Seepage and ground-water head at the stream–
aquifer boundary are independent of depth.

A.F. Moench, P.M. Barlow / Journal of Hydrology 230 (2000) 192–210200

Fig. 5. Semi-infinite, water-table aquifer: (A) without semipervious
streambank material; and (B) with semipervious streambank
material.



Because ground-water flow is assumed to be two-
dimensional, heads can vary in both thex and z
directions and are not necessarily uniform over the
thickness of each aquifer as with the confined and
leaky aquifers. Fig. 5A shows schematic drawings
of a partially penetrating observation well and an
observation piezometer at which ground-water-level
measurements could be made. The head measured at
the observation well is the average head that exists
over the screened interval of the well. Because
ground-water heads can vary over the vertical thick-
ness of the aquifer, it is likely that heads measured in
an observation piezometer and in a partially pene-
trating observation well located at the same distance
from the stream would not be equivalent. The only
condition under which the heads would be equivalent
is that in which a uniform head distribution occurred
over the full saturated thickness of the aquifer, such as
might occur far from the stream where flow is essen-
tially horizontal.

With regard to the zone above the water table where
water is held under tension, assumption 2 implies that
the equilibrium profile of soil moisture versus depth in
the unsaturated and nearly saturated (capillary fringe)
zones moves instantaneously in the vertical direction
by an amount equal to the change in altitude of the
water table. This assumption is commonly made in the
analytical treatment of flow in water-table aquifers
(e.g. Neuman, 1972, 1981) but may not lead to accurate
representation of head variations in piezometers
located near the water table (Moench, 1995). In fact,
as suggested by an analysis of field data in the compa-
nion paper by Barlow et al. (2000), a water-table aqui-
fer may respond very much like a confined aquifer if
the unsaturated zone is thin and the specific yield is
small. Assumption 2 also requires that there be no
hysteresis in the relation between the soil water
content and soil matric potential as the water table
fluctuates in response to stream-stage variations.

2.2.1. Boundary-value problems
The governing partial differential equation describ-

ing two-dimensional, cross-sectional (x, z) flow in a
water-table aquifer is

22h

2x2 1
Kz

Kx

22h

2z2 �
Ss

Kx

2h
2t

; �21�

where Kx and Kz are the horizontal and vertical
hydraulic conductivities of the water-table aquifer,
respectively. Thex-domain for Eq. (21) for semi-
infinite aquifers isx0 # x , ∞ and for finite-width
aquifers isx0 # x , xL : The z-domain for all water-
table aquifers is 0# z # b: In Eq. (21),h is a function
of x, z, andt.

The initial condition for all solutions is

h�x; z; 0� � hi ; �22�
wherehi is the initial head in the aquifer.

Several boundary conditions are used for each of
the water-table aquifers; the particular set of boundary
conditions used for each system depends on the con-
ditions being modeled. For a semi-infinite aquifer, the
boundary condition asx approaches infinity is

h�∞; z; t� � hi ; �23�
whereas for a finite-width aquifer, the boundary
condition atx� xL is

2h
2x
�xL ; z; t� � 0: �24�

The boundary condition used at the stream–aquifer
interface depends upon the presence or absence of
semipervious streambank material. For conditions in
which there is no semipervious streambank material, a
specified head is used atx0.

h�x0; z; t� � h0; �25�
where h0 is the water level in the stream after the
instantaneous step change. For conditions in
which semipervious streambank material is
present, a head-dependent flux boundary condition
is used atx0

2h
2x
�x0; z; t� � 2

1
a
�h0 2 h�x0; z; t��; �26�

where a, streambank leakance, is defined in Eq.
(7) and �h0 2 h�x0; t�� is the change in head across
the semipervious streambank material.

The boundary condition at the water table�z� b� is
2h
2z
�x; b; t� � 2

Sy

Kz

2h
2t

; �27�

whereSy is the specific yield of the aquifer. Eq. (27)
results, in part, from the assumption that drainage from
the zone above the water table occurs instantaneously.
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It is the same free-surface condition used by Neuman
(1972, 1981).

The boundary condition at the impermeable (no-flow)
lower boundary�z� 0� is

2h
2z
�x; 0; t� � 0: �28�

2.2.2. Laplace transform step-response functions
The dimensional boundary-value problems

described by Eqs. (21)–(28) are made dimensionless
by substituting the dimensionless variables and vari-
able groupings shown in Table 2. The Laplace trans-
form step-response functions for all water-table
aquifer types can be written in the most general
form as

�hD � 2
X∞
n�0

Wn exp�2qn�xD 2 1�� sin�en� cos�enzD�
{1 1 Aqn tanh�qn�xLD 2 1��} p�en 1 0:5 sin�2en�� ;

�29�
where

qn � �e2
nb0 1 p�1=2 �30�

anden are the roots of

en tan�en� � p
sb0

: �31�

In Eq. (29), �hD is the Laplace transform step-response
function at any point�xD; zD� of a water-table aquifer.

For the semi-infinite aquifers,xLD goes to infinity and
the hyperbolic tangent in Eq. (29) in unity. Parameter
Wn is a function of the width of the aquifer perpen-
dicular to the stream and is defined as

Wn � exp�22qn�xLD 2 xD��1 1
exp�22qn�xLD 2 1��1 1

:

Wn equals 1 for semi-infinite conditions. As with the
confined and leaky aquifer types, parameterA (Table
2) is dimensionless streambank leakance. For con-
ditions in which there is no semipervious streambank
material,A� 0:

Eq. (29) is the Laplace transform solution for head
at each point in a water-table aquifer, such as at an
observation piezometer. For a partially penetrating
observation well (Fig. 5A), the average head in the
well � �hp

D� is found by integrating Eq. (29) over the
screened intervalzD1 to zD2. The result is

�hp
D� 2
�zD2 2 zD1� ×

X∞
n�0

Wn exp�2qn�xD 2 1�� sin�en��sin�enzD2�2 sin�enzD1��
{1 1 Aqn tanh�qn�xLD 2 1��} pen�en 1 0:5 sin�2en�� :

�32�
By setting zD1 � 0 and zD2 � 1; one obtains the
average head in a fully penetrating observation
well � �̂hD�
�̂hD�2 ×
X∞
n�0

Wn exp�2qn�xD 2 1�� sin2�en�
{1 1 Aqn tanh�qn�xLD 2 1��} pen�en 1 0:5 sin�2en�� :

�33�
Eqs. (29)–(33) are general solutions for all of the

water-table aquifer types. For example, for a semi-
infinite, water-table aquifer with no semipervious
streambank material,Wn � 1 and A� 0: Under
these conditions, and the additional condition in
which the head is measured in a fully penetrating
observation well, Eq. (33) becomes

�̂hD � 2
X∞
n�0

exp�2qn�xD 2 1�� sin2�en�
pen�en 1 0:5 sin�2en�� : �34�

Eq. (34) reduces to the Laplace transform step-
response function for a confined aquifer (Eq. (15)) if
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Table 2
Dimensionless variables and variable groupings for water-table
aquifers

Dimensionless variable
or grouping

Definition

xD x=x0

xLD xL =x0

x0D x0=b
zD z=b
zD1 z1=b
zD2 z2=b
hD �hi 2 h�=c
tD Kxt=Ssx

2
0 � Tt=Sx20

tDy Tt=Syx2
0

A Kxd=Ksx0

s Ssb=Sy

KD Kz=Kx

b0 KDx2
0D



specific yield is zero (see Barlow and Moench (1998),
Attachment 1).

The Laplace transform solution for seepage
between the stream and aquifer can be determined
by finding the gradient of the step-response function
at the stream–aquifer boundary (i.e. atxD � 1�: This
gradient is found by differentiation of Eq. (33) with
respect toxD and evaluation of the resulting solution at
xD � 1

�QD � 2
d �̂hD

dxD

������
xD�1

; �35�

where �QD is dimensionless seepage in the Laplace
domain. The general solution for dimensionless
seepage at the streambank is

3. Evaluation of analytical solutions for step input

In this section, the analytical solutions are evalu-
ated for hypothetical confined, leaky, and water-table

aquifers for a unit-step increase (input) in the eleva-
tion of stream stage relative to that of piezometric
head in the adjoining aquifer. The evaluation demon-
strates the influence of aquifer type, aquifer extent,
and aquifer and streambank hydraulic properties on
ground-water heads and seepage rates. The solutions
also are compared graphically to several previously
published solutions.

Changes in ground-water heads are related to a
unit-step increase by (Tables 1 and 2)

hi 2 h�x; t� � 2hDc; �37�
where c is the step increase in water level of the
stream relative to the water level in the aquifer,hD

is determined by numerical inversion of the chosen
expression for dimensionless head, and the negative
sign in introduced in Eq. (37) so that changes in
ground-water heads are positive for a rise in stream
stage. The unit-step increase is equal to 1.0 ft (0.3 m).
English units are used in this and the companion paper
and SI-unit equivalents are given in parentheses.

Dimensional seepage rates are determined from Eq.
(17) or Eq. (35), Darcy’s law, and the definition ofhD

andxD given in Table 1

Q�t� � Kxbc
x0

QD; �38�

whereQ�t� is seepage rate per unit stream length at
time t, andQD is the dimensionless seepage in the real-
time domain. For confined and leaky aquifers,Kx is
replaced byK.

3.1. Confined and leaky aquifers

Parameters and dimensions of the hypothetical
confined and leaky aquifers and overlying aquitards
used in the evaluation are shown in Table 3. Changes
in ground-water heads were calculated at a hypo-

thetical observation well 100 ft (30.5 m) from the
middle of the stream, which is 75 ft (22.9 m) from
the stream–aquifer boundary.

Figs. 6 and 7 show changes in ground-water heads
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Table 3
Parameters and dimensions of the hypothetical confined and leaky
aquifers

Parameter Value

Aquifer
Hydraulic conductivity (K) 200 ft d21 �7:1 × 1024 m s21�
Specific storage (Ss) 1 × 1025 ft21 �3:3 × 1025 m21�
Thickness (b) 25 ft (7.6 m)
Width of aquifera (xL) 500 ft (152.4 m)
Distance from middle of stream
to stream–aquifer boundary (x0)

25 ft (7.6 m)

Aquitardb

Vertical hydraulic
conductivity (K 0)

2 ft d21 �7:1 × 1026 m s21�

Specific storage�S0s� 1 × 1024 ft21 �3:3 × 1024 m21�
Specific yieldc �S0y� 2.5× 1021

Thickness or saturated
thickness (b0)

25 ft (7.6 m)

a For finite-width aquifers.
b For leaky aquifers.
c For leaky aquifers overlain by a water-table aquitard.

�QD � 22
X∞
n�0

qn sin2�en�
{1 1 Aqn tanh�qn�xLD 2 1��} pen�en 1 0:5 sin�2en��

exp�22qn�xLD 2 1��2 1
exp�22qn�xLD 2 1��1 1

� �
: �36�



and seepage rates for a semi-infinite and finite-width
confined aquifer, respectively, with and without semi-
pervious streambank material. Heads and seepage
rates were calculated by use of the Laplace transform
step-response functions and by use of the real-time
domain solutions given by Hall and Moench (1972)
for the same parameters and dimensions shown in
Table 3. Negative seepage rates indicate that water
flows from the stream to the adjoining aquifer. Results
for two streambed-leakance values are shown in
the figures, a� 100 ft (30.5 m) anda� 1000 ft
(304.8 m). Comparisons (in Figs. 6 and 7) between
the inversion of the Laplace transform solutions and
real-time domain solutions of Hall and Moench
(1972) for both heads and seepage rates for all of
the semi-infinite and finite-width aquifer conditions
show no discernible difference.

Both sets of head solutions asymptotically
approach the unit-step stream-stage increase of 1.0 ft
(Figs. 6A and 7A). Initially, fora� 0; seepage rates
from the stream to the adjoining aquifer are large
(Figs. 6B and 7B). With increased time, ground-
water heads near the stream approach the stream-
stage level and, as a result, hydraulic gradients and
seepage rates at the stream–aquifer boundary
approach zero. The inclusion of a streambank
leakance term delays the increase in ground-water
heads at the observation well and reduces seepage
rates to the aquifer at early-time periods. As the
streambank leakance term is increased, seepage
rates at the stream–aquifer interface are greatly
diminished by the increased hydraulic resistance at
the streambank.

The response of semi-infinite and finite-width
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Fig. 6. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, semi-infinite
confined aquifer with and without semiprevious streambank material.
�1:0 ft � 3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:

Fig. 7. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, finite-width
confined aquifer with and without semipervious streambank material.
�1:0 ft � 3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:



confined aquifers without semipervious streambank
material are compared for several values of aquifer
width in Fig. 8. At early-time periods (less than about
4 × 1024 days�; the semi-infinite and finite-width aqui-
fers respond similarly. At later times, the narrower
aquifers (xL small) cause ground-water heads to rise
more quickly and seepage rates to approach zero
more rapidly than do those for the wider aquifers
(xL large) because of the overall smaller storage
capacity available in the narrower aquifers. As the
width of the finite-width aquifer increases, the
responses approach the responses for the semi-infi-
nite aquifer solutions.

Solutions for a semi-infinite leaky aquifer with
constant head overlying the aquitard (leaky aquifer
case 1) without semipervious streambank material

are shown in Fig. 9 for several values of the specific
storage of the aquitard�S0s�: Also shown in the figure
are the solutions for a semi-infinite confined aquifer with
storativity (S) of 2:5 × 1024

: Each of the leaky aquifer
solutions asymptotically approaches a constant
(steady-state) value of ground-water head that is smal-
ler, and a constant rate of seepage that is larger, than
the confined aquifer solutions. These result from the
constant-head boundary condition that overlies the
aquitard and provides an infinite source (or sink) of
ground-water storage to the aquifer/aquitard system.
The figure shows that the response of the leaky aquifer
system is delayed relative to the confined aquifer, and
that the delay is increased as the specific storage of the
aquitard increases. The real-time domain solutions of
Hantush (1961) for similar leaky aquifer conditions
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Fig. 8. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, finite-
width and semi-infinite confined aquifers. �1:0 ft �
3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:

Fig. 9. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, semi-infinite
leaky aquifer with constant head overlying the aquitard.�1:0 ft �
3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:



are also shown in Fig. 9. Hantush’s solutions do not
consider storage in the aquitard; consequently, those
solutions are equivalent to the solutions presented in
this paper only when the specific storage of the
aquitard is unreasonably small, such as the value
of 1:0 × 1027 ft21 �3:3 × 1027 m21� shown in the
figure.

Solutions for all three types of leaky aquifers (case
1, case 2, and case 3) without semipervious stream-
bank material are compared in Fig. 10. Also shown in
the figure are solutions for a semi-infinite confined
aquifer with storativity of 2:5 × 1024 and 2:5 ×
1021

: These two storativities are limiting values for
the confined/leaky systems modeled here: the value
2:5 × 1024 is that of the confined aquifer (no aquitard)
and the value 2:5 × 1021 equals the specific yield of
the water-table aquitard. The leaky-aquifer head solu-
tions quickly depart from the confined aquifer solu-

tion at early times (Fig. 10A). The solutions for the
three leaky aquifer types yield identical drawdowns
up to a time of about 0.01 days, when they begin to
diverge from one another because of the influence of
the upper boundary condition of the aquitard.

At late time, the solutions for case 1 (aquitard over-
lain by constant-head boundary) asymptotically
approach steady-state values of head and seepage
(as also shown in Fig. 9) because of the constant-
head boundary condition that overlies the aquitard.
Solutions for case 2 (aquitard overlain by an imperme-
able boundary) asymptotically approach the confined
aquifer solutions but are shifted in time relative to the
confined aquifer solutions by a factor of 11 �1=s1�:
The shift is analogous to that which occurs in flow to a
well in leaky aquifers (see Moench, 1985, p. 1129).
The leaky aquifer solutions for case 2 approach the
confined aquifer solutions because the impermeable
boundary condition at the top of the aquitard prevents
any additional source (or sink) of leakage to the aqui-
fer at late time.

Solutions for case 3 (water-table aquitard) are iden-
tical to those of case 1, up to a time of about 0.1 days,
because the large storage capacity provided by the
water-table boundary causes the system to respond
as it would to a constant-head boundary overlying
the aquitard. At late times, the solutions for case 3
lie between those of cases 1 and 2, because the rate
of flow into storage at the water table slows. Even-
tually, head changes and seepage rates for the water-
table aquitard system approach those of a confined
aquifer with storativity equal to the specific yield of
the aquitard�2:5 × 1021�:
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Fig. 10. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, semi-infi-
nite leaky aquifers. �1:0 ft � 3:1 × 1021 m; 1:0 ft3 d21 ft21 �
1:1 × 1026 m3 s21 m21�:

Table 4
Parameters and dimensions of the hypothetical water-table aquifer

Parameter Value

Horizontal hydraulic
conductivity�Kx�

200 ft d21 �7:1 × 1024 m s21�

Vertical hydraulic
conductivity�Kz�

40 ft d21 �1:4 × 1024 m s21�

Specific storage (Ss) 1 × 1025 ft21 �3:3 × 1025 m21�
Specific yield (Sy) 2:5 × 1021

Saturated thickness (b) 25 ft (7.6 m)
Distance from middle of stream

to stream–aquifer
boundary (x0)

25 ft (7.6 m)



3.2. Water-table aquifers

Parameters and dimensions of the hypothetical
water-table aquifer used in the evaluation are shown
in Table 4. Changes in ground-water heads were
calculated at a hypothetical observation well 100 ft
from the middle of the stream, which is 75 ft from
the stream aquifer boundary.

Fig. 11 shows changes in ground-water heads and
seepage rates for a semi-infinite water-table aquifer
without semipervious streambank material for three
values ofKD (ratio of vertical to horizontal hydraulic
conductivity), calculated using the Laplace transform
step-response functions. Ground-water heads shown
in the figure are the average head over the full satu-
rated thickness of the aquifer at the hypothetical

observation well. As with the confined and leaky solu-
tions, negative seepage rates indicate that water flows
from the stream to the adjoining aquifer, in response
to the unit-step increase in stream stage. Also shown
in the figure are the limiting solutions (see Table 4) for
a semi-infinite confined aquifer with storativity of
2:5 × 1024 and 2:5 × 1021

:

Ground-water heads calculated using the real-time
domain solution of Neuman (1981) for flow to a fully
penetrating stream in a semi-infinite water-table aqui-
fer also are shown in Fig. 11A. By making only minor
modifications in the computer programdelay2 that
Neuman (1972) developed for the mathematically
similar problem of flow to a well, ground-water
heads were calculated from Neuman’s (1981) solution
for flow to a fully penetrating stream. Comparisons for
the three values ofKD shown in Fig. 11A between the
numerical inversion of the Laplace transform step-
response function for ground-water head presented
in this paper and Neuman’s (1981) real-time solution
show no discernible difference.

Ground-water heads in Fig. 11A for any particular
value ofKD show the three characteristic segments of
the response of water-table aquifers to a step change
in the stream stage. Physical explanations for these
three segments have been described by several
authors for the case of ground-water flow to a pumped
well (e.g. see discussions by Neuman (1972, 1974)),
and the explanations are similar for the response of a
water-table aquifer to stream-stage fluctuations.
During the early-time segment, the aquifer responds
as would a strictly confined aquifer with storativity
equal to 2:5 × 1024

: That is, water goes into elastic
storage by expansion of the aquifer materials and
compression of the pore water. Effects of vertical
flow into the zone above the water table are not preva-
lent during the early-time segment when horizontal
flow dominates. The length of time during which elas-
tic-storage effects are prominent is increased as the
ratio of vertical to horizontal hydraulic conductivity
(KD) is decreased. This is due to increased resistance
to vertical flow in the aquifer, because of the smaller
values of vertical hydraulic conductivity. Although
not shown in Fig. 11, the length of time during
which elastic-storage effects are prominent also
decreases as the ratio of storativity to specific yield
(s , Table 2) decreases (Neuman, 1972).

During the intermediate-time segment, flow into
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Fig. 11. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, semi-infinite
water-table aquifer without semipervious streambank material.
�1:0 ft � 3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:



the unsaturated zone becomes important and the rate
of change of ground-water heads is slowed (Fig. 11A).
The delayed response of the water table is similar to
the response of the leaky aquifer systems shown in
Fig. 10. Vertical-flow components are important
during this segment as the water table rises. Finally,
during the late-time segment, the aquifer again
responds as would a strictly confined aquifer and
ground-water heads converge on the solution for a
confined aquifer with storativity equal to 2:5 × 1021

(Fig. 11A), which equals the specific yield of the
aquifer. Water goes into storage only by an increase
in the elevation of the water table. Horizontal ground-
water flow dominates during this time segment, as it
did during the early-time segment.

Fig. 12 shows ground-water heads in piezometers
located at three vertical positions in the aquifer and
the average head over the full saturated thickness of
the aquifer for KD � 0:2: Vertical variations in
ground-water heads over the saturated thickness of
the aquifer in this instance result in upward flow
into the zone above the water table. The results
shown in Fig. 12 are similar to those presented by
Neuman (1972, Fig. 4, p. 1037) for the case of
ground-water flow to a well. Ground-water heads
below the water table�zD , 1:0� respond quickly to
the change in head at the stream–aquifer boundary as
a result of elastic storage of the aquifer. An equivalent
head change at the water table�zD � 1:0� is delayed
relative to head changes deeper in the aquifer in

response to saturation of the pores as the water table
rises. The average head change over the thickness of
the aquifer responds more quickly than that at the
water table, but lags behind those forzD � 0:0 and
zD � 0:5: At late time, because the stream is assumed
to penetrate the full thickness of the aquifer, all of the
curves approach the solution for the confined aquifer
with storativity equal to 2:5 × 1021

; which implies
that heads are uniform over the thickness of the aqui-
fer and that horizontal ground-water flow dominates.
As noted by Neuman (1972), the convergence of the
curves to the single, uniform solution is consistent
with the Dupuit–Forchheimer theory of horizontal
ground-water flow in a water-table aquifer. It is only
after this point in time that the use of the confined aquifer
solution with storativity equal to the specific yield of the
aquifer is truly justified for a fully penetrating stream.
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Fig. 12. Change in ground-water head for 1-foot (0.3 m) increase in
stream stage at several vertical positions in a semi-infinite water-table
aquifer forKD� 0.2�1:0 ft � 3:1 × 1021 m;1:0 ft3 d21 ft21 � 1:1 ×
1026 m3 s21 m21�:

Fig. 13. (A) Change in ground-water head; and (B) seepage rate to
aquifer, for 1-foot (0.3 m) increase in stream stage, semi-infinite
water-table aquifer and leaky aquifer overlain by water-table aquitard.
�1:0 ft � 3:1 × 1021 m; 1:0 ft3 d21 ft21 � 1:1 × 1026 m3 s21 m21�:



Fig. 13A shows a comparison of the response in
a water-table aquifer to that of an aquifer overlain
by a water-table aquitard. As noted by Boulton
and Streltsova (1975) for the case of flow to a
pumped well, the upper boundary condition in a
water-table aquifer is the same as that in an aqui-
fer overlain by a water-table aquitard. Hence,
ground-water heads (and seepage rates) calculated
for the two aquifer types should approach one
another as the thickness of the water-table aqui-
tard becomes zero. This is also true for stream–
aquifer settings and is demonstrated by the results
shown in Fig. 13, in which simulations are shown for
several values of aquitard thickness (see Table 3 for
the flow parameters) and a single simulation for the
water-table aquifer (Table 4) in whichKD � 1:0: As
shown in the figure, ground-water heads and seepage
rates for the water-table aquitard condition approach
those of the water-table aquifer as the thickness of the
aquitard is reduced from 25 ft (7.6 mm) to 0.1 ft
(0.03 m).

4. Summary

Laplace transform step-response functions are
presented for several cases of transient, hydraulic
interaction between a fully penetrating stream and a
confined, leaky, or water-table aquifer. The various
aquifers (confined, leaky, or unconfined) may be
semi-infinite or finite in width and may or may not
be connected with the stream through a semipervious
streambank. The solutions are based on the governing
differential equation of transient ground-water flow in
a saturated, homogeneous, slightly compressible, and
anisotropic (for water-table) aquifer. All solutions are
based on the condition of an instantaneous step
change in stream stage. They are equally applicable
to the condition of an instantaneous regional rise or
decline in the altitude of the water table or piezo-
metric surface caused by area-wide recharge, irriga-
tion, or evapotranspiration. The one-dimensional
solutions for confined and leaky aquifers are presented
in a format that combines all aquifer configurations in
a single expression for which the appropriate source
term� �qD� is chosen. The source term parameter differs
depending upon the upper boundary condition for the
aquitard. The two-dimensional solutions for the

response of a water-table aquifer are presented in a
similar format.

Of primary interest are the expanded solutions for
water-table aquifers and for leaky aquifers overlain
by water-table aquitards. The general aspects of the
response of water-table aquifers and water-table
aquitards to changes in the water level of a bounding
stream are similar to those that occur in response to
the withdrawal or injection of ground water from a
well pumping from a water-table aquifer or leaky
aquifer overlain by a water-table aquitard; thus,
conclusions drawn in this study for these aquifer
types are similar to previous investigations in the
field of well hydraulics.

Each of the stream–aquifer systems modeled in this
paper derive from linear partial differential equations
of ground-water flow and by linear boundary con-
ditions. The assumed linearity of the systems allows
for use of the convolution integral, which is the
subject of the companion paper by Barlow et al.
(2000).
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