
General well function for pumping from a confined,

leaky, or unconfined aquifer

Tomas Perinaa,*, Tien-Chang Leeb,1

aCH2M HILL, 3550 Vine Street Suite 320, Riverside, CA 92507, USA
bDepartment of Earth Sciences, University of California, Riverside, CA 92521, USA

Received 26 November 2003; revised 10 May 2005; accepted 25 May 2005

Abstract

A general well function for groundwater flow toward an extraction well with non-uniform radial flux along the screen and

finite-thickness skin, partially penetrating an unconfined, leaky-boundary flux, or confined aquifer is derived via the Laplace

and generalized finite Fourier transforms. The mixed boundary condition at the well face is solved as the discretized Fredholm

integral equation. The general well function reduces to a uniform radial flux solution as a special case. In the Laplace domain,

the relation between the drawdown in the extraction well and flowrate is linear and the formulations for specified flowrate or

specified drawdown pumping are interchangeable. The deviation in drawdown of the uniform from non-uniform radial flux

solutions depends on the relative positions of the extraction and observation well screens, aquifer properties, and time of

observation. In an unconfined aquifer the maximum deviation occurs during the period of delayed drawdown when the effect

of vertical flow is most apparent. The skin and wellbore storage in an observation well are included as model parameters.

A separate solution is developed for a fully penetrating well with the radial flux being a continuous function of depth.
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1. Introduction

New analytical solution for groundwater flow

toward a partially penetrating well of finite diameter

installed in an unconfined, leaky, or confined aquifer

of finite thickness under a variety of test conditions is
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here presented. The solution allows for non-uniform

radial flux distribution along the well screen. It is

applicable to specified flowrate or specified draw-

down pumping from a partially penetrating well

surrounded by a skin zone.

Flow toward a partially penetrating well has

usually been treated with the assumption of a uniform

radial flux (UF) along the well screen for the

development of analytical solutions (e.g.: Hantush,

1961; Neuman, 1974; Lee, 1999). It is more

appropriate to assume that the pressure change

induced by extraction occurs instantaneously within
Journal of Hydrology 317 (2006) 239–260
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Nomenclature

a factor resulting from the upper boundary

condition, aZSypb/Kz

b saturated thickness, [m]

bc thickness of confining layer, [m]

cv vertical leakance of confining layer, [sK1]

H drawdown within the extraction well, [m]

Hc constant drawdown applied at the extrac-

tion well, [m]

Hd initial displacement applied within the

tested well during slug test, [m]

ha drawdown within the aquifer, [m]

hos average drawdown along the aquifer-

observation well skin interface, [m]

how drawdown in observation well casing, [m]

hs drawdown within the well skin, [m]

Kn modified Bessel function of the first kind

and n-th order, [K]

In modified Bessel function of the second

kind and n-th order, [K]

Kc vertical hydraulic conductivity of confin-

ing layer, [msK1]

Kos hydraulic conductivity of observation well

skin, [msK1]

Kr horizontal hydraulic conductivity, [msK1]

Kz vertical hydraulic conductivity, [msK1]

N number of well screen segments, [K]

Nsin nearest integer of 2/Dh

p Laplace transform variable (t/p), [sK1]

Q extraction rate, [m3 sK1]

Qc constant flowrate from the extraction well,

[m3 sK1]

q specific radial flux across the pumping well

screen per unit screen length, [m2 sK1]

qj specific radial flux across the j-th screen

segment, [m2 sK1]

r radial distance, [m]

rc radius of extraction well casing, [m]

roc radius of observation well casing, [m]

ros radius of observation well skin, [m]

row radius of observation well screen, [m]

rs radius of skin, [m]

rw radius of extraction well screen, [m]

Ss specific storage, [mK1]

Sy specific yield, [K]

t time, [s]

z depth below the top of the aquifer, [m]

zb z to the bottom of the extraction well

screen, [m]

zob z to the bottom of observation well screen,

[m]

zot z to the top of observation well screen, [m]

zt z to the top of the extraction well screen,

[m]

a factor resulting from the wellbore storage

condition, aZpr2
c p

Dhj dimensionless length of the j-th screen

segment, [K]

h dimensionless depth hZ(bKz)/b, [K]

ln roots of (24)

xn quantity resulting from the modified

Bessel Eq. (30), [mK1]

The overbar stands for the Laplace transform and

subscript n for the GFFC transform. Superscripts a

and s stand for properties of the aquifer and skin,

respectively.
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the well, and to use a mixed type boundary condition

at rw; i.e. with specified drawdown along the screen

and zero flux elsewhere (Hyder et al., 1994; Cassiani

and Kabala, 1998; Hemker, 1999; Chang and Chen,

2003). Several authors recently presented analytical

solutions for a mixed-boundary problem of constant

drawdown pumping from a well partially penetrating

a confined aquifer. Their solutions account for non-

uniform radial flux (NUF) along the extraction well

screen. Cassiani and Kabala (1998) presented a

solution for a flowing partially penetrating well in a
confined aquifer of semi-infinite vertical extent.

Chang and Chen (2003) derived a solution for

constant drawdown pumping test conducted on a

well partially penetrating a confined aquifer of finite

thickness. Hemker (1999) presented a hybrid analyti-

cal-numerical solution for flow in a layered aquifer

toward a well operated at a specified discharge that

accounts for non-uniform radial flow distribution

along the screen. Lee and Damiata (1995) solved an

equivalent mixed-boundary condition problem in

downhole resistivity logging to account for constant
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voltage and varying radial current transmission along

an electrode of finite length.

The boundary condition at the well face is of

mixed-type for either specified drawdown or specified

flowrate pumping test. It will be shown in this paper

that the relation between the drawdown in the

extraction well and the pumping rate is linear in the

Laplace domain and solutions for drawdown during

specified flowrate pumping and specified drawdown

pumping can be derived from a single formulation.

Constant flowrate pumping, constant drawdown

pumping, and slug test are presented as special

cases. The solution for constant drawdown pumping

from a partially penetrating well can be derived for

both UF and NUF models.

The NUF solution for a partially penetrating well is

derived using a discretization approach similar to the

one used by Chang and Chen (2003) and Lee and

Damiata (1995); the solution can, therefore, be

classified as ‘semi-analytical’. We also derive a

NUF solution for a well fully penetrating an

unconfined or leaky aquifer without the discretization

and with the radial flux across the well screen being a

continuous function of depth; this solution serves also

as an accuracy check for the discretization approach.

Our solution constitutes a general well function for

pumping from a uniform confined aquifer of Theis
z = zt

z = zb

z = 0

z = b

rw

rs

rc

Extraction well

H(t)

ha(r,z,

Skin:
Krr

s, Kz
s,

Ss
s, Sy

s

z

r

hs(r,z,t)

Fig. 1. Test well geometry in an unc
(1935), unconfined aquifer of Neuman (1972), and

leaky-boundary flux aquifer of Lee (1999, p. 134).
2. Formulation of solutions

Consider a Neuman’s (1972, 1973) type of

unconfined aquifer of thickness b. Its properties (Ka
r ,

Ka
z , Sa

s , Sa
y and b) are uniform within the zone

influenced by the pumping. Aquifer drainage at the

water table is presumably instantaneous. The draw-

down is sufficiently small, so that the position of the

water table can be assumed to be unchanged during

the test for mathematical convenience. Confined and

leaky aquifers will be considered later as special

cases. The initial condition is taken as zero drawdown

everywhere in the aquifer prior to the test.

The extraction well has a finite diameter and

partially penetrates the aquifer (Fig. 1). The test is

conducted under the condition of either specified

flowrate or specified drawdown instantaneously

applied at the extraction well at time zero. The term

‘specified’ implies that the quantity be known (or

measured); in general, it does not have to be constant

in time.

Wellbore storage effect and low permeability skin

at the extraction well (Mishra and Guyonnet, 1992;
Water table

Ground surface

Aquifer bottom

t)

Aquifer: 
Kr

a, Kz
a, 

Ss
a, Sy

a

onfined aquifer of thickness b.
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Moench, 1997, 1998; Lee, 1999) and observation well

(Black and Kipp, 1977; Tongpenyai and Raghavan,

1981; Shapiro, 1989) will be considered here. Effects

of nonlinear frictional well losses (Kawecki, 1995)

and water level changes in wells due to atmospheric

pressure fluctuations and earth tides (Rasmussen and

Crawford, 1997) can be removed from the test data by

applying additional corrections.

A finite thickness skin with properties Ks
r , Ks

z , Ss
y,

and Ss
s extending from rw to rs (rsOrw) is considered.

Superscripts a and s used to designate the properties of

the aquifer and skin, respectively, are omitted in

relations that hold for both regions.

The governing partial differential equation for

density-independent groundwater flow is

Kr

v2h

vr2
C

1

r

vh

vr

� �
CKz

v2h

vz2
Z Ss

vh

vt
; (1)

where h is the drawdown as a function of time (t)

and position and Kr and Kz are the hydraulic

conductivities in the radial and vertical directions,

respectively, and Ss is the specific storage (see the list

of Nomenclature).

The boundary conditions vary depending on the

type of aquifer, screen placement of the extraction

well, and type of test (specified extraction rate,

specified drawdown, or slug test). The general well

face boundary condition is

f ðzÞ Q Kpr2
c

vH

vt

� �
ZK2prwKr

ðzb

zt

vh

vr
dz

at r Z rw;

(2)

where

f ðzÞ Z
1 zt%z%zb

0 otherwise
;

(
(3)

Q is the extraction rate, rw is the well screen radius, rc

is the well casing radius (in general, the two radii may

be different), H is the drawdown within the extraction

well, and zt and zb are depths to the top and bottom of

the well screen, respectively (the z coordinate is

downward positive).

The groundwater flow region is divided into two

zones in the radial direction: rs%r!N for flow in the

aquifer and rw%r!rs for flow within the skin. To

impose continuity of drawdown and flux at the joint
boundary at rs, the drawdown in the aquifer ha and

within the skin hs are related by

hs Z ha at r Z rs (4)

and

Ks
r

v

vr
hs Z Ka

r

v

vr
ha at r Z rs: (5)

It is convenient to re-write the well face boundary

condition (2) as

q ZK2prwKs
r

vhs

vr
at r Z rw (6)

where q is the yet unknown radial flux per unit screen

length and satisfy the condition for wellbore storage

by

Q Kpr2
c

vH

vt
Z

ðzb

zt

qdz: (7)

The pumping test problem is defined by the

governing Eq. (1) subject to the initial condition

h Z 0 at t Z 0; (8)

boundary conditions

Kz

vh

vz
Z Sy

vh

vt
at z Z 0; (9)

vh

vz
Z 0 at z Z b; (10)

ha/0 as r/N; (11)

well-face condition (6), and wellbore storage con-

dition (7). It is noted that because boundary condition

(9) is of the Cauchy type, vertical flow will occur in

the aquifer during pumping from either a partially or

fully penetrating extraction well.

2.1. Solution

Take the Laplace transform in time of Eq. (1),

initial condition (8), boundary conditions (6), (9)–

(11), as well as condition (7). Then, introduce a

dimensionless variable,

h Z
b Kz

b
; (12)

for the convenience of an integral transform to be

applied later. These equations become:
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Kr

v2 �h

vr2
C

1

r

v �h

vr

� �
C

Kz

b2

v2 �h

vh2
Z Ssp �h; (13)

K
Kz

b

v �h

vh
Z Syp �h at h Z 1; (14)

v �h

vh
Z 0 at h Z 0; (15)

ha /0 as r/N; (16)

�q ZK2prwKs
r

vhs

vr
at r Z rw; (17)

hs Z ha at r Z rs; (18)

Ks
r

v

vr
hs Z Ka

r

v

vr
ha at r Z rs; (19)

and

�Q Ka �H Z b

ðh2

h1

�qdh; (20)

where

a Z pr2
c p; (21)

h1 Z
b Kzb

b
; and h2 Z

b Kzt

b
: (22)

Eq. (13) is to be solved by means of the generalized

finite Fourier cosine (GFFC) transform defined on the

interval 0%x%1 (Churchill, 1972, p. 370). The nth

term of GFFC is

gn Z FfgðxÞg Z

ð1

0
gðxÞcosðlnxÞdx; (23)

where ln are the roots of

tanðyÞ Z
a

y
; (24)

and a is a positive constant, to be related later to

aquifer properties. Using the relation (24), the

eigenfunction cos(lnx) can be shown to have the

orthogonality property
ð1

0
cosðlnxÞcosðlmxÞdx

Z

0; nsm

a Csin2ðlnÞ

2a
; n Z m

:

8><
>: (25)

Accordingly, the inversion formula is

gðxÞ Z FKfgng Z 2a
XN

nZ0

gn

cosðlnxÞ

a Csin2ðlnÞ
: (26)

The GFFC transform of the second derivativeÐ 1
0

v2gðxÞ

vx2 cosðlnxÞdx,

F
v2

vx2
gðxÞ

� �

ZKl2
ngn K

v

vx
gð0ÞC agð1ÞC

v

vx
gð1Þ

� �
cosðlnÞ;

(27)

obtained by repeated integration by parts, makes it

suitable for the unconfined problem considered

because the top and bottom boundary conditions can

be conveniently implemented.

It is noted that the GFFC transform can be replaced

by a corresponding technique of separation of

variables with generalized cosine series expansion

(Churchill, 1972; p. 307). The finite cosine and sine

transforms, commonly used to solve flow problems

involving partially penetrating wells (e.g., Hantush,

1961; Hyder et al., 1994), cannot be used in this case

because of the Cauchy-type boundary condition at the

water table.

The top boundary condition is now rewritten as

vha

vh
Caaha Z 0 and

vhs

vh
Cashs Z 0

at h Z 1;

(28)

aa Z
Sa

ypb

Ka
z

and as Z
Ss

ypb

Ks
z

: (29)

Roots la
n and ls

n correspond to aa and as,

respectively.

Applying the GFFC transform in h, imposing the

top and bottom boundary conditions, using the

orthogonality of cos(lnx), and rearranging terms
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results in

v2 �hn

vr2
C

1

r

v �hn

vr
K

Kz

b2

l2
n

Kr

C
Ssp

Kr

� �
�hn Z 0 (30)

for the n-th term of an infinite series.

The Fourier-transformed well face boundary

condition is

ð1

0
�q cosðls

nhÞdh ZK2prwKs
r

v �hs
n

vr
at r Z rw: (31)

The left-hand side of (31) will be resolved later for

�q. The transformed joint boundary conditions are

hs
n Z ha

n at r Z rs; (32)

and

Ks
r

v

vr
hs

n Z Ka
r

v

vr
ha

n at r Z rs: (33)

Solving Eq. (30) subject to transformed condition

(16) yields

ha
n Z CnK0ðx

a
nrÞ (34)

and

hs
n Z BnK0ðx

s
nrÞCAnI0ðx

s
nrÞ (35)

where K0 and I0 are the modified Bessel functions of

the first and second kinds and zeroth order,

xa
n Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

z

b2

la2
n

Ka
r

C
Sa

sp

Ka
r

s
; (36)

and

xs
n Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks

z

b2

ls2
n

Ks
r

C
Ss

sp

Ks
r

s
: (37)

Coefficients An and Cn are evaluated from

conditions (32) and (33)

Cn Z Bn

K0ðx
s
nrsÞ

K0ðx
a
nrsÞ

CAn

I0ðx
s
nrsÞ

K0ðx
a
nrsÞ

; (38)

An Z BnGn; (39)
where

Gn Z
Ks

r xs
n

Ka
r xa

n

K1ðx
s
nrsÞK

K0ðx
s
nrsÞK1ðx

a
nrsÞ

K0ðx
a
nrsÞ

� �

!
Ks

r xs
n

Ka
r xa

n

I1ðx
s
nrsÞC

I0ðx
s
nrsÞK1ðx

a
nrsÞ

K0ðx
a
nrsÞ

� �K1

;

(40)

and K1 and I1 are the modified Bessel functions of the

first and second kinds and first order.

It is now convenient to express the GFFC

transformed solution as

ha
n Z Bn

K0ðx
s
nrsÞ

K0ðx
a
nrsÞ

CGn

I0ðx
s
nrsÞ

K0ðx
a
nrsÞ

� �
K0ðx

a
nrÞ (41)

and

hs
n Z Bn½K0ðx

s
nrÞCGnI0ðx

s
nrÞ�: (42)

Coefficient Bn is evaluated from condition (31)

Bn Z

Ð 1
0 �q cosðls

nhÞdh

2prwKs
r xs

n½K1ðx
s
nrwÞKGnI1ðx

s
nrwÞ�

(43)

Eq. (43) containing the unknown flux �q under the

integral is the Fredholm integral equation of the first

kind (Press et al., 1992, p. 779). It will be solved in a

discrete form. The well screen interval is discretized

into N segments of length Dhj which is sufficiently

small that the radial flux �q can be assumed to be

constant within each segment. The segments do not

need to be of equal length. As discussed later, the

segmental length determines the number of the

Fourier summation terms. The fluxes will be

determined by imposing the condition of uniform

drawdown along the well screen. Let �qj represent the

unit flux per screen length from the aquifer into the

well segment j; then the inegral can be replaced by the

summation

Bn Z
XN

jZ1

�qjDj;n (44)

where

Dj;n Z
½sinðls

nhjCÞKsinðls
nhjKÞ�

2prwKs
r ls

nxs
n½K1ðx

s
nrwÞKGnI1ðx

s
nrwÞ�

; (45)

hjK Z hj K
Dhj

2
; hjC Z hj C

Dhj

2
; (46)
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and

Dhj Z hjC KhjK: (47)

Taking the inverse GFFC transform of (41) and

(42) yields

ha Z 2aa
XN

nZ0

Bn

K0ðx
s
nrsÞ

K0ðx
a
nrsÞ

CGn

I0ðx
s
nrsÞ

K0ðx
a
nrsÞ

� �

K0ðx
a
nrÞ

cosðla
nhÞ

aa Csin2ðla
nÞ
;

(48)

and

hs Z 2as
XN

nZ0

Bn½K0ðx
s
nrÞCGnI0ðx

s
nrÞ�

!
cosðls

nhÞ

as Csin2ðls
nÞ
: (49)

Eqs. (48) and (49) still contain the unknown fluxes.

The solution for radial flux is subject to the condition

that the average drawdown at rZrw for every segment

is equal to �H. The drawdown �H is calculated as an

average along each screen segment i

�H Z
1

hiC KhiK

ð
hiC

hiK

hsdh at r Z rw (50)

to obtain

�H Z
2as

Dhi

XN

nZ0

Bn

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

as Csin2ðls
nÞ

� �

!
sinðls

nhiCÞKsinðls
nhiKÞ

ls
n

:

(51)

The system of Eq. (51) relates the unknown fluxes

�qj to the drawdown in the extraction well H for a

drawdown-controlled well (specified drawdown

pumping). In matrix form for all segments, it becomes

�H Z
XN

jZ1

qjJij; (52)
or explicitely

J1;2 J1;2 / / J1;N

J2;1 J2;2 / / J2;N

« « « « «

« « « « «

JN;1 JN;2 / / JN;N

2
66666664

3
77777775

q1

q2

«

«

qN

2
66666664

3
77777775

Z

�H

�H

«

«

�H

2
66666664

3
77777775
; (53)

where

Jij Z
as

prwKs
r Dhi

!
XN

nZ0

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

xs
n½K1ðx

s
nrwÞKGnI1ðx

s
nrwÞ�

!
jij

as Csin2ðls
nÞ

(54)

and

jij Z
½sinðls

nhjCÞKsinðls
nhjKÞ�½sinðls

nhiCÞKsinðls
nhiKÞ�

ls2
n

:

(55)

To compute the drawdown in the aquifer during

specified H pumping, Eq. (53) is solved for qj and the

resulted fluxes are substituted into (48). Note that in this

case the drawdown in the aquifer can be computed

without explicitly dealing with the wellbore storage term.

The flowrate during specified drawdown pumping is

computed from the discretized form of (20)

�QKa �HZb
XN

jZ1

Dhjqj : (56)

Imposing condition (56) on (52) yields the system of

equations for a flow-controlled well (specified flowrate

pumping)

�QZ
XN

jZ1

qj ½aJijCbDhj�; (57)
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in matrix form

bDh1CaJ1;2 bDh2CaJ1;2 //bDhNCaJ1;N

bDh1CaJ2;1 bDh2CaJ2;2 //bDhNCaJ2;N

« « « « «

« « « « «

bDh1CaJN;1bDh2CaJN;2//bDhNCaJN;N

2
66666664

3
77777775

�q1

�q2

«

«

qN

2
6666664

3
7777775

Z

�Q

�Q

«

«

�Q

2
66666664

3
77777775
:

(58)

The drawdown in the aquifer is again computed using

(48). The drawdown within the skin is computed by

substituting �qj into (49).
2.2. Special cases

Solutions for several special cases can be directly

obtained from the general solution (48). Alternative

solutions for special cases are also derived to

numerically verify the general solution under the

limiting conditions.

Uniform Radial Flux. For NZ1, (48) with

substitution from (56) reduces to a uniform flux

solution that can also be obtained by treating the

integrand in (2) as constant.

No-Skin. When the properties of the skin are the

same as those of the aquifer, xs
nZxa

n and term Gn (40)

equals zero. As a result, (48) and (49) attain the same

functional form with K0 being the only Bessel

function retained.

Simplified Skin. A simpler functional form can be

obtained if the flow across the skin is approximated by

a steady state difference equation (Perina, 2003). This

approximation is applicable to a low permeability skin

of small thickness only. Vertical flow components and

transient flow cannot be ignored within a highly

permeable or very thick skin, respectively.

Fully Penetrating Extraction Well. The solution for

full penetration can be obtained from (48) by letting

h1Z0 and h2Z1. An alternative but simpler

functional form of the NUF solution, however, is
obtainable directly (Appendix A). The radial flux is

resolved as a continuous function of depth without

discretization. That alternative solution also serves

numerically as a comparison test for the NUF

solution.

Leaky Aquifer. A confined aquifer with leakage

from an overlying unconfined aquifer through an

intervening aquitard is here revisited. The drawdown

in the unconfined aquifer is negligible, compared to

the drawdown in the confined aquifer. The leakage is

drawdown-dependent and the solution for the draw-

down in the aquifer should be a function of z even for

a fully penetrating extraction well (Lee, 1999, p. 134).

This definition of leakage as a boundary flux describes

more realistically the flow in the aquifer than the

conventional treatment of the leakage as a lumped

volumetric water production term (Hantush, 1964).

For a leaky aquifer, the top boundary condition

changes to a drawdown-dependent boundary-flux

condition

Ka
z

vh

vz
Z cvh at z Z 0; (59)

where the vertical leakance

cv Z
Kc

bc

(60)

represents the leakage from a confining layer of

thickness bc with vertical hydraulic conductivity Kc.

This definition of the leakance term is consistent with

definitions reported in the literature (McDonald and

Harbaugh, 1988; Lee, 1999). All solutions for the

unconfined aquifer can be converted to leaky aquifer

solutions by changing a in Eq. (29) to

ac Z cv

b

Ka
z

(61)

The roots of (24) are now time-independent.

Steady State Flow in Leaky Aquifer. Because the

upper boundary condition for a leaky aquifer is non-

zero, it is possible to obtain a steady-state solution of

Eq. (1). Eqs. (36) and (37) become

xa
n Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

z

b2

la2
n

Ka
r

s
; (62)
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xs
n Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks

z

b2

ls2
n

Ks
r

s
; (63)

and the terms in (20), (56), and (57) associated with a

become zero. The steady state drawdown distribution

in the aquifer is completely defined by (48) and the

relation between the drawdown in the extraction well

and the pumping rate is given by (52).

Confined Aquifer. For a confined aquifer, the upper

boundary condition changes to zero flux and as cv/0

(or Sy/0), the roots lnZnp are independent of time.

This limiting solution can also be derived by the finite

Fourier cosine transform (Sneddon, 1995; p. 73) in h

(or separation of variables) instead of the GFFC

transform.

Drawdown in an Observation Well. The solutions

for drawdown at a point in the aquifer presented here

are applicable to a piezometer with a short screen. In

practice, observation wells with longer screen

intervals are used to measure drawdown.

Wellbore storage in an observation well can cause

the delay of the drawdown measured inside the

observation well casing with respect to the drawdown

in the aquifer; the effect of observation well storage on

test data is magnified during rapid drawdown change

in the aquifer (Moench, 1997; Butler, 1998). The flow

of water from the observation well screen into the

aquifer can also be restricted by a low permeability

skin. While extraction wells are usually developed to

reduce the skin effect, frequently much less effort is

spent on the development of groundwater monitoring

wells that are customarily used as observation wells

during aquifer testing. Omitting the delay of the

observation well response in aquifer test analysis

could affect the estimated value of Sa
s (Black and

Kipp, 1977). Tongpenyai and Raghavan (1981)

included the wellbore storage and dimensionless

skin factors in the extraction and observation wells

by considering the angular flow component in their

solution for constant flowrate pumping from an

extraction well fully penetrating a confined aquifer.

Shapiro (1989) considered the flow of groundwater

between the observation well and the aquifer in his

radial flow solution for an oscillatory response to

pumping in highly permeable media. Black and Kipp

(1977) and Moench (1997) treated the drawdown

delay in an observation well using Hvorslev’s (1951)
shape factor and recommended conducting a slug test

at the observation well to estimate the shape factor

directly.

To arrive at an expression that includes the

observation well casing and skin radii and the skin

conductivity, it is assumed that the flow of water out

of the observation well does not affect the flowfield in

the aquifer. This assumption implies that the diameter

of the observation well casing is small relative to the

distance from the pumping well (Shapiro, 1989). Then

the drawdown can be treated as constant around the

observation well skin-aquifer interface.

An observation well screened between depths zot

and zob, with screen and casing radii row and roc,

respectively, surrounded by a skin of radius ros and

horizontal hydraulic conductivity Kos is considered

here. No storage is assumed within the skin. The skin

material is further assumed to have lower hydraulic

conductivity than the surrounding aquifer; vertical

flow in the skin can then be considered negligible and

the flow across the skin can be approximated by a

difference equation

Kpr2
oc

vhow

vt
Z

how Khos

zow

; (64)

where

zow Z
ros Krow

pKosðrow CrosÞðzob KzotÞ
: (65)

Eq. (64) is similar in form to the equation used by

Moench (1997, Eq. (28)).

The drawdown hos is calculated as an average

between zot and zob along the skin-aquifer interface

hos Z
1

h2ow Kh1ow

ð
h2ow

h1ow

�hdh at r; (66)

where �h is the appropriate function for point draw-

down in the aquifer, to get

�how Z
1

ð1 Czowpr2
ocpÞðh2ow Kh1owÞ

!

ð
h2ow

h1ow

�hdh at r: (67)

The quantity zowpr2
ocp in (67) constitutes a

dimensionless factor related to the delay of the

drawdown in the well with respect to the drawdown

in the aquifer; as expected, it decreases with time
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and increases with increasing roc and ros, and with

decreasing Kos. There is no wellbore storage for rocZ
0 and the observation well is represented by a

vertically averaged point drawdown as in traditional

solutions (Hantush, 1964). To represent a case with

wellbore storage and no skin, setting rosZrow is not

appropriate (the wellbore storage effect would be

lost); Kos ZKa
r should be used instead.

The observation well skin radius and conductivity

become additional unknown parameters in field test

analysis. Although explicitly defined in (65), Kos and

ros cannot be independently resolved from zow

estimated through analysis of drawdown data.
2.3. Remarks on specified flowrate and drawdown

The new solutions are applicable to three major

types of aquifer tests: constant flowrate, constant

drawdown, and slug test. For constant flowrate

�Q Z
Qc

p
; (68)

where Qc is the constant flowrate from the extraction

well; and for constant drawdown

�H Z
Hc

p
; (69)

where Hc is the constant drawdown applied at the

extraction well. For the instantaneous groundwater

removal (or injection) during a slug test

�Q Z pr2
c Hd; (70)

where Hd is the initial displacement; this expression

should be substituted for �Q in specified flowrate

solutions to obtain a slug test response. Linear

superposition in time of (68)–(70) can be used for

step-wise representation of variable pumping.
2.4. Aquifer characterisics

The four aquifer parameters Ka
r , Ka

z , Sa
s , and Sa

y and

four skin parameters Ks
r , Ks

z, Ss
s, and Ss

y appear in the

general well function as a set of eight independent

quantities
Sa
y

Ka
z Ks

r

;
Ss

y

Ks
zKs

r

;
Ka

z

Ka
r

;
Ks

z

Ks
r

;
Sa

s

Ka
r

;

Ss
s

Ks
r

;
Ss

y

Ks
z

; and
Sa

y

Ka
z

(71)

from which they can be uniquely determined. The

saturated thickness b can also be treated as an

unknown independent parameter. If b is known, it

can be used as an unknown to indirectly ascertain the

parameter determinations (Lee et al., 2002).
3. Numerical evaluation

The inverse Laplace transform was evaluated with

the Stehfest (1970) method using 10 summation

terms. The Stehfest method has been successfully

used for inversion of a variety of well functions

(Moench and Ogata, 1984; Hyder et al., 1994; Lee,

1999; Lee et al., 2002); however, its accuracy can be

erratic at small times or for distant observation wells

(Tseng and Lee, 1998).

The roots of Eq. (24) were evaluated to an

accuracy of 10K10; the computation of drawdown

can quickly deteriorate at a root-finding accuracy of

10K7 or worse. The root-finding in (24) can be

facilitated by exploring the relation

ln Z np Cqn; n Z 0; 1; 2;. (72)

where 0!qn!p/2. With increasing n, qn/0 and

ln/np. The n-th root can be bracketed, 0!qn!
qnK1, to narrow successively the likely ranges of

root ln as n increases for a bisectional root-finding

method.

Inverse GFFC Transform. The series in (48), (49),

and (54) converge oscillatorily to a final value.

Because of the oscillation, proper termination of the

summations is critical to accurate computation of the

functional values. The period of the oscillation is

time-dependent; it is, therefore, convenient to express

the period in terms of n. The factor [sin(lnhiC)-

sin(lnhiK)] in (45) and (55) can be written through

trigonometric identity as

2 cos
lnðhiC ChiKÞ

2

� �
sin

lnDhi

2

� �
: (73)
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The cosine and sine terms in the product represent

the high and low frequency components, respectively.

The low frequency component determines when the

summation can be properly terminated. With increas-

ing n and ln/np, the periodicity of the sine term can

be approximated as

npDhi

2
Z mp; (74)

where m is an even integer. So the period has an

‘index’ Nsin equal to the integer part of 2/Dhi, i.e.

Nsin Z
2

Dhi

: (75)

Similarly, the ‘index’ of periodicity for the cosine

term is equal to the integer part of 2/(hiCChiK),

which is always smaller than Nsin. Examination of the

series shows that the i, j components of (45) and (55)

are harmonics of a fundamental frequency determined

by the shortest screen segment Dhi. Thus the

summation needs to be terminated at an nN which is

a multiple of Nsin computed from the shortest screen

segment. The numerical results to be presented later

were obtained using NsinR50.

Screen Segments. To evaluate the effect of segment

length or the number of segments, the NUF solution

(48) was compared with the solution for a fully

penetrating well (85) in Appanedix A. Ten discrete

segments of equal length along the well screen were

found sufficient to produce identical drawdown in the

aquifer at a distance equal to 0.1 b. The 10-segment

case (with equal segmental length) required 60

summation terms for a fully penetrating well. Using

progressively shorter segments toward the upper and

lower ends of a partially penetrating well screen for

achieving higher radial flux resolution was found to be

expensive in computational time because the necess-

ary terms of the Fourier series increase rapidly.

The matrices in (53) and (58) are diagonally

dominant with non-zero diagonal elements; for equal-

length segments and for segmental lengths symmetric

about mid-screen, the matrices are symmetric. They

were inverted by Gaussian elimination.
4. Results and discussion

To generalize the plots refered to in the following

discussion, traditional definitions for dimensionless
time, drawdown, and flowrate are used when

practical. Dimensionles time 1/u

u Z
r2Sa

s

4pKa
r t

(76)

is used for plotting the drawdown in the aquifer and td

td Z
Ka

r t

r2
wSa

s

; (77)

is used for plotting the time-varying flowrate during

constant drawdown pumping. Dimensionless draw-

down in the aquifer hd

hd Z
2pðzb KztÞK

a
r h

DQ
(78)

applies to constant flowrate pumping (note that for a

fully penetrating well, hd differs from the quantity

used by Theis (1935) by a factor of 2); an alternate

definition

hd Z
h

DH
(79)

is used for constant drawdown pumping. Dimension-

less flowrate during constant drawdown pumping Qd

is

Qd Z
Q

2pHKa
r ðzb KztÞ

: (80)

Other factors (Kz/Kr, Sy, well screen) affecting the

plotted variables are shown on the figures as

applicable. Because of the dependence of drawdown

on the length and position of the pumping and

observation well screens, and aquifer as well as skin

properties, the general well function arguments

cannot be combined into a convenient set of

dimensionless quantities that uniquely define the

functional value.

The following discussion focusses on an uncon-

fined aquifer; the effects of extraction well screen

length on flux distribution in a confined aquifer were

discussed by Chang and Chen (2003). Drawdown and

flowrate for leaky and confined aquifers are shown for

comparison.

A comparison of NUF and UF solutions for an

unconfined aquifer is made to see if the common

assumption of uniform radial flux along the extraction

well screen is adequate. The screen interval for the

NUF solution was discretized into 10 equal segments



Table 1

Deviations (UF-NUF)/NUF% for different screen placement

Observation

depth

Fully penetrating well

observation distance

Partially penetrating well

pumping well screen intervals

0.1b 0.25b 0.5b 0–0.25b 0.25b–0.5b 0.5b–0.75b 0.75b–b

0 18.0 12.0 6.7 9.0 2.0 1.0 2.0

0.25b 2.5 2.0 1.7 5.5 6.0 6.0 6.0

0.5b K4.0 K4.0 K3.8 K3.5 K3.5 6.0 8.0

0.75b K6.5 K6.0 K5.8 K3.5 K3.5 6.0 8.0

b K7.2 K7.0 K6.5 K4.0 2.0 6.0 K4.0

The distance of all observations is 0.1b. Deviations are time-dependent; only the extrema are listed.

Table 2

Deviations (UF-NUF)/NUF% for different anisotropy ratios

Observation

depth

Ks
z=K

s
r

0.01 0.1 1

0 28.0 18.0 13.4

0.25b 2.0 2.5 2.0

0.5b K3.7 K4.0 K5.3

0.75b K5.6 K6.5 K7.7

b K6.2 K7.2 K8.5

Fully penetrating extraction well, rZ0.1b. Deviations are time-

dependent, only the extrema are listed.
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and one screen segment was used for the UF solution.

All solutions are evaluated for a well with no skin

installed in a hypothetical aquifer 100 m thick, with

Ka
r Z1!10K2 m=min, Ka

z =K
a
r Z0:1, Sa

s Z1!10K4,

Sa
yZ0:25, and rwZrcZ0.15 m, subject to pumping

at a unit constant flowrate or unit constant drawdown.

Several scenarios for a fully or partially penetrating

well (with a screen 0.25 b and 0.5 b long) are

considered. The results are summarized in Tables 1

and 2 and Figs. 2–5.

Constant Q, Fully Penetrating Extraction Well.

The deviation between UF and NUF drawdown at

selected depths versus 1/u is depicted in Fig. 2a. The

maximum deviation occurs during the time of the

delayed yield when the vertical flow component in

the aquifer is at maximum. At late times, when the

horizontal flow in the aquifer dominates, the UF and

NUF solutions become identical. The small difference

between the two solutions at early times indicates that

at the onset of pumping, flow in the aquifer is

essentially horizontal.

The UF solution over-predicts drawdown at the

screen midpoint and greater depths (i.e. UFONUF),

and under-predicts drawdown at depths closer to the

water table (i.e. UF!NUF). The deviation between

UF and NUF drawdown is not symmetric about the

mid-depth; a deviation of about K18% occurs near

the water table while deviation of only 7% occurs near

the bottom of the aquifer, reflecting the difference in

boundary conditions.

Constant Q, Partially Penetrating Extraction Well.

Fig. 2b shows the deviations for pumping from a

partially penetrating well with a screen 0.5 b long

centered across the aquifer. Generally, UFONUF at

depths near the screen midpoint, but UF!NUF

toward the two ends of the screen. The deviation
between the UF and NUF solutions is, like the cases

for a fully penetrating well, at its maximum during the

period of delayed yield. Unlike the results for the

fully-screened well, the deviations persist to late time.

Constant Q, Other Well Configurations. The

deviation of UF from NUF solutions decreases slowly

with the radial distance from the extraction well for a

given depth of observation (Table 1). For a partially

penetrating extraction well, the deviation also

depends on the screen location and length. Generally,

the deviation is greater nearer the screen depth

(Table 1) and decreases with decreasing screen length

(not shown).

Fig. 3 depicts the dimensionless drawdown (78)

distribution near an extraction well during constant

flowrate pumping for the times corresponding to the

greatest difference between the UF and NUF solutions.

The UF solution over-predicts drawdown near the

aquifer bottom and under-predicts drawdown near the

water table for pumping from a fully penetrating well

(Fig. 3a) and for a well screened across the bottom half

of the aquifer thickness (Fig. 3d). For a well screened

across the upper half of the aquifer thickness, the UF

solution over-predicts drawdown at the screen depth
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Fig. 2. (a) Deviation of UF from NUF drawdown at different depths during pumping from a fully penetrating well. Note that deviations at all

depths converge to zero at late time. (b) Deviation of UF from NUF drawdown at different depths during pumping from a partially penetrating

well. Note that all deviations persist to late time.
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with the maximum error near the mid-screen depth

(Fig. 3b). The difference between the UF and NUF

solutions is the smallest for a well screen centered

across the aquifer (Fig. 3c).

Constant Q, Effect of Ka
z =K

a
r Ratio. The deviation of

UF from NUF solutions decreases with decreasing

anisotropy (increasing Ka
z =K

a
r ratio) for observation
points near the water table but increases with the

observation depth (Table 2).

Constant Q, Radial Flux Distribution. Fig. 4

depicts the distributions of fluxes across the extraction

well screen at different times during a constant

flowrate pumping. For a fully penetrating well

(Fig. 4a), the radial fluxes are initially relatively
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Fig. 3. Comparison of UF and NUF dimensionless drawdown distribution in an unconfined aquifer during constant flowrate pumping for an

extraction well screened from (a) K0 to b, (b) K0 to 0.5b, (c) K0.25b to 0.75b, (d) K0.5b to b. Note that the difference between UF and NUF

drawdown varies with time, illustrated are distributions when the differences are at maxima.
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uniform. With increasing vertical flow components

due to the drainage at the water table during the period

of delayed response (times between 10 and 100 min),

the fluxes increase at the top of the screen but decline

at the bottom of the screen. At late times (times 104

and 105 min), as the delayed-yield effect diminishes,
the fluxes return to uniformity. The total flow across

the screen increases initially with time due to the

withdrawal of water from the wellbore but stabilizes

soon after 0.1 min. During pumping from a partially

penetrating well (Fig. 4b), the radial fluxes are

initially uniform along the screen and later increase
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near the two screen ends relative to the middle fluxes;

this non-uniform flux distribution persists into late

times (O103 min, not shown).

Constant H, Radial Flux Distribution. Fig. 5 shows

the distribution of radial fluxes during constant

drawdown pumping. In the full-penetration case

(Fig. 5a), the fluxes are greater at mid-times (1–

103 min) at the upper end of the screen relative to the

lower end and approach uniformity at late times (104

and 105 min). In the partial-penetration case (Fig. 5b),

the fluxes are uniformly distributed along the central

part of the screen but increase toward both ends at all

times in contrast to the full-penetration case. In all

cases, the radial fluxes decline with time in every

segment as a result of declining total flowrate during

constant head pumping.

Constant Q, Effect of Sy. Fig. 6 shows the

difference between the UF and NUF solutions for

drawdown at the water table for different values of

specific yield Sy. The differences increase with

increasing Sy and are at a maximum during the peak

of the delayed yield effect. Similar trends, with
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Fig. 6. Deviation of UF from NUF drawdown in the aquifer at the water tab

of Sy.
smaller discrepancy, also appear for greater obser-

vation depths and partially penetrating wells (not

shown).

Flowrate and Drawdown in Extraction Well.

Besides the drawdown in the aquifer discussed so

far, the new solutions allow the examination of the

drawdown and flowrate within the extraction well

itself. The difference between the UF and NUF

solutions is small (not shown) because both solution

approaches impose the wellbore storage condition in

the integration of (2). Hence, the computationally

simpler UF solution is adequate for computing the

drawdown in the pumping well during constant

flowrate pumping, the flowrate during constant draw-

down pumping, and the displacement in the test well

during a slug test in most cases.

The time-flowrate curve at constant drawdown

pumping (Fig. 7) exhibits a delayed yield effect

similar to the phenomena for the constant flowrate

pumping from an unconfined aquifer. The flowrate

reaches a steady state for pumping from a leaky

aquifer; a response for a confined aquifer is also
.000 10.000 100.000 1.000.000

1/u
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le during pumping from a fully penetrating well for different values
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Fig. 7. Time-varying flowrate during constant drawdown pumping from a well fully penetrating a confined, unconfined, and leaky aquifer. The

unconfined aquifer response displays a delayed yield effect and becomes sub-parallel to the confined response at late times; the leaky aquifer

response becomes steady. Deviation of UF from NUF flowrate is insignificant.
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shown for comparison. Note the overlapping of the

three curves at early times (td!104), departure

between them at intermediate times (104 to 107),

and leaky aquifer response reaching a steady state,

and confined and unconfined responses sub-parallel to

each other at late times (tdO107).

Drawdown in an Observation Well. Example plots

of the different response of a confined, unconfined,

and leaky aquifer to constant flowrate pumping and

constant drawdown pumping are shown for fully

penetrating wells in Fig. 8. As in the case of the time-

flowrate curve (Fig. 7), the three aquifers respond

similarly at early times (1/u!1) and then depart. Note

that the leaky aquifer response is closer to that of an

unconfined aquifer during the early part of the delayed

yield period (1!1/u!1000). The unconfined aquifer

response exhibits a delayed yield effect during

constant drawdown pumping as is the case during

constant flowrate pumping. The leaky aquifer

response reaches a steady state while the curves for

the confined and unconfined aquifers become sub-

parallel at late times. The time when the leaky aquifer

response becomes steady depends on the value of cv.

The deviation between the UF and NUF drawdown

at an observation well of screen length equal to 0.25 b
was compared to the deviation at a point in the aquifer

located at the observation screen end or midpoint. The

deviation for an observation well was generally found

to be the same or smaller than the deviation for a

point. Drawdown in an observation well with well-

bore storage and skin is delayed relative to the

drawdown in a well with negligible radius (not

shown); Tongpenyai and Raghavan (1981) discussed

this effect.

Relation between the Drawdown in the Aquifer

during Constant Q and Constant H Pumping. The

linear relation in the Laplace domain between the

drawdown in the extraction well and the pumping rate

(52) translates into a non-linear relation in the time

domain. The dimensionless drawdown in the aquifer

during constant Q pumping can be reproduced by

plotting the ratio of hd/Qd during constant H pumping.

To obtain proper scaling, the definition of hd in (78)

was modified from the traditional one (Theis, 1935)

by a factor of 2 and replacing b by (zbKzt).

Multiple Extraction Wells. The drawdown effects

of multiple extraction wells operating at specified

flowrates can be linearly superimposed. However, the

effects of interfering extraction wells pumped in

constant-drawdown mode are not linear and their
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response displays a delayed yield effect.
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extraction rates and drawdown in the aquifer cannot

be estimated by superimposing the effects of

individual wells (Karadi, 1972) as in the case of

constant rate pumping.
5. Conclusions

The solution (48) with relation (56) constitutes a

general well function for non-uniform radial flux

toward a pumping well that partially penetrates an

unconfined aquifer of Neuman type or leaky aquifer of

Lee (1999) under the condition of specified well

discharge rate or specified drawdown in the extraction

well. In the Laplace domain, the two subsets of

solutions are interchangeable, irrespective of time

dependency. The pumping well may have a skin of

finite thickness. The general function (48) reduces to a

number of special-case solutions for constant flowrate

pumping, constant drawdown pumping, slug test, well

with no skin, uniform radial flux along the extraction

well screen, and the solution is also applicable to a

confined aquifer. The solution accounts for the

wellbore storage and skin in an observation well. A

different but simpler functional form in (85) and (88)

for a fully penetrating extraction well was also derived

as a check for the more complicated solution.

Numerical experiments indicate the deviations of

UF from NUF drawdown increases with the extraction

screen length and increasing Sa
y. The deviation is

largest during the time of the delayed yield. At late

times, the difference persists for a partially penetrat-

ing well while for a fully penetrating well, the NUF

and UF solutions converge as the flow in the aquifer

becomes essentially horizontal. The difference also

depends on the placement of the pumping well screen,

the observation location in the aquifer, and Ka
z =K

a
r . For

partially penetrating extraction wells, the deviation is

at minimum for observation wells screened at the

same depth interval as the pumping well.
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Appendix A. Fully penetrating well

For a fully penetrating well, the mixed boundary

condition at the well face is replaced by a prescribed

drawdown condition. The flux along the extraction

well screen is non-uniform and can be evaluated

directly without discretization.

The problem is defined by Eq. (13), boundary

conditions (14)–(16), (18) and (19), and prescribed

drawdown condition at the screen-skin interface

�hs
ðrw;h; pÞ Z �H: (81)

Taking the GFFC transform of Eq. (13) and

boundary conditions (14) and (15), and applying

condition (16) results in (34) and (35) with

coefficients An and Cn defined by (39) and (38),

respectively. Coefficient Bn is evaluated from the

GFFC transform of boundary condition (81)

Bn Z �H
sinðls

nÞ

ls
n

½K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ�

K1 (82)

Then

�ha
n Z �H

sinðls
nÞ

ls
n

!
K0ðx

s
nrsÞCGnI0ðx

s
nrsÞ

½K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ�K0ðx

a
nrsÞ

K0ðx
a
nrÞ

(83)

and

hs
n Z �H

sinðls
nÞ

ls
n

K0ðx
s
nrÞCGnI0ðx

s
nrÞ

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

: (84)

Applying the inverse GFFC transform provides

the drawdown in the aquifer

�ha Z �H2aa
XN

nZ0

cosðla
nhÞ

aa Csin2ðla
nÞ

sinðls
nÞ

ls
n

!
K0ðx

s
nrsÞCGnI0ðx

s
nrsÞ

½K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ�K0ðx

a
nrsÞ

K0ðx
a
nrÞ

(85)
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and in the skin

hs Z �H2as
XN

nZ0

cosðls
nhÞ

as Csin2ðls
nÞ

sinðls
nÞ

ls
n

!
K0ðx

s
nrÞCGnI0ðx

s
nrÞ

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

: (86)

The flow across the well screen is evaluated

from the equivalent of (2) for a fully-penetrating

well

�Q Ka �H ZK2prwKs
r

ðb

0

vhs

vr
dz at r Z rw; (87)

to obtain the relation between Q and H

�H Z
�Q

a CP
; (88)

where

P Z 4asbprwKs
r

XN

nZ0

sin2ðls
nÞ

ls2
n

xs
n

as Csin2ðls
nÞ

!
K1ðx

s
nrwÞKGnI1ðx

s
nrwÞ

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

: (89)

Substitution of (88) into (85) or (86) is then

used to obtain an equation for drawdown in the

aquifer or skin, respectively, during specified

flowrate pumping.

The flux q in the radial direction across the well

screen during specified drawdown pumping is

�q Z 4pasrwKs
r
�H
XN

nZ0

cosðls
nhÞ

as Csin2ðls
nÞ

!
sinðls

nÞ

ls
n

xs
n

K1ðx
s
nrwÞKGnI1ðx

s
nrwÞ

K0ðx
s
nrwÞCGnI0ðx

s
nrwÞ

: (90)

Substitution for �H from (88) into (90) yields the

radial flux during specified flowrate pumping. Unlike

the result for a partially penetrating well, the radial

flux is a continuous function of z.
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