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Abstract
Theis (1935) derived an exact solution for the residual drawdown in a well after the cessation of

a pumping test by summing two drawdowns: one (s1), caused by imaginary continuation of the original pumping
and the other (s2), due to an imaginary injection at the same constant rate. We approximated the Theis solution to
obtain a simple linear relation for determining the transmissivity and storage coefficient from recovery data.
Unlike other existing straight-line fitting methods, in our method, we applied different approximations to the well
functions in the solutions of s1 and s2. We used the well-known Cooper-Jacob approximation for s1, truncating
the expansion of the well function in s2 to its first three terms. For the same level of truncation errors, while the
Cooper-Jacob approximation requires the argument u1 � 0.01, the second approximation requires the argument
u2 � 0.2, thus dramatically improving the utility of short-term recovery data. Application of our method requires
only recovery data from a single observation well and no knowledge of the drawdown at the moment of pumping
cessation.

Introduction
Ground water hydrologists frequently use pumping

tests to determine transmissivity, T, and storage coeffi-
cient, S. They often consider recovery data desirable for
interpreting test results and estimating aquifer parameters
(de Marsily 1986). Due to possible irregularities in run-
ning the pump, to skin effects, and the quadratic head loss
across the well screen, recovery data are less prone to
error than water level measurements taken during the
pumping phase.

In a classic paper, Theis (1935) applied the principle
of superposition to derive an exact solution for the recov-
ering water levels in a well by summing two drawdowns:
one (s1), caused by imaginary continuation of the original
pumping and the other (s2), due to an imaginary injection

at the same constant rate. Since then, many have devel-
oped simplified methods for estimating T and S from
recovery data by approximating the exact Theis solution.
Detailed surveys of these methods can be found in Cha-
puis (1992), Banton and Bangoy (1996), Chenaf and Cha-
puis (2002), Agarwal (1980), Samani and Pasandi (2003,
also see Ground Water 42, no. 1, for Notice of Plagiarism
with regard to this paper), and Singh (2003). Either a type
curve matching or a straight-line fitting approach is most
frequently adopted in these methods. In this article, we
limit our discussions to the straight-line fitting approach.

Both Chenaf and Chapuis (2002) and Samani and
Pasandi (2003) used the Cooper-Jacob approximation of
the Theis solution and gave straight-line plots in semilog
graphs for calculating T and S from recovery data. While
their work represented progress in using recovery data for
pumping test interpretation, their methods were limited
by the use of the Cooper-Jacob approximation, which re-
quires that both pumping and injection phases have pro-
ceeded for long enough that both arguments u1 and u2
(see Methodology for definitions) are no more than 0.01,
to ensure sufficiently small truncation errors. While it is
often reasonable to expect u1 � 0.01 to hold during the
recovery phase, the requirement of u2 � 0.01 would
exclude the use of many early-time recovery data. Banton
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and Bangoy (1996) also reported a straight-line fitting
method that did not require long pumping and injection
periods. Their method, however, requires recovery data
from at least two observation wells and straight-line fit-
ting of data for three times to calculate the four unknown
linear coefficients in order to estimate T and S.

In this study, we propose a simple straight-line fitting
approach for estimating T and S from pumping test recov-
ery data. Our method applies the Cooper-Jacob approxi-
mation to drawdown in the Theis solution caused by
pumping and approximates the injection used to simulate
recovery by truncating the Theis well function expansion
to the first three terms. The approximate solution involves
a linear regression on a set of recovery data from a single
observation well and requires no knowledge of the draw-
down at the moment of pumping cessation. Further, our
solution requires u1 � 0.01 and u2 � 0.2 to achieve the
same level of accuracy as the previously mentioned meth-
ods. Thus, it is more suitable for analyzing data from
short-term recovery.

Methodology

Theis Solution of Residual Drawdown During Recovery
In a confined aquifer, the horizontal flow toward

a fully penetrating pumping well is governed by the fol-
lowing equation:
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where r is the distance to the pumping well [L]; s, the
water level drawdown [L]; S, the storage coefficient,
dimensionless; T, the transmissivity [L2T21]; and t, the
time [T]. By the principle of superposition, the recovery
of water levels or the residual drawdown (s9) after the
pump engine is turned off can be represented by the sum-
mation of two drawdowns, s1 and s2: s1 caused by the
imaginary continuation of the original pumping at a con-
stant rate Q and s2 due to an imaginary injection at the
same rate Q starting at time tp when the pump is turned
off. For a homogeneous isotropic aquifer with infinite
domain, the Theis solution for the residual drawdown at
time t9(t9 = 0 at the moment the pump is turned off) is
given as follows (Theis 1935):

s9ðt9Þ ¼ s1ðt91 tpÞ1 s2ðt9Þ ð2Þ

with

s1ðt91 tpÞ ¼
Q

4pT
Wðu1Þ ð3Þ

s2ðt9Þ ¼ 2
Q

4pT
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and the arguments u1 and u2 are defined as
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4Tðt91 tpÞ
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and the Theis well function W(u) is given as

WðuÞ ¼
Z N

u
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Approximating the Theis Solution
The well function W(u) is an exponential integral

and can be expanded into a converging series as follows:

WðuÞ ¼ 20:5772162ln u1 u2
XN
n¼2

ð21Þn un

n3n!
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Cooper and Jacob (1946) proposed that when u is
very small (e.g., u � 0.01), the sum of the terms after the
second term in the series becomes negligible. That is,
when the pumping time is sufficiently long and/or the dis-
tance r is small, the series (Equation 8) can be reduced to
the Cooper-Jacob approximation:

WðuÞ ¼ 20:5772162ln u ð9Þ

During the recovery phase, it is reasonable to
expect t9 1 tp to be sufficiently large so that u1 as defined
in Equation 5 satisfies the condition of u1 � 0.01, and
W(u1) in Equation 3 can be approximated as in Equation
9:

s1 ¼
Q

4pT
ln

2:25Tðt91 tpÞ
r2S

ð10Þ

With respect to s2, since t9 starts from the moment of
pumping cessation, for many recovering water level re-
cords, u2 as given in Equation 6 may not satisfy the con-
dition of being no more than 0.01, especially for the
early-time data. Similar to the approach used in Banton
and Bangoy (1996), we truncate the W(u2) expansion to
its first three terms and reduce the full expression of s2 to
the following form:

s2 ¼ 2
Q

4pT

�
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1 u2

�
ð11Þ

For the same level of truncation errors as introduced
by Cooper-Jacob’s approximation, the approximation
used in Equation 11 will only require u2 � 0.2. In analyz-
ing recovery data, a requirement of u2 � 0.2 will be easier
to satisfy than the condition u2 � 0.01 required for the
Cooper-Jacob approximation. In the following section, we
use Equations 10 and 11 to construct a linear relation and
enable a simple straight-line fitting for estimating T and S
from recovery data.

Formulating the Linear Relation for Parameter Estimation
Substituting Equations 10 and 11 into Equation 2, we

obtain

s9 ¼ Q

4pT

�
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Multiplying both sides of Equation 12 by t9 gives

t9s9 ¼ Q

4pT
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For recovery data from a single observation well, the
distance between observation well and pumping well r is
a known constant. We can then perform the following
transformations for Equation 13. Let

Y ¼ t9s9 ð14Þ

X ¼ t9ln

�
t91 tp
t9

�
ð15Þ

A ¼ Q

4pT
ð16Þ

B ¼ 2A
r2S

4T
¼ 2

Qr2S

16pT2
ð17Þ

Equation 13 can then be rewritten as:

Y ¼ AX1B ð18Þ

with A and B being constants. Using observed data pairs
s9 and t9, we can compute Y and X data pairs based on
Equations 14 and 15. We can then plot Y against X and fit
a straight line through these data pairs. The slope of this
line is A and the line intercept of the Y axis is at B (where
X ¼ 0). Substituting A into Equation 16, we will obtain an
estimate for the value of T as

T ¼ Q

4pA
ð19Þ

Substituting B and T into Equation 17, we obtain an
estimate of S as

S ¼ 2
4TB

Ar2
ð20Þ

Application
To test the proposed method, we applied it to a set of

residual drawdown data from the U.S. Department of the
Interior (USDI) (1977, p. 120) to estimate T and S. This
set of data has been analyzed by others, including Goode
(1997), Chenaf and Chapuis (2002), and Samani and
Pasandi (2003).

The residual drawdown data were recorded in an
observation well located at 100 feet from the pumping
well. The well was pumped 800 min with a discharge
rate of 162.9 ft3/min, and the recovery period was also re-
corded for 800 min after the pump was turned off. Apply-
ing Equations 15 and 16 to the observed residual
drawdown s9 and the corresponding t9, we obtained Y and
X data series (Figure 1). Almost all the Y and X data pairs
fall onto a straight line, except for a few late time points.
Examining the original data (table 5-4, USDI 1977,
p. 120), we found that the observation data started to wig-
gle a bit around t9 ¼ 540 min, which might be due to
some late-time measurement errors. Wiggling was also
visible in the straight-line plots in Chenaf and Chapuis
(Figures 2 to 5, 2002), even though the amount of fluctua-
tion was somewhat suppressed by the use of semilog plots
in their figures. We then performed linear regression with
and without the late time points. In both cases, the corre-
lation coefficients of fitting R were >0.999, and the

impacts of the late time points on the fitting results were
minimal. The slope and intercept determined from linear
regression with these late time points were A ¼ 0.422 and
B ¼ 22.389. Substituting into Equations 16 and 17 yields
T ¼ 30.73 ft2/min and S ¼ 0.0696.

When compared to previous studies (Table 1), our
method gave comparable results while requiring much
less strict limits on the length of the recovery phase.

Discussion and Conclusions
All methods listed in Table 1 gave comparable re-

sults, which does not enable us to differentiate the per-
formance of these methods. However, the unique features
of our approach become obvious when we compare the
straight-line plot in Figure 1 with straight-line fitting
reported by others, e.g., Chenaf and Chapuis (2002,
Figures 2 to 5) and Samani and Pasandi (2003, Figure 5b).
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Figure 1. Straight-line fit of transformed recovery data
(X and Y ) and the estimated values of slope A and intercept B.

Table 1
Comparison With Other Methods

This paper T ¼ 30.73 ft2/min
S ¼ 0.0696

USDI—original results
Theis recovery method:
extrapolation of pumping
period drawdown

T ¼ 32.1 ft2/min
S ¼ 0.07

Samani and Pasandi (2003)
Cooper-Jacob approximation T ¼ 32.42 ft2/min

S ¼ 0.06
Chenaf and Chapuis (2002)
Pumping phase
Cooper-Jacob method T ¼ 31.99 ft2/min

S ¼ 0.0604
Recovery phase
Cooper-Jacob method T ¼ 31.95 ft2/min

S ¼ 0.0599
Normalized residual
drawdown method

T ¼ 32.16 ft2/min
S ¼ 0.0599

Water recovery
height method

T ¼ 32.16 ft2/min
S ¼ 0.0588
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In our Figure 1, all the points transformed from the
recovery data fall onto a straight line nicely except for a
couple of late time points, which may be due to measure-
ment errors. All other plots reported in Table 1 showed
deviation from a straight-line fit for early-time data. In
fact, both Chenaf and Chapuis (2002) and Samani and
Pasandi (2003) adopted the Cooper-Jacob approximation
to arrive at linear relations that require both u1 and u2 to
be no more than 0.01. For the application described in the
previous section, we plotted the values of u1 and u2 vs.
the corresponding t9 in a semilog graph (Figure 2). As
shown, u1 is well below 0.01 for all t9, while u2 reaches
the threshold value of 0.01 well beyond 540 min. While
the USDI test example lasted long enough to enable the
application of all the methods reported in Table 1, in
many field cases, the requirement of u2 � 0.01 might be
difficult to satisfy. For example, in the pumping test
described by Xue (1986), among all the recovery data
collected, there were only three sets with u2 < 0.01. The
approximation adopted in our method (Equation 10),
however, requires u2 � 0.2 for its application. From
Figure 2, it is obvious that most of the early-time recov-
ery data can be used in the application of our method.

In addition to the relaxation of the restriction on u2,
in our method linear regression is performed only once
using recovery data from a single observation well, and
no knowledge of the drawdown at the moment of pump-
ing cessation is required. Multiple sets of recovery data
from multiple wells can be analyzed separately and re-
sults compared to test the reliability of each independent
estimate. Furthermore, we should note that Chenaf and
Chapuis’ (2002) approach made no assumption regarding
the storage coefficient during the pumping period being
equal to the storage coefficient during the recovery
period, which may be important if pumping has caused
consolidation of the confined aquifer.

In addition, for the case when many residual draw-
downs are available from multiple observation wells at
a single moment (t9 is a constant), it is also easy to see
that Equation 12 gives another linear relation between s9
and r2. Following similar steps, drawdown data from mul-
tiple wells may be used to derive estimates of T and S.

In conclusion, we have proposed a simple and effec-
tive method for determining the aquifer transmissivity
and storage coefficient based solely on pumping test
recovery data. The application of this method in the field
may be hindered by conditions that violate the assump-
tions in the Theis solution (e.g., boundary effects and
wellbore storage). How these common field conditions
will impact the performance of the proposed method is
unclear. More in-depth analyses are needed to resolve
this issue when applying the proposed method to nonideal
field conditions.
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Figure 2. Decreasing values of u1 (circle) and u2 (triangle) as
recovery proceeds (t9 is the recovery time).
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