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ABSTRACT

Due to the cost of extended pressure-drawdown
or buildup well tests and the possibility of acquisition
of additional information from well tests, the modern
trend has been toward development of well-test
analysis methods pertinent for short-time data.
“*Short-time’’ data may be defined as pressure
information obtained prior to the usual straight-line
portion of a well test. For some time there has been
a general belief that the factors affecting short-time
data are too complex for meaningful interpretations.
Among these factors are wellbore storage, various
skin effects such as perforations, partial penetration,
[ractures of various types, the effect of a finite
formation thickness, and non-Darcy flow. A number
of recent publications bhave dealt with short-time
well-test analysis. The purpose of this paper is to
present a fundamental study of the importance of
wellbore storage with a skin effect to short-time
transient flow. Results indicate that proper interpre-
tations of short-time well-test data can be made
under favorable circumstances.

Upon starting a test, well pressures appear
controlled by wellbore storage entirely, and data
cannot be interpreted to yield formation (flow
capacity or skin effect. Data can be interpreted to
yield the wellbore storage constant, however. After
an initial period, a transition from wellbore storage
control to the usual straight line takes place. Data
obtained during this period can be interpreted to
obtain formation flow capacity and skin effect in
certain cases. One important result is that the
steady-state skin effect concept is invalid at very
short times. Another important result is that the time
required to reach the usual straight line is normally
not affected significantly by a finite skin effect.
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INTRODUCTION

Many practical factors favor short-duration well
testing. These include loss of revenue during shut-in,
costs involved in measuring drawdown or buildup
data for extended periods, and limited availability
of bottomhole-pressure bombs where it is necessary
to survey large numbers of wells. On the other hand,
reservoir engineers are well aware of the desirability
of running long-duration tests. The result is usually
a compromise, and not necessarily a satisfactory
one. This situation is a common dilemma for the
field engineer who must specify the details of special
well tests and annual surveys, and interpret the
results. For this reason, much effort has been given
to the analysis of short-time tests. The term
‘‘short-time’’ is used herein to indicate either
drawdown or buildup tests run for a period of time
insufficient to reach the usual straight-line portion.
Nevertheless, it is rare that either buildup or
drawdown data taken before the traditional straight-
line portion are ever used in analysis of oil or gas
well performance. Well files often contain well-test
data that were abandoned when it was realized that
the straight line had not been reached. This situation
is particularly odd when it is realized that early
data are used commonly in other technologies which
employ similar, or analogous, transient tests.

It is the objective of this study to investigate
techniques which may be used to interpret information
obtained from well tests at times prior to the normal
straight-line period.

THEORY

The problem to be considered is the classic one
of flow of a slightly compressible (small pressure
gradients) fluid in an ideal radial flow system. That
is, flow is perfectly radial to a well of radius 7,
in an isotropic medium, and gravitational forces are
neglected. We will consider that the medium is
infinite in extent, since interest is focused on times
short enough for outer boundary effects not to be
felt at the well. The initial condition is taken as
constant pressure, p;, for radii greater than or equal
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to 7.

Tll‘;e inner boundary condition will be taken as
production at constant surface rate from a wellbore
of finite volume, and it will be assumed that a
steady-state (zero storage capacity) skin effect
exists at the sand face. This boundary condition
without a skin effect was first introduced by van
Everdingen and Hurst! and is sometimes called the
wellbore storage, unloading, or afterflow problem.
Later, van Everdingen? and Hurst3 extended the
problem to include a steady-state skin effect. Both
van Everdingen and Hurst presented solutions to the
problem for the special case of a line-source well.
Solution, including a skin effect, was presented in
the form of the real inversion integral of a Laplace
transform solution, but only the long-time approxi-
mation has been published.

The inner boundary condition described is actually
a special case of Jaeger's ‘'‘general boundary
condition’’ applied to unsteady heat-conduction
problems.4-® In the ‘‘general boundary condition,”
Jaeger considered the cylindrical core (region
between r =0 and r = r,)) to contain a solid of perfect
conductor or well-stirred fluid in which (1) heat
could be generated at a constant rate per unit volume,
(2) heat could be transferred to the surrounding
cylindrical solid through a film resistance, and (3)
a mass of the well-stirred fluid could be withdrawn
at constant rate. The first edition of the book on
heat conduction by Carslaw and Jaeger® contained
a rigorous solution to a heat-conduction problem. It
was analogous to the fluid-flow problem originally
posed by van Everdingen and Hurst! for wellbore
unloading without a skin effect for a finite radius
well. It is interesting that the real inversion integral
published by Carlslaw and Jaeger has been evaluated
in several piblications in connection with problems
other than the van Everdingen-Hurst problem.7-8
Jaeger also evaluated the integral and presented
useful long-time approximations.%:9 In the second
edition of their book on heat conduction, Carslaw
and Jaeger® presented a review of the problem that
is pertinent to the present study. We will present the
fluid-flow analog briefly. The procedure is similar
to the heat flow problem originally presented by
Blackwell. 10

The diffusivity equation for fluid flow in terms
of dimensionless variables is

2 ap 3P
o Pp ! D _ tD e
) rDZ T GRS 0 D
The initial and outer boundary conditions ate
Py (rD, 0) =0 (2
lim _ (
{pD (rp» tD)}= 0 - .. 3
I‘D——rw

while the inner boundary condition is
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Eq. 4 states that the dimensionless wellbore
unloading rate plus the dimensionless sand face
flow rate must equal unity, the surface flow rate.
The wellbore unloading or storage constant, E, 1s
that defined by van Everdingen and Hurst.! That is,

C

N ()]
2n¢hcrwz

C represents the volume of wellbore fluid unloaded
or stored, cc/atm. Storage may be by virtue of either
compressibility or a changing liquid level.

Eq. 5 introduces a steady-state skin effect and,
thus, a pressure drop at the sand face which is
proportional to the sand-face flow rate. Note from
Eq. 4 that

¢ =

ii=_(%
q arD
rD=1
dp
_ = ~WwD

where g is the constant surface flow rate, and gy
is the sand-face flow rate. Finally, the dimensionless
flowing pressure, p,,p, is the same as Eg(t?) used
previously by van Everdingen? and Ramey.!! Thus,
pwp fepresents the pressure within the wellbore,
while pp represents pressures on the formation side
of the skin effect.

Solution of Egs. 1 through 5 follows readily using
the Laplace transformation as shown by Blackwell. 10
We will review only portions of the solution of
interest to this study. The transform of the
dimensionless flowing pressure may be written as

L wa =

K.(¥P) + svp K,(Vp)

p[V2 K,(VB) + Tofk (VD) + & VB K, (VB ]

(8)
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where Ko and K; are the modified Bessel functions
of the second kind of zero and unit orders. An
identical transform was published recently by
Russell.15

Jaeger also considered determination of the
pressure distribution within the radial system, the
sand face flux, and the pressure drop across the
skin (within the heat conduction analog, of course).
However, these quantities are only of incidental
interest to the present purpose of this study.
Blackwell and Jaeger presented the heat conduction
analog to the following real inversion integral
solution to Eq. 8:

wa (S ,-C-:tD) =
(- _-)

2
= (1—e-utD)du%

u3{ [uEJO(u)-(l-Esuz)Jl(u)]E
+ [1155{0(11)-(':L-'('fsug)ﬁfl(u)]2 } , (9

where Jy(z) and J;(u) are the Bessel functions of
the first kind of zero and unit orders, and Y(z) and
Yi(u) are the Bessel functions of the second kind
of the respective orders. Both numerical evaluations
and short- and long-time approximations for the
integral in Eq. 9 have been presented by a number
of authors in connection with other problems.
However, the relationships between them seem to
have been largely overlooked. Table 1 presents a
comparison of the symbols used by various authors
who have presented pertinent evaluations of the
the integrals or related derivations. Table 2 presents
the ranges of parameters in numerical evaluations
considered by various investigators.

It is apparent from Tables 1 and 2 that most
evaluations of the integral in Eq. 9 have concerned
the special case of a zero skin effect — no-flow
resistance at the sand face. It is also apparent that,

TABLE 1 — CORRELATION OF VARIOUS DIMENSIONLESS
GROUPS USED BY OTHER INVESTIGATORS

Lesem 8

This Study  Blackwell™®  Jaeger®® etal.”7  Hurst
~ 4k2
pupisCtp) 011 mGhar) — Iy oN(o,1p)
¢ 12 a Va Vk Vo
tD T, t 7 0 tp
s 1/H h s=0 s=0

Note: For the fluid flow analog of Blackwell's study, h% b,
K, and Q° were all taken as unity (in his symbolism). Both
van Everdingen2 and Hurst 3 used symbolism similar to this study
in their line-source approximation, except B was used in place

of pyp-
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although there has been some overlap in evaluations,
there has been little duplication because various
authors have been interested in different ranges of
storage constant, C, values. Note also that the
special case of zero storage leads to the well-known
constant rate solution. (Jaeger a and Hurst o values
of infinity). Jaeger? has presented the most complete
information for finite skin effect values, but the
range of both dimensionless times and storage
constants is far too limited to be of use in well-test
analysis.

Another related solution has appeared in the
petroleum literature.1-3 By using the superposition
principle and representing the well as a continuous
line source, the Laplace transform of the dimension-
less well pressure may be shown to be:

L

I

Pup

K, (J7)* o
P [1+—C'pKO(J_p_)+ sEp]

This same result may be obtained from Eq. 8 by
noting that the product [\p K;(/p)] approaches
unity as the argument p becomes smaller. Thus Eq.
10 is a long-time approximation for Eq. 8.

Eq. 10 produces the real inversion integral:

pWD (S’C—’tD)

oo

e
(L-e" ®p) Is (w)au +
u{ [l—ug(_is + -:2L- J U.Ea‘Yo(u)l2

- (11)

TABLE 2 — RANGES OF PARAMETERS CONSIDERED BY
VARIOUS INVESTIGATORS IN NUMERICAL EVALUATIONS

s C D Comments
Blackwell 10 Analytical
study only*
Jaeger6:9 0 1/8,1/6,1/4, 0.2-2.0 Tabular
1/2,2/3,1, 2 form*
0,1/2,1,2,3, /2,1 0.2-20  Graphical
4,5,7,10,20 form*
Lesem et al.” 0 1/6,1/9,1/12, 1- 1,000 Graphical
1/15,1/18,1/21, form,
1/24,1/27,1/30
Hurst® 0 2.5,5,10, 12.5, 10-2-10* Graphical
16-2/3, 25, 50 form
van Everdingen 0 1,000 - 50,000 103-107 Line-source
and Hurstl well approx-

mation,
graphical **
*Both short- and long-time approximating forms given.
**|ong-time approximating form given.
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Eq. 11 was evaluated numerically and presented
in graphical form for the special case of zero skin
effect by van Everdingen and Hurst! and later by
Chatas.12 Storage constant, C, range was 1,000 to
50,000 in Ref. 1 and 1,000 to 75,000 in Ref. 12.

Originally, both Blackwell and Jaeger solved Eqs.
1 through 5 in the classical manner. That is, the
Laplace transforms of the equations were taken and
the resulting equations solved simultaneously to
provide the transform space solution given by Eq. 8.
Although Jaeger mentioned that classical super-
position could have been used, he did not employ
this essentially simpler technique; van Everdingen
and Hurst did employ superposition in their
development of Eq. 10. Thus, one solution leading
to Eq. 8 can be developed employing superposition:

t
i E.dwa(tD‘) dpD(tD-tD:)
dtp)e dty
o
dtD' +s]1 - EdeD(tD) .. (12
dtD

Throughout Eq. 12, the dimensionless time within
brackets simply indicates that the preceding term is
a function of time. The prime mark indicates a
variable of  integration. Eq. 12 is an
integro-differential equation of the convolution type.
The Laplace transform can be taken directly. If the
constant-rate line source is used to obtain the Laplace
transform needed for the second term in brackets in
the integral, Eq. 10 results. If the constant-rate,
finite radius cylinder transform (Ref. 1) is substituted,
Eq. 8 results. This approachis enlightening because
the true nature of the wellbore storage problem is
indicated clearly by Eq. 12. Reference to Eq. 7
shows that the first term within brackets in the
integral in Eq. 12 is the sand-face production rate
at any given time. Thus, Eq. 12 expresses the
wellbore pressure caused by a changing production
rate which results from the wellbore storage condition.
More will be said about this point later.

Both Jaeger? and Blackwelll0 presented short- and
long-time approximate inversions for Eq. 8. Chang-
ing their solutions into the fluid-flow nomenclature,
the long-time approximation is:

= 1
P (8:C,t) = 3 {ln bt

1
_ _+ - Y +1
Y +2s+2tD [ln ’-#tD

-2C (1n bty - 7 + 2s) ]+ o(tD'z) }

....... N € £))
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Short-time approximations are

t 2
= 1 D
wa(S’C’tD)" E {tD = 2'6
8

. (14)
_ 1 Y tD3/2
Pyup(0,C,t )= = { tp - o ra
T
+ O(tDz)};s=o,E7£o...(15)

where y is Euler’s constant 0.57722. The well known
constant rate solution (no storage or skin effect)
was shown by van Everdingen and Hurst! to approach
the following form at long times:

py (tp) = — [1n(htD)

- ],tD>1oo--(16>

Comparison of Eqs. 13 and 16 indicates that at very
long times

wa (S’c)tD) ~ PD (tD) + s-(17)
as was concluded by van Everdingen? and Hurst.3
This can be seen a little easier if Eq. 13 is
rearranged and the substitution for pp(¢p) made from
Eq. 16:

wa (S>C:tD) =

[pD(tD)+sH1+ -é%; - 7;%]
- (—eﬁtD D, Looge?)

sty > 100

(18)

In this form, several interesting features of the
long-time solution can be recognized. First, the
term [1/(2tp)] within brackets will always be
negligible for f greater than 100. Terms of the
order of tp~2 will be negligible. Rameyl! pointed
out that the effect of wellbore storage essentially
dies for zero skin effect cases by a dimensionless
time of

t, > 60C . (19)

D
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It is clear that this approximation will also hold for
finite skins (either positive or negative in sign) for
all practical purposes. That is, when Eq. 19 is

valid, the term (C/tp) is only 0.017 as compared to
unity, and the next to last term involving ‘‘s’’ will
always be negligible compared to s. Of course, it is
not apparent that Eq. 18 is a valid approximation for
times specified by Eq. 19. This can only be
established by comparison of results from Eq. 18
with the rigorous solution provided by Eq. 9. This
comparison will be discussed later. Jaeger? offered
two interesting limiting forms correct for any value
of time:

ct

wa (S,6>tD) = "C___Q, for s =«
. (20)
and
pp (5:C:tp) = ppltp) + s,
for C = 0... (2D

Eq. 20 would represent the condition of the sand
face completely blocked to flow, or depletion of the
wellbore volume only. Note that both short-time
approximating forms (Egs. 14 and 15), contain tp/C
as the first term of the series. Eq. 21 presents
constant-rate production with a skin effect but no
storage. This solution is in fact the basis for most
of the pressure buildup and drawdown testing
commonly used today. There is one aspect of this
solution which has not been discussed. Since pp(tp)
approaches zero as time approaches zero, Eq. 21
indicates that there would be a finite pressure
difference between the formation and the wellbore
as time approaches zero. Although the solution is
mathematically correct, this condition does not
represent the physical fluid-flow problem. That is,

1lim _ }

g > *0 {wa (5,Cstp) = 0. (22
Eq. 21 indicates that the previous solutions do not
satisfy Eq. 22 for the special case of zero wellbore
storage. Eq. 22 is satisfied if the storage constant
is finite. This results because the sand-face flow
rate increases gradually from zero to a constant
value for finite storage, but increases instantaneously
from zero to a constant rate if wellbore storage
(unloading) is non-existent.

The fact that solutions with finite storage
constants appear to make more physical sense at
short times does not indicate validity of the
solutions. The problem lies in the basic definition
of the skin effect as a pressure drop across an
infinitesimal skin (zero storage capacity, or
steady-state flow in the skin region). Obviously,
real skins which affect well performance must have
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some fluid storage capacity (pore space) or they
could not permit fluid flow. Thus there must always
be a period of unsteady-state flow through the skin
at short times for the physical problem posed by
well behavior. But nothing very general can be said
about the potential duration of this transient period
without specifying the nature of the skin effect.
Hawkins13 pointed out that one physical interpre-
tation of the skin effect is an annular region of
permeability k; and radius r; immediately adjacent
to the well. Hawkins showed that

r
Sz(—i%—-l)ln ( l),
1 r

w

.. (23)

where k is the permeability of the formation proper.
If ky is assumed to be infinitely greater than k
(perhaps 500 times as great), Eq. 23 becomes:

r
1
s = __'Ln(-r—-): . (24)
w
or
= =8 e ¢4
I‘l = I'We ) (5)

a relationship which is often cited to indicate that
the skin effect can be interpreted simply in terms
of an ‘‘effective’’ well radius, 7.

The point we wish to make is that, even if an
annular region of altered permeability is visualized
as physically responsible for the appearance of a
skin effect, the finite dimensions of the annular
region would lead to unsteady flow within the skin
at short times. This is the ‘‘composite reservoir’’
problem described by Jaeger® in connection with
heat conduction and by Louckes and Guerrerol4 in
connection with fluid flow.

The steady-state skin effect concept is a useful
one, and it has been established in previous studies
that flow in the region near the well does become
steady a short time after production begins.

However, there still is a basic problem. As Eq. 23
indicates, there is an infinite number of pairs of
values (kq,7{) that will produce the same constant
skin effect, s. Furthermore, there is undoubtedly an
infinite variety of conditions near a wellbore which
can also lead to the appearance of a skin effect —
whether positive or negative in sign. The problem
regarding the variety of annular configurations which
can produce a specific skin effect value is not quite
as bad as it first appears. This problem is discussed
by Wattenbarger and Ramey.22 It is beyond the
purpose of this paper to pursue further the problems
involved in the skin-effect concept. It is important
that the inherent nature of the skin effect be realized
so that appropriate methods will be used in well-test
analysis.

Finally, Jaeger? also presented the solution to a
heat-conduction problem analogous to that of the
fluid-flow problem. The solution involved the
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sudden opening of a bottom-hole choke in a well
where the tubing had been pressured initially and
the wellhead valve closed. A skin effect was
included; and Jaeger’s solution would permit
estimation of the dissipation of the wellbore pressure
to the formation. Although this problem has no
common useful significance in well-test analysis,
the solution is related to the time derivative of
b tp); thus can be used to compute the wellbore
unloading flow rate, and consequently the sand-face
flow rate for the subject problem of this paper.
Moreover, there is a useful physical interpretation.
We can picture the flow rate variation caused by the
wellbore storage problem to be the superposition of
the depletion of well casing fluid to a formation
upon the bebavior of a well produced at constant
rate.

Converting Jaeger’s solution to the fluid-flow
nomenclature of the subject problem and multiplying
by appropriate constants yields:

oo
s Pup _ 4E 2
dt, - 2 e U tp du +

[/

u{ (187, - (180537, ()]

+ [uEYo(u)-(l-Esuz)Yl(u)] 2} . (26)

Reference to Eq. 7 indicates that Eq. 26 provides
the fraction of the total surface flow rate produced
from the casing at any time (and thus the sand-face
flow rate by difference). It is clear that Eq. 26 is
simply the product of C and the time derivative of
Eq. 9. Of greater interest, Jaeger provided short- and
long-time approximating forms, as well as limited
tabulations and graphical solutions, for Eq. 26:

For short time and skin effect, s, not zero:

C go=1-=+0(t3 ), CF0
D Cs
(27)
For short time and skin effect, s, of zero:
- 9P o [(p o1 1
© o cl-Ver o (50
D c " c \C
3
+o(t,®), TAo .. 9

For long times,
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dp = =2 =
~ Py T C G(1-2
c Tty = o oz (8s-1) - §t2

D D D

Int
Dy . . (9
3

oty - | -+ 0

Eq. 29 may also be written in terms of the pp(tp)
function as per Eq. 16:

_ dp c(1-2C ]
C T%g= i} {pn(tb)+sl [—_L'E_l
D 2tD

Ql

lntD

5 [tD-C+s] + O(t 3 ), tp > 100
D D

+

2t
. . (30)

Comparison of Egs. 26 through 29 with Jaeger’s
Egs. 6 through 10 indicates that:9

ap
= wD
¢ 3y, - T, ) 0D

where F (b, a, 7) is a function evaluated by Jaeger,
and b, a, and r have the same significance as
indicated in Table 1.

DISCUSSION
EVALUATION OF INTEGRALS

In order to determine useful engineering approaches
to interpretation of well-flow tests, the real inversion
integral presented as Eq. 9 was evaluated numerically
for a range of values of time, storage constant, and
skin effect. The line-source approximation given by
Eq. 11 was also evaluated for a range of conditions
to determine the validity of the approximation for
ranges of parameters met in well testing. This
information is presented in Tables 3 through 8.

Evaluations were made with a high-speed digital
computer using ‘‘Richardson’s Deferred Approach to
the Limit*’,20 which is a modified form of Simpson’s
rule. Integrations were performed repeatedly, reducing
the Simpson’s rule interval until values of the integral
agreed to within 10°8. Results were also obtained
by a more sophisticated method of numerical
integration, the Romberg2l method, to provide a
check of the computed results. It is not possible to
specify rigorously the accuracy of integration, but
it is believed that results are good to at least three
significant figures.

RESULTS

Tables 3 and 4 present results obtained from Egq.
9 for the cylindrical source. Table 3 presents results
for a skin effect of zero, while Table 4 presents
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results for a skin effect of +20. Tables 5 through 8
present results obtained from Eq. 11 for the
line-source well, for skin effects of zero, +5, +10
and +20. Comparison of Tables 3 and 5 and 4 and 8
indicates that the results for the cylinder source
and line source agree within 0.5 percent for all
times, wellbore storage constants and skin effects
considered. It is common procedure to produce
short- and long-time approximations such as those
given by Egs. 13 through 15. In general, it is not
possible to establish the applicable ranges of the
approximations unless a comparison is made with
the general solution. Eq. 11 is, in a sense, a
long-time approximation for Eq. 9. We have just
shown that it is an exceedingly good approximation
over the ranges of parameters of interest in well
testing. Short-time approximations such as Egs. 14
and 15 are usually given in ascending powers of the
dimensionless time and, strictly speaking, converge
only for values of the dimensionless time less than
unity. But comparison with the general solution often
will indicate that the first few terms may provide an
excellent approximation for a much greater time

TABLE 3 — p,pl(s, G tp) VS tp FOR s = 0, CYLINDRICAL
SOURCE WELL, p_,, (0, C, #,) FOR C OF

th 102 103 104 105

100 0.7975 0.09763  0.00998  0.00100

200 1.3724 0.1919 0.01992  0.00200

500 2.4357 0.4585 0.04956  0.00500

1,000 3.2681 0.8585 0.0984 0.00999

2,000 3.9274 1.5298 0.1944 0.01995
5,000 4.5585 2.8832 0.4697 0.0497
10,000 4.9567 4.0328 0.8925 0.0989
20,000 5.3288 4.9350 1.6275 0.1958
50,000 5.8027 5.6762 3.2109 0.4765
100,000 6.1548 6.0940 4.6773 0.9141
200,000 6.5043 6.4736 58871 1.6931
500,000 6.9643 6.9515 6.7895 3.4571
1,000,000 7.3116 7.3049 7.2309 5.2164
2,000,000 7.6585 7.6550 7.6185 6.7731
5,000,000 8.1168 8.1154 8.1004 7.8983
10,000,000 8.4635 8.4627 8.4550 8.3701
20,000,000 8.8101 8.8097 8.8057 8.7663
50,000,000 9.2683 9.2681 9.2664 9.2523
100,000,000 9.6149 9.6148 9.6139 9.6082

TABLE 4 — p,p(s,Ctp) VS 1, FOR s=+20, CYLINDRICAL
SOURCE WELL, p,_ (20, G, 1,) FOR T OF

h 102 103 104 105
100  0.9777 0.09978 0.01000 0.00100
200 1.9132 0.1991 0.01999 0.00200
500 4.4900 0.4946 0.0499 0.00500
1,000  8.1220 0.9787 0.0998 0.0100
2,000 13.479 1.9172 0.1992 0.0200
5,000 21.102 4.5125 0.4948 0.0500
10,000 24.241 8.1987 0.9797 0.0998
20,000  25.186 13.710 1.9209 0.1993
50,000 25.758 21.786 4.5333 0.4953
100,000 26.134 25.271 8.2698 0.9810
200,000 26.494 26.324 13.925 1.9252
500,000  26.960 26.907 22.443 4.5545
1,000,000 27.310 27.284 26.286 8.3394
2,000,000 27.657 27.645 27.460 14.133
5,000,000 28.116 28.112 28.055 23.085
10,000,000 28.463 28.461 28.434 27.297

20,000,000 28.810 28.809 28.795 28.606
50,000,000 29.268 29.268 29.262 29.216
100,000,000 29.615 29.615 29.612 29.596
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TABLE 5 —p (s, C,t;) VSt FOR s=0, LINE SOURCE
WELL, p,p(0, C, tp) FOR T OF

D 102 103 104 10

100 07938  0.09758  0.00998  0.00100

200 13671 0.1918 0.01992  0.00200

500  2.4299  0.4582 0.04956  0.00500

1,000  3.2640  0.8580 0.0984 0.00999

2,000  3.9254 15292 0.1944 0.01995
5000  4.5579  2.8824 0.4697 0.0497
10,000  4.9564  4.0321 0.8925 0.0989
20,000 53286  4.9347 1.6274 0.1958
50,000  5.8026  5.6761 3.2108 0.4765
100,000  6.1548  6.0940 4.6772 0.9141
200,000  6.5043  6.4736 5.8870 1.6931
500,000  6.9643  6.9515 6.7894 3.4571
1,000,000  7.3116  7.3049 7.2309 5.2163
2,000,000  7.6585  7.6550 7.6185 6.7731
5,000,000  8.1169  8.1154 8.1104 7.8983
10,000,000  8.4635  8.4627 8.4550 8.3701
20,000,000  8.8101  8.8097 8.8057 8.7663
50,000,000  9.2683  9.2681 9.2664 9.2523
100,000,000  9.6149  9.6148 9.6139 9.6082

TABLE 6 — p,p(s, C, tp) VS 1, FOR s=+5, LINE SOURCE
WELL, p_, (5, [of t,) FOR C OF

%) 102 103 104 105
100 0.9319 0.09929 0.009993 0.00100
200 1.7512 0.1973 0.01997 0.00200
500 3.6982 0.4843 0.04984 0.00500
1,000 5.7984 0.9410 0.0994 0.00999
2,000 7.8403 1.7820 0.1977 0.01998
5,000 9.3823 3.8349 0.4863 0.0499
10,000 9.8913 6.1533 0.9480 0.0995
20,000  10.300 8.5524 1.8062 0.1979
50,000  10.792 10.436 3.9463 0.4878
100,000  11.150 11.025 6.4558 0.9536
200,000  11.502 11.445 9.1982 1.8256
500,000 11.963 11.941 11,488 4.0388
1,000,000 12.311 12.300 12,156 6.7163
2,000,000  12.658 12.652 12.589 9.7845
5,000,000 13.117 13.114 13.090 12,517
10,000,000  13.463 13.462 13.450 13.286
20,000,000  13.810 13.809 13.803 13.734
50,000,000  14.268 14.268 14,265 14,239
100,000,000  14.615 14.615 14.613 14.601

TABLE 7 — p,p(s, C,tp) VS tp FOR s=+10, LINE SOURCE
WELL, pwn(10, T, tp) FOR T OF

tp 102 103 104 105
100 0.9594 0.09958 0.01000 0.00100
200 1.8463 0.1984 0.01998 0.00200
500  4.1401 0.4904 0.04990 0.00500
1,000  7.0124  0.9629 10.0996 0.0100
2,000  10.487 1.8587 0. 1985 0.0200
5000  13.852 4.2027 0.4911 0.0499
10,000  14.797 7.2010 0.9658 0.0997
20,000  15.269 10.955 1.8693 0.1986
50,000  15.781 14.811 4.2568 0.4918
100,000  16.144 15.917 7.3677 0.9683
200,000  16.499 16.413 11.382 1.8785
500,000  16.962 16.930 15,737 4.3043
1,000,000 17.311 17.295 17.031 7.5162
2,000,000  17.658 17.650 17.556 11.773
5,000,000 18.117 18.113 18.079 16.631
10,000,000  18.463 18.462 18. 445 18.138
20,000,000  18.810 18.809 18.801 18.699
50,000,000  19.268 19.268 19.264 19.227
100,000,000  19.615 19.615 19.613 19.595
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TABLE 8 — p,p(s, G, tp) VS t FOR s=+20, LINE SOURCE
WELL, wa(zo, C;:D) FOR C OF

tp 102 103 104 105
100  0.9776 0.09977 0.01000 0.00100
200 1.9130 0.1991 0.02000 0.00200
500  4.4896 0.4946 0.0499 0.00500
1,000  8.1212 0.9787 0.0998 0.0100
2,000 13.478 1.9172 0.1992 0.0200
5,000 21.101 4.5125 0.4948 0.0500
10,000  24.241 8.1986 0.9797 0.0998
20,000  25.186 13.709 1.9209 0.1993
50,000 25.758 21.786 4.5333 0.4953
100,000  26.134 25.271 8.2698 0.9810
200,000  26.494 26.324 13.925 1.9252
500,000  26.960 26.907 22,443 4.5545
1,000,000 27.310 27.284 26:286 8.3394
2,000,000  27.657 27.645 27.460 14.133
5,000,000 28.116 28.112 28.055 23.085
10,000,000  28.463 28.461 28.434 27.297
20,000,000 28.810 28.809 28.795 28.606
50,000,000  29.268 29.268 29.262 29.216
100,000,000 29.615 29.615 29.612 29.596

range. The range of validity of long-time approxima-
tions such as Eq. 13 can only be established by
comparison with the general solution.

Portions of the solutions are shown on Fig. 1.*
Fig. 1 is a log-log plot such as would be required
if “‘type-curve’’ matching of field performance were
to be used. Beck et al.16 illustrated type-curve
matching of borehole unsteady-temperature data to
determine thermal constants of well systems. The
similar appearance of the computed curves for
various storage constants and skin effects indicates
that this sort of performance data interpretation
might be rather poor for fluid flow systems. There
is one useful technique illustrated by Fig. 1,
however. All curves approach a unit slope at small
times for finite, positive skin effects, and a skin
effect of zero. This condition results because only
the first term of the series in Eqs. 14 and 15 is
important at very small times. Thus at very early
times,

*A full-size plot of Fig. 1 (with a grid) will be available through
the American Documentation Institute, Library of Congress,
Washington, D.C. At present, it may be obtained by writing to
H. J. Ramey, Jr., Dept. of Petroleum Engineering, Stanford U.,
Stanford, Calif. 94305.
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FIG. 1 — p,p VS zp FOR INFINITE RADIAL SYSTEM
WITH STORAGE AND SKIN EFFECT.
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wa (S’C’tD) =:C:-—-....-

. (32)

Fig. 1 indicates that the approximation given by
Eq. 32 holds to dimensionless times on the order of
0.5 C to C. This indicates that early performance
is controlled entirely by wellbore unloading. It
further indicates that the storage constant (but only
the storage constant) might be determined from early
field performance data. That is, a plot of the logarithm
of (p; - ow) vs the logarithm of flowing time should
have a unit slope and a value of (¢/C) at ¢t = 1.
Alternatively, the flowing pressure could be plotted
vs flowing time on Cartesian coordinates and the
slope would be ¢/ C). These interpretations result
because we may substitute Eq. 6 for C in Eq. 32,
and the usual identities for dimensionless pressure
and time:

2xkh(p, - p_.)
b = L wE o33
wD q M
tD._.___kt_e.........(szi)
g TS
to achieve
pi-pwf=(%)t..... . . (35)

This approach may be useful to determine the storage
constant where specific information is not available.
Perhaps more important, this analysis indicates that
well pressure data cannot be used to determine
either skin effect or flow capacity before times
when the dimensionless pressure on Fig. 1 begins
to bend below the early straight line dictated by
Eq. 32.

A pertinent question is what is the duration of
this initial period? If we assume that a time
sufficient for the sand-face flow rate to become 20
percent of the surface flow rate is adequate, Eq. 27
can be solved approximately to provide

S}é o- -

Using the same criterion, Eq. 28 may be solved
approximately to yield

tD=o.!+'6, s = 0-- -GN

t, = 0.2 Cs, . (36)

D

It is recommended that Eq. 37 be used for skin
effects ranging from zero to +2 and Eq. 36 be used
to estimate the time for skin effects greater than +2.
The reason for this recommendation may be seen by
inspection of Fig. 1. The dimensionless times that
pressures depart from Eq. 32 increase as the skin
effect increases above zero. Because Eq. 36 is only
an approximate simplification of a very complex
form, it would forecast smaller times than Eq. 37 if
the skin effect is between zero and +2.
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In summary, data obtained from the start of a test
until dimensionless times specified by the
appropriate Eq. 36 or 37 may be used to estimate
the wellbore storage coefficient, C. Well-test data
obtained for times between the appropriate Eqs. 36
or 37 and Eq. 19 may hopefully be interpreted for
skin effect and formation flow capacity. Well-test
data obtained for times after that specified by Egq.
19 can be analyzed in the normal fashion. The
method of interpreting the intermediate time data
remains to be shown, although we would expect that
the modified Gladfelter et al.17 method discussed
by Rameyl! would be appropriate.

One problem remains. Nothing yet has been said
concerning results for negative skin effects. In the
heat-conduction analog to the subject fluid-flow
problem, the skin effect is analogous to a convection
heat transfer film coefficient. Heat transfer
coefficients always have values equal to or greater
than zero. There is nothing in the statement of the
fluid flow problem (Egs. 1 through 5) that precludes
the possibility of a negative skin effect. The
transform solution, Eq. 8, and the line-source
transform, Eq. 10, are both valid for a negative skin
effect. Furthermore, the skin effect term in all of
the long- and short-time approximations may be
positive or negative. But the real inversion integrals
given by Eqgs. 9 and 11 apply only for skin effects
equal to, or greater than, zero.

Egs. 8 and 10 can be inverted for negative skin
effects, but this does not appear worthwhile. An
alternate procedure that makes more physical sense
is to postulate that a negative skin effect can be
represented physically by an increased wellbore
radius. We recognize that many factors could be the
actual cause of the appearance of a negative skin
effect. For example, one would expect that the
result of acidizing a well would be to increase the
specific permeability of the rock matrix adjacent to
the well. This situation could be approximated by
Eq. 23. If the increase in permeability were large,
then Eqs.”24 or 25 could be used to represent this
physical situation. The proper procedure would be
to use either of the real inversion integrals given
by Eqs. 9 or 11 for a zero skin effect, but evaluated
for a dimensionless time, tp", and a wellbore storage
constant, C ", defined as follows.

" 2 _ 2s
ty 5 (rw/rl) =ty e (38)

Q|
I

T 2 2 TS .39
C (rw/rl) = Ce

Evaluation of Eq. 9 for a skin effect, s, of -5 and
a range of storage constants, C, is presented in
Table 9 and also shown on Fig. 1. These
dimensionless pressures are given as functions of
tp and C, since a skin effect of -5 listed as a
parameter would be observed in field operations. It
should be emphasized that dimensionless pressures
were found using Eq. 9, s'= 0, and ¢p' and C"
values which are €710 times the ¢}, and C tabulated.
At first glance, it would appear that a similar
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procedure could be used for positive skin effects
and that only a tabulation for a skin effect of zero
is necessary. Even if such is true, and it is a good
approximation, this would not be practical because
tabulations for a tremendous range in dimensionless
time would be required.

Finally, the fact that the infinitesimal skin
effect is not a valid concept for short times is even
more evident for the negative skin effect case
shown on Fig. 1 than for the positive skin effect
cases. Note the peculiar behavior for the zero
storage constant case on Fig. 1 for s = =5.

INTERPRETATION OF
SHORT-TIME WELL-TEST DATA

It has already been shown that the initial pressure
data obtained from the start of a test until
dimensionless times of the order of those from Egs.
36 or 37 may be interpreted to obtain the wellbore
storage constant only. The problem we consider here
is whether the intermediate short-time pressure data
can be interpreted for the formation flow capacity
and the skin effect.

One technique that has been used extensively in
the field of groundwater hydrology is ‘‘type-curve
matching’’.18 Drawdown data would be plotted as
p; — by in any convenient units vs time in any
convenient units on log-log paper of the same size
cycle as Fig. 1. The curve would be moved over
Fig. 1 until the best match with one of the
precomputed curves was obtained. The storage
constant and skin effect could be read directly from
the curve matched, and the flow capacity could be
obtained from any pair of matching dimensionless
time and real time from the two graphs, or from any
pair by matching dimensionless pressure, p, p, and
pressure difference, p; — p, . This procedure has
the theoretical capability of also yielding the
hydraulic diffusivity, k/é p c, from matching times.
As in pressure buildup or drawdown, an accurate
value of r,, is required.

In order to apply the preceding to pressure
buildup, superposition may be used in the normal

TABLE 9 — p,p(s. C. tp) VS t, FOR s=~5, CYLINDRICAL
SOURCE WELL, p_ (-5, C, tp) FOR C OF

tD 102 103 104 105

100 0.0697 0.0447 0.00896 0.00099

200 0.0992 0.0715 0.0172 0.00197

500 0.1557 0.1263 0.0394 0.00487

1,000 0.2164 0.1872 0.0718 0.00963

2,000 0.2977 0.2697 0.1267 0.01896
5,000 0.4446 0.4199 0.2518 0.0458
10,000 0.5913 0.5701 0.3990 0.0879
20,000 0.7722 0.7548 0.5972 0.1655
50,000 1.0646 1.0523 0.9313 0.3622
100,000 1.3232 1.3145 1.2254 0.6219
200,000 1.6086 1.6028 1.5422 0.9926
500,000 2.0170 2.0139 1.9806 1.6088
1,000,000 2.3420 2.3401 2.3201 2.0895
2,000,000 2.6757 2.6747 2.6630 2.5324
5,000,000 3.1248 3.1243 3.1187 3.0598
10,000,000 3.4677 3.4675 3.4644 3.4323
20,000,000 3.8124 3.8123 3.8107 3.7932
50,000,000 4.2693 4.2693 4.2685 4.2608
100,000,000 4.6154 4.6154 4.6150 4.6108
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manner. That is,

2 [, p (6486)] = ppfs.Crteet)
- wa(s,E,At). . . (40)

2xkh -

q » (P -pwf) wa (S:C,t) <o - (4D

where ¢ is the flowing time before shut-in, and At
is the time since shut-in. Combination of Eqs. 40
and 41 yields:

2rkh

—h P,p(s,Cst)

p (t+At)-p . ]

-wa(Sy-agt"'At)'*'pWD(S,E,At) . . (42)

If At is small comparéd to t, t+At is approximately
equal to ¢ and the first two terms on the right in Eq.
42 are nearly equal. Thus,

2nkh

qk [Pw(t"'At)'ow] =~ wa(S>E:At)

The log of (pw(t+At)—pw ) should be plotted vs the
log of At on a transparent log-log coordinate of the
same size as Fig. 1. If the initial buildup data
display a line of unit slope, g/C may be read from
the pressure scale at a At of unity as discussed
below Eq. 32. Eq. 6 may be used to compute the
appropriate C. The plot may then be placed over
Fig. 1 using the family of curves for the proper C.
The curve should be positioned such that it matches
the family of precomputed curves on Fig. 1. Then
the permeability, k£, may be determined from Eq. 33
using the corresponding values of p,, and
[p, (t+AD-p,,l; and corresponding values of ¢, and
At and Eq. 34 evaluated for ¢t = Az. An example
calculation is shown in Ref. 19.

Another possible interpretative scheme is to match
field data against some approximating equation such
as the long-time expression given by Eq. 18. This
is essentially the procedure recommended by
Russelll5 for short-time pressure buildup analysis.
Eq. 5 in Ref. 15 may be rearranged to the form:

21tkh . _
a—"r— [pw( t+At)—p Wf] =

) B

which was pointed out as an acceptable approximation
for the equivalent of Eq. 43, employing the long-time
approximation given by Eq. 18. This procedure is
valid as long as Eq. 44 represents the rigorous
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solution with reasonable accuracy. The storage
constant C is equivalent to the reciprocal of the
storage constant, C;, used in Ref. 15. Of interest
at this point is the range of validity of the
approximation given by Eq. 44. F1g 2 presents
wa(s,C tp) as determined from the rigorous Eq. 9,
and the approximation given by Eq. 44. Results are
shown for s =0 and 20 and for C = 1,000. As can be
seen, the range of validity of the approximation is
limited. But the long-time approximation has the
same general shape as the rigorous solution,
providing an empirical basis for the method.

Eq. 44 is interesting for another reason. It is
clear that the time criterion given by Eq. 19 may be
substituted in the last bracket on the right in Eq.
44 to yield:

_a_ﬂ__kll.[pw(t+At) - pwf] = [pD + s]

qu

.[0,9833]'. BN € 5))

This shows that the time criterion of Eq. 19
provides the time at which the approximated bwD is
within 1.7 percent of (pp+s). A dimensionless time
of 60C is also shown on Fig. 2.

CONCLUSIONS

A thorough investigation of both the wellbore
storage and skin effect concepts was performed. It
was found that many studies have been made of
these effects, although the connection between
various studies has not been obvious. It is hoped
that the review presented in this paper will help
clarify this important problem.

In regard to wellbore storage, it has been shown
that it is possible to forecast the duration of the
initial flow period controlled by storage. During
this time, it is possible to find the storage constant
from well-test data, but the formation flow capacity
and skin effect cannot be found. After the initial

t5=60C /
| ©=0,5:20 — ==

30

n

o

N
N

—EQ.9
——-EQS.I18 OR 44

DIMENSIONLESS PRESSURE, Pwp
S

0
103 104 105 106
DIMENSIONLESS TIME, t,

FIG. 2 —p_p VS tp, FOR LONG-TIME APPROXIMATION
AND RIGOROUS SOLUTION.
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period controlled by storage, it is possible to perform
analysis of well-test data for flow capacity and
skin effect by type-curve matching techniques. This
procedure extends well-test analysis into the
short-time region and provides an additional useful
interpretative tool.

It has been recognized, in regard to skin effect,
that the steady-state skin effect concept becomes
physically invalid at very short test times. If test
data are to be interpreted properly, it will be
necessary to generalize the skin effect concept to
include a damaged region of a finite storage capacity.

Regarding negative skin effect, one possible
interpretation is that the wellbore radius has been
enlarged. Transient solutions have been presented
for this case. It is also likely that negative skin
effects arise more commonly as a result of fracture
communication with the wellbore. This latter
situation is not considered in this study.

In regard to the combined effect of wellbore
storage and skin, it appears that the time required
to reach the usual straight line is not usually
affected significantly by a finite skin effect. The
duration is mainly controlled by the wellbore storage.

A systematic inspection of a number of significant
factors affecting short-time transients involved in
well testing has been made. It is not implied,
however, that all significant factors have been
studied. Nevertheless, a number of pertinent
findings have resulted. Wellbore storage should
control the initial transients if the well is damaged
or has a zero skin. If a well exhibits a negative
skin, the effect of wellbore storage will not be
prominent because the rate of pressure change in
the wellbore may be quite low. It appears that proper
interpretation of short-time well-test data can be
made under favorable circumstances.

NOMENCL ATURE

c = total system isothermal compressibility,
vol/vol-atm

C = wellbore storage constant, cc/atm (see Eq. 6)

C, = equivalent to the reciprocal of C (used by
Russell15)

C = dimensionless wellbore storage constant
(see Eq. 6)
d = differential operator
b = formation thickness
Jo = Bessel function of first kind, order zero
J1 = Bessel function of first kind, order one
k = permeability of the formation
ky = permeability of the region immediately
adjacent to the well
Ko = modified Bessel function of second kind,
order zero

K; = modified Bessel function of first kind, order

one
L = Laplace transform of the quantity
p = variable of Laplace transform

SEPTEMBER, 1970

pwp = dimensionless pressure drop within the
wellbore

pp = dimensionless pressure drop on the formation
side of skin effect

p; = initial formation pressure

pp = well pressure
Puwf = flowing well pressure

g = surface flow rate
qss = sand face flow rate
r = radial distance

r, = radius of the region of permeability k4

rp = dimensionless radius, r/r,,

r,, = wellbore radius, cm
= skin factor, dimensionless
= flowing time, seconds
At = shut-in time, seconds
tp = dimensionless time (see Eq. 34)

u = variable of integration
Yy = Bessel function of second kind, order zero
= Bessel function of second kind, order one
= reciprocal of C (see Table 1)
= Euler’s constant, 0.57722
viscosity, cp
= infinity valueldefined by Hurst (see Table1)
= dimensionless time (see Table 1)
= porosity, fraction of bulk volume

v-<
B 9 I "R AR
1

SUBSCRIPTS
D = dimensionless quantity
refers to initial reservoir condition

~,
]

sf = refers to conditions at sand face
w = refers to conditions at wellbore radius
wf = refers to flowing conditions at wellbore
radius
ACKNOWL EDGMENT

This study was initiated while the authors were
at Texas A&M U. Much of the initial computer work
involved in evaluation of real inversion integrals
was accomplished with financial support of the
school. The authors also wish to acknowledge the
encouragement of R. L. Whiting, head of the Dept.
of Petroleum Engineering at Texas A&M, and the
contributions of R. D. Carter of Pan American
Petroleum Corp. and R. A. Wattenbarger of
Scientific Software Corp.

REFERENCES

1. van Everdingen, A. F. and Hurst, W.: ““The Applica-
tion of the Laplace Transformation to Flow Problems
Trans. AIME (1949) Vol. 186, 305-324.

2. van Everdingen, A. F.: ‘““The Skin Effect and Its
Influence on the Productive Capacity of a Well??,
Trans. AIME (1953) Vol. 198, 171-176.

3. Hurst, W.: ‘“Establishment of the Skin Effect and Its
Impediment to Fluid-Flow into a Well Bore’’, Pet.
Eng. (Oct., 1953) Vol. 25, B-6.

289



8

10.

11.

12,

290

Jaeger, J. C.: ¢‘Radial Heat Flow in Circular
Cylinders with a General Boundary Condition, I”’,
J. Roy. Soc., N.S. Wales (1940) Vol. 74, 342.

Jaeger, J. C.: ‘‘Radial Heat Flow in Circular Cylinders
With a General Boundary Condition, II’’, J. Roy. Soc.,
N.S. Wales (1941) Vol. 75, 130.

Carslaw, H. S. and Jaeger, J. C.: Conduction of
Heat in Solids, 1st ed., Oxford at the Clarendon
Press (1947) 16 and 284; 2nd ed. (1959) 22 and 342.

Lesem, L. B., Greytok, F., Marotta, F. and McKetta,
J. J., Jr.: ““A Method of Calculating the Distribution
of Temperature in Flowing Gas Wells’’, Trans. AIME
(1957) Vol. 210, 169-176.

Hurst, W.: ‘“The Simplification of the Material Balance
Formulas by the Laplace Transformation’’, Trans.
AIME (1958) Vol. 213, 292-303.

Jaeger, J. C.: ‘“‘Conduction of Heat in an Infinite
Region Bounded Internally by a Circular Cylinder of
a Perfect Conductor’’, Aust. J. Phys. (1956) Vol. 9,
No. 2, 167.

Blackwell, J. H.: ‘‘A Transient-Flow Method for
Determination of Thermal Constants of Insulating
Materials in Bulk’’, J. Appl. Pbys. (1954) Vol. 25,
No. 2, 137.

Ramey, H. J., Jr.: ‘“Non-Darcy Flow and Wellbore
Storage Effects in Pressure Buildup and Drawdown
of Gas Wells’’, J. Pet. Tech. (Feb., 1965) 223-233.

Chatas, A. T.: ‘A Practical Treatment of Nonsteady-

Flow Problems in Reservoir Systems’’, Pet. Eng.
(May, June and Aug., 1953) Vol. 25.

13.

14.

15.

16.

17

.

18.

19.

20.

21.

22.

Hawkins, M. F., Jr.: ‘“A Note on the Skin Effect’’,
Trans. AIME (1956) Vol. 207, 356-357.

Loucks, T. L. and Guerro, E. T.: ‘‘Pressure Drop in
a Composite Reservoir’’, Soc. Pet. Eng. J. (Sept.,
1961) 170-176.

Russell, D. G.: ‘‘Extensions of Pressure Buildup
Analysis Methods”’, J. Pet. Tech. (Dec., 1966) 1624-
1636.

Beck, A., Jaeger, J. C. and Newstead, G.: ““The
Measurement of the Thermal Conductivities of Rocks
by Observations in Boreholes’’, Aust. J. Phys.
(1956) Vol. 9, 286.

Gladfelter, R. E., Tracy, G. W. and Wilsey, L. E.:
‘‘Selecting Wells Which Will Respond to Production-
Stimulation Treatment’’, Drill. and Prod. Prac., API
(1955) 117.

Hantush, M.: Advances in Hydroscience, Ven Te
Chow, ed., Academic Press, New York (1964) Vol. 1.

Ramey, H. J., Jr.: “‘Short-Time Well Test Data
Interpretation in the Presence of Skin Effect and
Wellbore Storage’’, J. Pet. Tech. (Jan., 1970) 97-104.

McCormick, J. M. and Salvadori, M. G.: Numerical
Methods in FORTRAN, Prentice-Hall, Inc., Englewood
Cliffs, N. J. (1964) 54.

David, P. J. and Rabinowitz, P.: Numerical Integration,
Blaisdell Publishing Coi; Waltham, Mass. (1967) 166.
Wattenbarger, Robert A. and Ramey, H. J., Jr.: ‘“‘An
Investigation of Wellbore Storage and Skin Effect in
Unsteady Liquid Flow: II. Finite Difference Treat-

ment’’, Soc. Pet. Eng. J. (Sept., 1970) 291-297.
13

SOCIETY OF PETROLEUM ENGINEERS JOURNAL



