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Abstract The pressure responses of a reservoir can be obtained by convolving source
functions and flow rates. Although the literature reports on deriving source functions
analytically from the diffusivity equation, there is no study on deriving source func-
tions using flow rates and pressure responses obtained from pressure transient tests.
We therefore wanted to develop a methodology for obtaining the formation source
functions using pressure data when pressure and flow-rate data are known. In ad-
dition, we wanted to study the characteristics of some source functions both from
simulated data and from analytical methods in the literature.

We demonstrate that the pressure functions (solutions of the diffusivity equation)
of a test well can be calculated by convolving flow rates with source functions, and that
the source functions can be derived by deconvoluting the pressure drop and flow rates
available from the pressure-test data. Pressure function, flow rate, or source function
can be obtained when two of these three functions are known. A source function (in
time domain) with the wellbore storage effect is a horizontal line in a very early time
and coincides with the infinite line source function or the infinite surface cylinder
source function after the end of the wellbore storage effect. The source functions are
almost the same for different positive skin factors. For a negative skin factor, a source
function is initially a horizontal line and subsequently coincides with the infinite line
source or infinite surface cylinder source functions.

Keywords boundary condition, convolution, deconvolution, skin effect, solution of
diffusivity equation, wellbore storage
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1. Introduction

The diffusivity equation that describes fluid flow in a porous medium under special bound-
ary conditions and an initial condition can be solved analytically using the Laplace trans-
form (Theis, 1935; van Everdingen and Hurst, 1949; Rosa and Horne, 1996), the Fourier
transform (Andre and Bennion, 1970), or Green’s function (Gringarten and Ramey, 1973;
Rosa and Horne, 1996). The Theis (or line source) solution (Theis, 1935; Lee, 1982) is
derived by assuming the intersection of the vertical well and formation to be a line source.
The Theis solution is a special case of the van Everdingen and Hurst solution (1949),
which includes cases with a constant flow rate and constant pressure and with finite and
infinite reservoir sizes for outer boundary conditions.

Gringarten and Ramey (1973) used Green’s function to solve the diffusivity equation.
The integral of an instantaneous Green’s function around an area with a special boundary
condition is called a source function. Gringarten and Ramey (1973) derived several basic
source functions, such as an infinite plane source function, infinite slab source function,
infinite line source function, infinite surface cylinder source function, point source func-
tion, etc. From these basic source functions, they used Newman’s product method to find
more solutions of the diffusivity equation for different inner and/or outer boundary con-
ditions. Clonts and Ramey (1986) presented an analytical pressure solution for a uniform
flux horizontal drainhole in an anisotropic reservoir with finite thickness. In using source
functions and the Newman product method, they found that the pressure solution of a
uniform flux vertical fracture could be approximated by a vertical array of drainholes.
Kuchuk et al. (1990) used deconvolution methods to compute the pressure behavior of
a well/reservoir system from a well producing at a constant flow rate. They called the
computed pressure behavior of the system deconvolved pressure. Later, Kuchuk (1990)
utilized convolution and deconvolution interpretation methods to show that the downhole
flow rate is crucial for system identification and parameter estimation. He also showed
that the generalized rate convolution method worked better than the Horner method
(Lee, 1982).

Different source functions represent different formation characteristics and/or differ-
ent boundary conditions. By knowing the source function of a specific well, an appropriate
model can be chosen to analyze the pressure data, and correct results will be obtained.

The purposes of this study were to obtain the formation source functions from
pressure test data with pressure and flow-rate data taken from field data and simulation
data to study the characteristics of source functions and to generate transient pressure
information from source functions and flow-rate data. From the obtained formation source
functions, the relationship of the test formation to differential boundary conditions is then
revealed.

2. Basic Theory

2.1. Pressure Solutions of Diffusivity Equation

In deriving the diffusivity equation for radial flow toward a well in a circular reservoir, the
isothermal flow of fluid with small and constant compressibility is assumed. The pressure
gradient is assumed to be very small and the reservoir is assumed to be homogeneous
and isotropic. All parameters of rock and fluid properties are assumed to be constant.
By combining the conservation of mass and Darcy’s law, the diffusivity equation in
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dimensionless form can be written as follows (Lee, 1982):

∂2PD

∂r2
D

+ 1

rD

∂PD

∂rD

= ∂PD

∂tD
(1)

where

PD = kh(Pi − Pwf )

141.2qµB
for oil (2)

PD = kh(P 2
i − P 2

wf )

1,422qµZT
for gas (3)

tD = 0.0002637kt

φµCr2
w

(4)

rD = r/rw (5)

By giving initial and boundary conditions, the solution of the diffusivity equation
can be derived analytically, semi-analytically, or numerically. These solutions include the
van Everdingen and Hurst solution (van Everdingen and Hurst, 1949), the Theis solution
(Theis, 1935), and the log approximation solution (Lee, 1982). In addition, the solutions
of the diffusivity equation can also be solved using known source functions and flow
rates (Gringarten and Ramey, 1973).

2.2. Source Function Solutions and Convolution

Some of the solutions of the diffusivity equation, or the pressure response function
(PD(tD)) can be derived by convolving source functions (S(tD)) with flow rates (qD(tD))

(Gringarten and Ramey, 1973; Raghavan, 1993):

PD(tD) = qD(tD) ∗ S(tD) =
∫ tD

0
qD(τ)S(tD − τ) dτ (6)

where “∗” is the operator of convolution.
The convolution method is used to filter data in signal processing, and the relation-

ships among pressure response (PD(tD)), flow rate (qD(tD)), and formation characteristic
(S(tD)) comprise a filter system (Figure 1) in which flow rate is the input, pressure re-
sponse is the output, and the formation source function is the filter. Because the filter
system is a linear system, the pressure response is the convolution of a flow rate and
source function, which is based on Eq. (6).

Figure 1. The linear system that is constructed using an input, filter, and output.
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The pressure, flow rate, and source function in Eq. (6) are continuous functions. In
numerical calculations, the pressure, flow rate, and source function are discrete. When the
flow rate and source function comprise N values in the time domain, a discrete equation
(Eq. (7)) can be used to calculate the convolution result of both (Oppenheim et al., 1999).

P ∗
D[n′] = qD[n] ∗ S[n] ≡

N−1∑
m=0

qD[m]S[n − m] (7)

where n = 0, 1, 2, . . . , N − 1 and n′ = 0, 1, 2, . . . , 2N − 2.
In the convolution method, the qD function is stationary, and the S function in Eq. (7)

first mirrors or folds from the y-axis in Cartesian coordinates and then moves rightward
until the last point of S dislocates the range of qD . When the S function is moving
rightward by steps, the summations of the products of S and qD in each step are formed
as the result of the linear convolution shown in Eq. (7) (Oppenheim et al., 1999).

Notice that P ∗
D is the result of the linear convolution of qD and S, and the length of

P ∗
D is 2N − 1. If the qD and S functions are known, the linear convolution of qD and S

can be calculated from Eq. (7). But the solution of the diffusivity equation, PD(tD), is
the first N points of the linear convolution, and the posterior N − 1 points are discarded.
These solutions derived from source functions are also called source function solutions.

2.3. Source Function using the Deconvolution Method

To compute the source function (S) when the PD and qD functions are known from
Eq. (6) or Eq. (7) the length of the pressure function should be 2N − 1, where the
lengths of qD and S are N . It is necessary to pad zeros and make the length of the
pressure data (PD) be 2N − 1 points before the deconvolution process. Then the source
function can be estimated by deconvolution (MATLAB, 2000), based on Eq. (7), as
follows:

Step 1. Zero-padding PD[n], letting the length of PD[n] be 2N − 1.
Step 2. Using Eq. (7) to deconvolute P ∗

D[n′] and qD[n] to obtain the result of S[n].
Unlike Raghavan’s method (Raghavan, 1993), the source function (S) in Eq. (6)

is calculated in this study from knowing PD and qD and using polynomial division. If
the source function (S), pressure data (PD), and flow rate (qD) sequences constitute
the coefficients of polynomial Sp, (PD)p, and (qD)p, the polynomial Sp is equivalent
to the quotient when the polynomial (PD)p is divided by the polynomial (qD)p. And
the coefficients of the quotient, Sp, are equivalent to the source function sequences (S)

(Eq. (8)) (MATLAB, 2000):

Sp = (PD)p/(qD)p (8)

Notice that the source function sequences constitute the coefficients of Sp, as do
the pressure and flow-rate data. From the polynomial division theorem, the quotient, Sp,
exists when the degree of the dividend, (PD)p, is greater than or equals to the degree
of (qD)p. Otherwise, there will be no quotient or the quotient is constant. The degree of
PD must be added to 2N − 1 to obtain the N degree of the quotient when the degrees
of PD and qD are equal, i.e., N . The easiest way to expand the degree of a polynomial
is by adding zeros to lower power items (MATLAB, 2000).
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3. Results

The relationship of flow rates (qD), source functions (S), and bottom hole pressure (PD)

in Eq. (6) can be viewed as the input (qD , flow rates), filter (S, source functions), and
output (PD , the pressure drop) in a system (or formation) (Kuchuk et al., 1990; Kuchuk,
1990). The system is characteristically a linear system in which the superposition method
can be used.

3.1. Source Functions and Their Characteristics

The basic source functions (Gringarten and Ramey, 1973), such as the point source
function, Sps(t), infinite line source function, Sil(t), and infinite surface cylinder source
function, Sis(t), are (Gringarten and Ramey, 1973):

Sps(t) = e−r2/4ηr t

8(πηr t)3/2
(9)

Sil(t) = e−r2/4ηr t

4πηr t
(10)

Sis(t) = rw

2ηr t
Io

(
rrw

2ηr t

)
e−(r2+r2

w)/4ηr t (11)

where

ηr = k

µCφ
(12)

Point source is a well that is perforated in a formation with a very small interval
as a point. Infinite line source is a well that is perforated in a formation with a finite
interval where the diameter of the well is very small (approaches zero). In the infinite
surface cylinder source, the diameter of the well does not approach zero. Dimensionless
source functions corresponding to Eqs. (9) to (11) are written as:

Sps(tD) = 1

4
√

πt
3/2
D

e
[ −1

4tD
]

(13)

Sil(tD) = 1

2tD
e
[ −1

4tD
]

(14)

Sis(tD) = 1

2tD
Io

(
1

2tD

)
e
[ −2

4tD
]

(15)

where

tD = kt

µCφr2
w

rD = r/rw (rD = 1 at wellbore)

In a log-log plot, the infinite surface cylinder source function decreases as dimension-
less time increases (Figure 2). The dimensionless point source function and dimensionless
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infinite line source function increase as dimensionless time increases in the early-time
period. After reaching the maximum for tD (approximately 0.11), both source func-
tions decrease as dimensionless time increases. The point source function and infinite
line source function coincide when tD is between 10−2 and 10−1. The infinite surface
cylinder function, however, initially differs from these two functions when tD < 10−1

(Figure 2). Thus, the pressure behavior of the point source function and infinite line
source function is the same in the flow period when tD is between 10−2 and 10−1. The
infinite line source function is close to the infinite surface cylinder source function and
different from the point source function when tD > 10−1. Therefore, the pressure behav-
ior of the infinite line source function is the same as that of the infinite surface cylinder
source function and different from that of the point source function when tD > 10−1.

3.2. Pressure Solutions from Source Functions

If source functions (Eqs. (13) to (15)) are used to solve the solutions of the diffusivity
equation (Eq. (6)), pressure solutions (Eqs. (16) to (18)) corresponding to the point source
function, infinite line source function, and infinite surface cylinder source function are
obtained, such as,

PD,ps(tD) = qD ∗ Sps(tD) = qD ∗ 1

4
√

πt
3/2
D

e
[ −1

4tD
]

(16)

PD,il(tD) = qD ∗ Sil(tD) = qD ∗ 1

2tD
e
[ −1

4tD
]

(17)

PD,is(tD) = qD ∗ Sis(tD) = qD ∗ 1

2tD
Io

(
1

2tD

)
e
[ −2

4tD
]

(18)

Notice that the pressure transient solution (PD) is the first N points of the convolution
of qD ∗ S(tD) where S(tD) may be either Sps(tD), Sil(tD), or Sis(tD). For a constant
flow rate (qD = 1), the convolution method is used to obtain dimensionless pressure
solutions (Figure 3) for the point source, infinite line source, and infinite surface cylinder
source functions (Eqs. (16) to (18)). The infinite line source pressure transient solution,
PD,il(tD), and infinite surface cylinder source pressure transient solution, PD,is(tD), are
very consistent with the Theis solution and the van Everdingen and Hurst solution,
respectively (Figure 4). These results show that the calculations of convolution in this
study are correct.

The sampling rate or the dimensionless time interval will affect the results of cal-
culations. For example, better results are obtained when a dimensionless time interval
of 0.0705 is used to calculate the infinite surface cylinder source function and 0.015
is used to calculate the infinite line source function solution. The characteristics of the
point source function and solution are not discussed in this study because there is no
equivalent pressure solution available in the literature.

From the results shown above, the pressure solutions or pressure transient behavior
can be obtained when the source functions of the formation and flow rates are known.
Alternatively, the infinite line source function, the point source function, or the infinite
surface cylinder source function can be obtained from Eq. (6) by deconvolving when the
pressure solutions (PD) and the flow rates are known. The infinite line source and infinite
surface cylinder source functions calculated from deconvolution based on Eqs. (17) to
(18) are the same as those from Eqs. (14) and (15) (Figure 5). These confirm that the
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Figure 2. Characteristics of the infinite line, point, and infinite surface cylinder source functions.

Figure 3. Diffusivity equation solutions derived from the infinite line, point, and infinite surface
cylinder source functions.
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Figure 4. Comparison among the infinite line source function, the infinite surface cylinder source
function solutions and the two analytical solutions.

Figure 5. Comparison among the deconvolutions of the Theis solution, van Everdingen and Hurst
solution, and the three analytical solutions.
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deconvolution method of this study is correct. In addition, it is shown that the source
functions can be obtained when the pressure functions and flow-rate data are known.

3.3. Formation Source Functions from Simulated Pressure Data

In this study, the IMEX simulator of Computer Modelling Group Ltd. (CMG, 2000) was
used to construct a model (Table 1) and simulate pressure tests for an oil well in a radial
flow for drawdown and buildup tests with the wellbore storage effect and skin effect.
The goal was to obtain source functions from the pressure data generated by simulation.

3.3.1. Source Function from a Pressure Drawdown Test. The pressure data of a draw-
down test with a constant flow rate (25 STB/DAY) (Figure 6) was obtained from the
IMEX simulator. The dimensionless pressure from simulation is almost identical to the
van Everdingen and Hurst solution (Figure 7), and the source function derived from
deconvolution of pressure from simulation data under a constant flow rate is almost iden-
tical to the infinite surface cylinder source function (Figure 8). When the pressure drop
(instead of dimensionless pressure) and the flow rate (q = 25 STB/DAY) for deconvolu-
tion are simulated, the corresponding source function can be obtained (Figure 9). Using
the results shown in Figure 9, the dimensionless source function (Figure 10) can also be
obtained. The relationship between the source function (S(t)) and dimensionless source
function (S(tD)) is shown in Eq. (19).

S(t) = 0.8936B

hCφr2
w

S(tD) (19)

3.3.2. Source Function from a Pressure Buildup Test. The pressure buildup test data is
simulated from the well being shut-in after producing a constant rate of 25 STB/DAY
(Figure 11). The duration for both drawdown and buildup tests is 360 hrs. Based on
the simulated pressure drop and flow rates (25 STB/DAY for pressure drawdown and
0 STB/DAY for pressure buildup), the source function (S(t)) is calculated using Eq. (7)
(Figure 12). The dimensionless source function (S(tD)), from using Eq. (19), matches
with the infinite line source function or the infinite surface cylinder source function
(Figure 13).

Table 1
Input parameters of the simulation for radial oil well

Parameters Value, unit Parameters Value, unit

Permeability (k) 10 md Viscosity for oil (µ) 13.2 cp
Porosity (φ) 0.17 Formation volume factor (Boil) 1.02 RB/STB
Thickness (h) 147 ft Radius of well (rw) 0.5 ft
Compressibility for oil (Coil) 2 · 10−6 psi−1 Initial pressure (P i) 3,200 psi
Compressibility for water

(Cwater)
2.6 · 10−6 psi−1 Initial oil saturation (Soil,i ) 1

Compressibility for formation
(Cformation)

10−8 psi−1 Connate water saturation
(Swater,c)

0

Total compressibility (Ct ) 2 · 10−6 + 10−8 psi−1 Skin factor (s) 0
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Figure 6. Pressure drawdown test simulated using the IMEX program.

Figure 7. Comparison between the results from pressure drawdown data simulated using the IMEX
program and from the van Everdingen and Hurst solution.
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Figure 8. Comparison among the formation source function of pressure drawdown test simulated
using the IMEX program and three analytical source functions.

Figure 9. Source function obtained by deconvoluting )P and flow rate from simulated pressure
drawdown test data.
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Figure 10. Dimensionless source function obtained from simulated pressure drawdown test data.

Figure 11. Pressure drawdown and buildup data simulated using the IMEX program.



Pressure Transient Analysis 973

Figure 12. Source function obtained by deconvoluting )P and flow rate from simulated pressure
drawdown and buildup tests (q = 25 and 0 STB/DAY).

Figure 13. Dimensionless source function obtained from simulated pressure drawdown and buildup
tests (q = 25 and 0 STB/DAY).
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3.3.3. Source Functions with the Wellbore Storage Effect. There is no wellbore storage
effect or skin effect in the simulation model discussed above. In the following exam-
ple, wellbore pressure responses with the wellbore storage effect for the dimensionless
wellbore storage constants (CD = 1, 100, and 1,000) are simulated (Figure 14). The
dimensionless wellbore storage constant (CDe2s = 0.8936Cce2s/Cthr2

w) is defined by
Bourdet et al. (1989).

Based on the simulated pressure, source functions (Figure 15) can be obtained using
deconvolution of Eq. (6) or Eq. (7). Notice that a constant flow rate is used in these
cases. When the dimensionless wellbore storage constant is small (such as CD = 1),
i.e., the wellbore storage volume is small, the source function is close to the infinite
line source function or the infinite surface cylinder source function (Figure 15). When
the dimensionless wellbore storage constant is larger (such as CD = 100 or 1,000),
the source function yields a horizontal line in a very early time. The larger the di-
mensionless wellbore storage constant is, the longer the horizontal line extends. The
value of the source function decreases as the dimensionless wellbore storage constant
increases (Figure 15). The horizontal line crosses the curve of the infinite surface cylin-
der source function and then coincides with the curve of the infinite surface cylinder
source function at a later time. The coincident time is the ending time of the wellbore
storage effect. The ending time (tD) of the wellbore storage effect for the case studied
is estimated at 4,000 when CD = 100 and at 70,000 when CD = 1,000 (Figure 15).
These estimations are the same as those from the Ramey type-curve method (Lee, 1982)
(Figure 16).

3.3.4. Source Functions with the Skin Effect. When simulating pressure test data with
skin factors of 0, 2, 4, and 6 (damage effect), pressure data (Figure 17) is obtained to
derive source functions with the skin effect (Figure 18). The source function without the
skin effect (s = 0) from simulated data coincides with the infinite surface cylinder source
function of the analytical solution (Figure 18a). The source functions for s = 0 and s = 2
are almost identical to each other when tD is greater than 0.09 (Figure 18b). The source
functions for s = 0 and s = 4 are consistent when tD is greater than 0.12 (Figure 18c).
The curve of each source function with a skin factor greater than zero deviates from
the curve with a zero skin factor, and the initiation point of the deviation moves toward
the right in the plot as the skin factor increases (Figure 18b and 18c). Because the skin
effect occurs near the wellbore, the curve of a source function with a skin factor greater
than zero tends to coincide with the infinite line source function or the infinite surface
cylinder source function at a late time.

When simulating pressure test data with skin factors of −2, −4, or −6 (stimulation
effect), pressure data (Figure 19) is obtained from simulation to derive source functions
with the skin effect (Figure 20). The source function with a negative skin factor is similar
to the source function with the wellbore storage effect, and it, too, produces a horizontal
line at an early time. Moreover, for negative skin, as the value of the skin factor becomes
smaller, the value of the source function of the horizontal line becomes smaller. A source
function with a negative skin factor tends to coincide with the infinite surface cylinder
source function or the infinite line source function at a later time. Nevertheless, unlike
the source function with the wellbore storage effect, the source function curve with a
negative skin factor does not cross the infinite surface cylinder source function curve or
infinite line source function curve.
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Figure 14. Pressure data simulated using the IMEX program for the wellbore storage effect.

Figure 15. Comparison among the formation source functions caused by the wellbore storage
effect and the three analytical source functions.
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Figure 16. Traditional estimation of ending time for the wellbore storage effect.

Figure 17. Pressure data simulated using the IMEX program for the skin effect (s = 0, 2, 4, 6).
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Figure 18. Comparison of source functions for different skin factors: (a) the source function for
s = 0, infinite line source function, and infinite surface cylinder source function; (b) the source
functions for s = 0 and 2; (c) the source functions for s = 0 and 4.

Figure 19. Pressure data simulated using the IMEX program for the skin effect (s = −2, −4,
−6).
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Figure 20. Comparison among the formation source functions caused by the skin effect and the
three analytical source functions.

4. Discussions

(1) Based on one of the analytical solutions shown in Eq. (6), the formation is a linear
system (Gringarten and Ramey, 1973; Kuchuk et al., 1990). Moreover, the linear system
can be viewed as consisting of an input, qD(tD), a filter, S(tD), and an output, PD(tD)

(Figure 1). The pressure drop (PD) can be obtained by convoluting flow rates (qD) and
source functions (S) (Eq. (6)). If the pressure drop and flow rates are known, the source
functions can be derived by deconvoluting the pressure drop and flow rates. In our study,
the convolution and deconvolution methods were used regardless of whether or not the
flow rates were constant.

(2) When simulated pressure and flow-rate data are provided, the deconvolution
method, which is used in signal processing, can be used to obtain source functions.
Our results show that these source functions are affected by the system or the boundary
condition of a formation but not by flow rates, because the pressure response changes as
the flow rate changes. Thus, the source functions depend only on the characteristics of
the formation.

(3) The characteristics of the source functions are related to the boundary condi-
tions. This study investigated the source functions affected by inner boundary conditions,
especially a well’s geometry or its intersection with the formation. In addition, the in-
ner boundary conditions affect the early-time pressure test data. Because these source
functions vary for different inner boundary conditions, they are affected by the wellbore
storage effect and the skin effect. In our study, the source functions were clearly influ-
enced by the wellbore storage effect. The source functions were more strongly affected
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Figure 21. Pressure data in Lee (1982).

by negative skin factors (the stimulation effect) than by positive skin factors (the damage
effect). The reason may be that the effective wellbore radius is very small when the skin
factor is positive. Therefore, the damage effect was not apparent. The small fluctuation
caused by the damage effect had to be observed in very small scale and may have been
caused by numerical simulation. Moreover, the source function with the wellbore storage
effect differed from the source function with the stimulation effect, and this difference
can be used to distinguish the skin effect from the wellbore storage effect.

5. Case Study

The reservoir data for the case study is from the literature and contains pressure test data
(Figure 21) and general information (Table 2). The pressure test (Figure 21) was a draw-
down test from a well with the wellbore storage effect and skin effect. The dimensionless
wellbore storage constant was 1,000, and the duration of the wellbore storage effect was
5 hrs (Table 4.1 in Lee, 1982).

Table 2
Parameters of test data (Lee, 1982)

Parameters Value, unit Parameters Value, unit

Porosity (φ) 0.2 Viscosity (µ) 0.8 cp
Flow rate (q) 500 STB/DAY Formation volume

factor (Bo)
1.2 RB/STB

Thickness (h) 56 ft Radius of well (rw) 0.3 ft
Total compressibility (Ct ) 0.00001 psi−1 Initial pressure (P i) 3,000 psi
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Figure 22. The source function obtained from pressure data in Lee (1982).

When pressure data (Figure 21) with a flow rate of 500 STB/DAY was used, the
source function (Figure 22) was obtained by deconvoluting the pressure and flow-rate
data based on Eq. (6). The source function obtained (Figure 22) shows that the well
had the wellbore storage effect because the source function begins as a horizontal line,
becomes a curve, and then tends to coincide with either the infinite line source function
or the infinite surface cylinder source function. The source function (Figure 22) from
the case shows that the dimensionless wellbore storage coefficient (CD) is 1,000. The
result is the same as that from Lee (1982). In this study, the ending time of the wellbore
storage effect from the plot (Figure 22) was estimated to be 5.19 hrs, which is close to
the 5 hrs analyzed by Lee (1982).

6. Conclusions

We conclude the following from our study of the characteristics of source functions in
early time pressure behavior and their application to pressure test data.

(1) Source functions can be derived by deconvoluting the pressure drop and flow rate,
which are available from pressure test data. Source functions can be used to characterize
the inner boundary conditions of test wells, such as point source, infinite line source,
or infinite surface cylinder source, the wellbore storage effect, and the skin effect. The
information is valuable for pressure test analysis.

(2) The pressure function, flow rate, or source function can be derived when two of
these three functions are known. The source function is a characteristic of the formation
and is independent of the flow rate.

(3) In the log-log plot of the dimensionless source functions versus dimensionless
time for different wellbore storage constants, the source functions begin as horizontal
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lines and cross over the analytical source function at an early time. At a later time, the
ending time of the wellbore storage effect, the source functions coincide with the infinite
line source function or infinite surface cylinder source function.

(4) The source functions are almost the same for different positive skin factors
(damage effect). For a negative skin factor (stimulation effect), a source function is
initially a horizontal line and subsequently coincides with the infinite line source or
infinite surface cylinder source functions.
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Nomenclature

B formation volume factor
C, Ct compressibility, total compressibility
CD , Cc dimensionless wellbore storage constant, wellbore storage constant
e exponential
h thickness
k permeability
N N points, length
n, n′, m sequence
P , Pwf , Pws pressure, bottom hole pressure, shut-in pressure
PD dimensionless pressure, defined in Eq. (2) for oil and Eq. (3) for gas
P o, P i initial pressure
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q flow rate
qD dimensionless flow rate
r radial distance
rD dimensionless radial distance, defined in Eq. (5)
rw radius of wellbore
S source function
Sil infinite line source function
Sis infinite surface cylinder source function
Sps point source function
s skin factor
T temperature
t time
tD dimensionless time, defined in Eq. (4)
Z real gas deviation factor
ηr hydraulic diffusivity constant, defined in Eq. (12)
µ viscosity
τ integration variable
φ porosity

Subscripts

c wellbore storage effect
D dimensionless
i, o initial
il infinite line source
is infinite surface cylinder source
p polynomial
ps point source
r radial coordinate
t total
w wellbore
wf bottomhole
ws shut-in

Special Function

Io modified Bessel function of the first kind of order 0


