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Abstract 

The current type-curve matching technique is essentially a trial-and-error procedure. A new technique for interpreting pressure 
tests using log-log plots of the pressure and pressure derivative versus time to calculate reservoir and well parameters without 
type-curve matching is presented. This paper concentrates on the interpretation of pressure tests in which wellbore storage and 
skin are present. Characteristic points are obtained of intersection of various straight line portions of the pressure and pressure 
derivative curve, slopes and starting times of these straight lines. These points, slopes and times are then used with appropriate 
equations to solve directly for permeability, wellbore storage and skin. A step-by-step procedure for calculating these parameters 
without type-curve matching for five different cases is included in the paper. 

The most important aspect of this new technique is its accuracy because it uses exact analytical solutions to calculate 
permeability, skin, and wellbore storage. The proposed technique is applicable to the interpretation of pressure buildup and 
drawdown tests and is illustrated by several numerical examples. 

1. Introduction and basic equations 

Interpretation of pressure tests for a single well with 

wellbore storage and skin in a homogeneous reservoir 

considerably improved when the type-curve matching 

technique was published in the seventies (Ramey, 
1970; Agarwal et al., 1970; Ramey and Agarwal, 1972; 
Earlougher and Kersch, 1974). Later that decade Tiab 

introduced the pressure derivative analysis (Tiab, 
1975,1976; Tiab and Crichlow, 1979; Tiab and Kumar, 

1980a, b; Puthigai and Tiab, 1982). He showed that a 
log-log plot of pressure derivative versus time is an 
important tool in identifying flow regimes and bound- 
ary effects. In the eighties type-curves which combine 
both the pressure and pressure derivative functions for 
various reservoir systems became an integral part of 
modern well test analysis (Bourdet et al., 1983; Clark 

and Van Golf-Racht, 1984; Wong et al., 1986; Ozkan 

et al., 1987; Mishra and Ramey, 1988; Onur and Reyn- 

olds, 1988; Vongvuthipornchai and Raghavan, 1988; 

Horne, 1990). Unless all flow regimes are definitely 

observed in the pressure derivative curve, type-curve 

matching is still a risky technique. Also, combinations 
of various boundary conditions may yield approxi- 
mately similar pressure behavior. For a well producing 

from a bounded system, it is possible for inner and 
outer boundary effects to interact and considerably 
affect the well pressure behavior such that the infinite 

acting radial flow line is either too short or non-existent. 
Horne (1990) showed that log-log type curve match- 
ing is not as accurate as conventional semilog methods, 
because log-log axes tend to mask inaccuracies at late 
time, where 1 mm deviation of a pressure point may 
mean an actual error of 200 psia. Finally, the noise in 
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the pressure derivative curve can be sever enough to 

make it impossible to draw the characteristic straight 

lines corresponding to flow regimes. 
In this paper, it is shown how a log-log plot of 

pressure and pressure derivatives versus time can be 

analyzed without using the type-curve matching tech- 

nique. This new approach is particularly useful when 

the early-time unit slope line and/or the late-time infi- 

nite acting radial flow line are not well developed due 

to the lack of points or any of the reasons discussed 

above. This new technique is also applicable to hydrau- 

lically fractured wells (Tiab, 1989, 1993). The classi- 

cal assumptions normally used in conjunction with a 

single well producing at a constant rate from a homo- 

geneous, isotropic and uniform porous media are appli- 

cable in this study. The fluid has a constant viscosity 

and is considered to be slightly compressible. The 

dimensionless wellbore pressure for a well with storage 

and skin, pW,,, and its derivative, dp,,,ldf, are obtained 

from 

PI, = $!CJLl 
0 

and 

(1.1) 

(I.21 

where 

U,,= [uC,J,~(u) - (1 -C,+?jJ,(u)]’ 

+(uc,,Y,,(u)-(I-C,,su’)Y,(u)] (1.3) 

The dimensionless pressure, pwl,, dimensionless time, 

t,,, and dimensionless wellbore storage coefficient are 

expressed as follows: 

PI,= Al, (1.4) 

The factors C and s are respectively the wellbore stor- 
age coefficient and skin. 

2. Characteristic points and straight lines 

The log-log plot of dimensionless pressure and pres- 

sure derivatives versus time, Fig. 1, has several unique 

features: 

( I ) The pressure curve has a unit slope line during 

early time. This line corresponds to pure wellbore stor- 

age flow. The equation of this straight line is 

t,, 
p1>=- 

G 
(2.1) 

Combining Eqs. 1.5 and 1.6 gives 

:=(2.95X 10-43; (2.2) 

Substituting Eqs. I .4 and 2.2 into Eq. 2.1 and solving 

for the wellbore storage coefficient C we obtain 

(2.3) 

For drawdown tests, Ap =pi -pwf and for buildup tests 

Ap==p,,-pwf (At=O). 

(2) The pressure derivative curve also has an early 

time straight line of unit slope. The equation of this line 

is obtained by taking the derivative of Eq. 2.1 with 

respect to the natural log of f,,/Cb. Thus: 

,_tr, 
‘I - c,, (2.4) 

where the dimensionless pressure derivative is 

(2.5) 

Maxmum-Points Line, 
start of InfinIte 

Acting Line 

Fig. 1. Characteristics of pressure and pressure derivative type 

curves. 
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The left-hand side of Eq. 2.4 can be expressed in real 
units by combining Eqs. 2.2 and 2.5 

(2.6) 

It is obvious from Fig. 1 that the early-time unit slope 

line is the same for both pressure and pressure deriva- 

tive curves. Combining Eqs. 2.4, 2.5 and 2.6 and solv- 

ing for C we obtain an equation similar to Eq. 2.3 where 

Ap is replaced with t* Ap’. 

(3) The infinite acting radial flow portion of the 
pressure derivative is a horizontal straight line. For a 

homogeneous reservoir, the equation of this line is: 

(2.7) 

Combining Eqs. 2.6 and 2.7 and solving for the per- 

meability yields: 

k= 70.6WB 

Mr*&‘), 
(2.8) 

where the subscript r stands for radial flow line. In terms 

of pressure, the equation of this line is: 

+0.80907 +ln (CDe2’) 
I 

(2.9) 

(4) The starting time of the infinite acting line of the 

pressure derivative curve is approximately given by 

rD 

i ) CI, SR 
= 10 log (C,e*“) ‘O (2.10) 

This equation is obtained by plotting the values of 
t,,/C,, corresponding to the first point where Eq. 2.9 is 

valid, i.e. at the start of the horizontal line for different 

values of CDe2,’ > 102. Values of ( tDICD)SR were 

obtained from the second derivative of Eq. 1.1. Substi- 

tuting for C,, and tD and solving for tSR gives: 

t 
SR=6.9x 10PSkh 

PC [ln (=)+2s] (2.11) 

where tsli is the starting time of the infinite acting radial 
flow line. 

Vongvuthipornchai and Raghavan (1988) showed 
that the starting time of the semilog straight line is best 
determined from 

(2.12) 

where (Y is the tolerance (fraction) used to determine 

the value of tDsR at which Eq. 2.7 is valid. For a! = 0.05 
they found that Eq. 2.12 (approximate solution) can 

predict the value of tDsR within 8 percent of the value 

predicted by Eq. 1.2 (exact solution). 

The semilog straight line will always appear to start 
earlier than the horizontal portion of the pressure deriv- 

ative curve. The difference can be as much as fifty 
percent. 

The wellbore storage coefficient may be estimated 

from Eq. 2.12 by letting (Y = 0.05 and solving for C: 

(2.13) 

where tDsR is calculated from Eq. 1.5 at t = tSR. 
(5) The early-time unit slope line and the late-time 

infinite acting line of the pressure derivative, i.e. the 

horizontal line, intersect at: 

( 1 FPd =0.5 
D i 

to 

( 1 

- =0.5 
‘D i 

(2.14) 

(2.15) 

where the subscript i stands for “intersection”. In real 

units the coordinates of this intersection point are 
obtained from 

70.6qp.B 
(t*Ap’)i=T 

and 

t, = 169W 
I 

kh 

(2.16) 

(2.17) 

These equations can be derived, respectively, from Eqs. 

2.8, 2.2 and 2.15. Thus, the intersection point can be 
used to determine k from Eq. 2.16 and C from Eq. 2.17. 
Since the unit slope line is the same for pressure and 
pressure derivative curves, at the intersection point we 

have: 

(Ap)i=(t*Ap’)i=(t*Ap’), (2.18) 

(6) Between the early-time and late-time straight 
lines, the derivative curves have specific shapes for 
different values of C,,e*‘. In this study, the coordinates 
of the “peaks” for C,,e*’ > lo* were obtained from the 
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second derivative and plotted on a Cartesian graph. The 
equation of this line is 

(zp,;), = 0.36($ - 0.42 

Combining Eqs. 2.2, 2.6 and 2.19 yields: 

(t*d~‘)~= 0.015$ t,-0.42b, 
( 1 

(2.19) 

(2.20) 

where b, is given by 

b, = 141.2qpBlkh (2.21) 

and (t* Ap’), and t, are the coordinates of the maxi- 

mum point (peak) of the pressure derivative curve. It 

is obvious from Eq. 2.20 that we can calculate the 

wellbore storage coefficient or the permeability from 

the coordinates of the peak. 

Solving Eq. 2.20 for k yields: 

1 

(0.015qB/C)tx-(t*Ap’)x 
(2.22a) 

This equation should be used to calculate k only if the 
late-time infinite acting radial flow line is not observed, 

such as in a short test, or there is too much noise in the 
late-time derivative values. 

Solving Eq. 2.20 for C yields: 

O.OlSqBt, 

‘= (t*Ap’).+0.42bx 
(2.22b) 

This equation should be used in cases where k is known 

from other sources and the early time unit slope line is 

not observed. 

(7) A log-log plot of log( Cne*“) versus the coor- 
dinates of the peaks yielded the following equations: 

log (C,e*“) = 0.35 

and 

(2.23) 

log ( CDe2”) = 1.71 (2.24) 

Substituting Eqs. 2.2 and 2.6 into Eqs. 2.23 and 2.24 
yields two new expressions. Combining these new 
expressions with Eqs. 2.16 and 2.17 gives: 

1.24 

log CoeZs = 0.1485 (2.25) 

(2.26) 

Thus the coordinates of the maximum point (peak) of 

the pressure derivative can be used also to calculate 

skin. Solving for skin Eqs. 2.25 and 2.26 give respec- 

tively: 

(2.27) 

and 

‘=0.92l~~~~~:rll”-O.5 ln re) (2.28) 

Because in some pressure tests the wellbore storage 

hump may appear to be flat at the “peak”, it is possible 

to read the right value of ( t * Ap' )x but the wrong value 

of t,. In this case, it is a good practice to calculate s 
from both equations. If they give different values then 

obtain a new value oft, and repeat the calculations until 

the two equations give the same value of skin. 

(8) An expression relating the infinite-acting radial 
flow line portion of the pressure derivative curve and 
the peaks for different values of C,,e2,’ can be derived 

by dividing Eq. 2.19 with Eq. 2.7: 

3=&,0.36&0.42, (2.29) 

u’ 
1) r 

Using Eqs. 2.2 and 2.6 with Eq. 2.29 we have: 

(t*W). 
(t* AP’), 

=2[ 1.062~ 10-4&0.42] (2.30) 

Eq. 2.30 can be used to calculate Cork. Substituting 
for khlp from Eq. 2.8 and solving for C gives: 

c= 
O.OlSqBt, 

(t*Ap’).+0.84(t*Ap’), 
(2.31) 

Thus, the wellbore storage coefficient can be deter- 
mined even if the unit slope line is not observed for 
mechanical reasons or due to lack of early time pressure 
data. Solving for k Eq. 2.30 yields: 

0.5(t*Ap’)x+042 
(CRAP’), 1 (2.32) 
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(9) An expression relating the infinite-acting radial 
flow line portions of the pressure and pressure deriva- 
tive curves can be derived by dividing Eq. 2.9 with Eq. 
2.7: 

PDr 

(~D/CD)PD’), 
= In rD, + 2s + 0.80907 (2.33) 

Using Eqs. 1.4, 2.2 and 2.6 with Eq. 2.33 and solving 
for skin we have: 

s=os *‘I -In (s-+7.43] 
(t*Ap’), 

(2.34) 

where t, is any convenient time during the infinite acting 
radial flow line and Ap, is the value of Ap correspond- 
ing to t,. 

3. Procedures 

Normally, a well designed single-well pressure test 
in a homogeneous reservoir will show all the necessary 
flow regimes to determine permeability, skin and well- 
bore storage from conventional semilog analysis tech- 
niques. However, in many cases conventional 
techniques cannot be used for various reasons: the test 
is too short to observe the infinite-acting radial flow 
line, or the wellbore storage unit-slope line is not 
observed because of lack of early-time pressure points, 
or there is too much noise in the pressure derivative 
curve, or both the unit-slope line and the infinite-acting 
line are missing. In such cases type-curve matching 
was the only alternative to conventional semilog tech- 
niques. However, even with the addition of the pressure 
derivative curve, finding a unique match by a simple 
comparison of shapes is still one of the main problems 
of the type-curve matching technique. The technique 
proposed here analyzes log-log plots of pressure and 
pressure derivatives versus time without type-curve 
matching. The five cases discussed below, with exam- 
ples, illustrate the effectiveness and simplicity of this 
new technique. 

3.1. Case I (basic case) - Unit-slope and injinite- 

acting lines are observed 

The following step-by-step procedure is for the ideal 
case where both the early time unit-slope line and the 

late time infinite acting radial flow line have definitely 
been observed, and are well defined. 

Step 1 - Plot Ap and t * Ap’ versus time on a log- 
log graph. 

Step 2 - Draw the unit-slope line corresponding to 
the wellbore storage flow regime using early-time pres- 
sure and pressure derivative points. If there is too much 
noise in the derivative values, it is recommended to 
draw the unit-slope line using only pressure points. 

Step 3 - Draw the infinite acting radial flow line 
using late-time pressure derivative points. This line is, 
of course, horizontal. 

Step 4 - Read the coordinates of the point where 
the unit-slope line and the infinite-acting horizontal 
line intersect: ti and Ap, . Note that Ap,= 

(t*Ap’)i=(t*Ap’),inallsteps. 
Step 5 - Read the coordinates of the maximum 

point (peak) on the pressure derivative curve: TX and 

(t*Ap’),. 
Step 6 - Select any convenient time t, during infi- 

nite acting radial flow and read Ap, from the pressure 
curve. 

Step 7 - Calculate the permeability from Eq. 2.8. 
Step 8 - Calculate the wellbore storage coefficient 

from Eq. 2.3 using ri and Api, or any convenient t and 
Ap values on the unit slope line. 

Step 9 - Calculate the skin factor from Eq. 2.34. 
Step 10 -This step is used to verify the correctness 

and accuracy of the permeability, skin and wellbore 
storage. This step is necessary only if there is consid- 
erable noise in the pressure derivative value. Recalcu- 
late permeability using Eq. 2.32. If the values of k 

obtained from Eqs. 2.8 and 2.32 are approximately 
equal, this means the peak, the unit-slope and horizontal 
lines are in their correct “location”, and therefore, the 
values of k, s and C are correct. However, if the two 
values of k are significantly different, obtain a new peak 
and/or shift one or both straight lines and repeat Steps 
4 through 9 until the values of ti and Api give similar 
values of k. The decision of which straight lines should 
be shifted or whether a new peak should be obtained is 
really a function of the quality of data. For instance, if 
the infinite-acting line (horizontal line) portion of the 
derivative curve is well defined, the value of k and s 
obtained in Steps 7 and 9 are correct. In this case the 
unit slope line should be shifted and/or a new peak 
selected and a new value of C calculated such that the 
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value of k obtained from Eq. 2.32 is similar to the one 
obtained in Step 7. 

Example I 
A pressure drawdown test in a new oil well is 

strongly influenced by skin and wellbore storage. The 

measured pressure data as a function of time are listed 

in page 156 of Horne. Other known reservoir and well 
data are: 

4 = 2500 STB /D, $=0.21, 

/J = 0.92 cp, ~,=8,72XlO-~psii’, 

B = 1.21 RBISTB, h = 23 ft, 

r, = 0.401 ft, pi = 6009 psi 

Calculate permeability, skin factor and wellbore stor- 
age coeficient. 

Solution 
Figs. 2a and 2b are log-log plots of Ap and t* Ap’ 

versus time. The late-time pressure derivative portion 

in Fig. 2a was calculated by the spline technique (Lane 
et al., 199 1) , while the derivative curve in Fig. 2b was 

calculated by the more commonly used numerical dif- 

ferentiation method (Bourdet et al., 1989). Fig. 2a is 

used to illustrate Steps 1 through 9 of this case while 
Fig. 2b is used to illustrate the importance of Step 10. 

Applying the recommendations in Steps 1 through 6 to 

Fig. 2a, we obtain: 

ti= 1.35 x lo-’ h, (t*Ap’),= 1lOpsi 

t, = 0.36 h, (t*Ap’).=965 psi 

rr= 10.4 h, (Ap),=2947psi 

Using Eq. 2.8 (Step 7), the permeability is 77.6 md. 

The wellbore storage coefficient is computed from Eq. 

2.3 (Step 8) at ti and Api . Thus, C=O.O154 bbl/psi. 
Eq. 2.34 (Step 9) gives a skin factor of 6.2. Since the 

noise in the derivative curve of Fig. 2a is negligible , 
Step 10 may not be necessary. However, it is a good 
practice to recalculate k anyway. Using Eq. 2.30, 
k=77.4 md. Since Eqs. 2.8 and 2.30 give practically 
the same value of permeability, we can conclude that 
the values of k, s and C are correct. 

Similar results were obtained from Fig. 2b. However, 
because of the noise in the late-time pressure derivative 
curve, it took several iterations to find the correct “loca- 

tion” of the horizontal line. In this example, it was not 

necessary to shift the unit-slope line or the maximum 

point, as they are well defined. The computer program, 

however, can shift any of the three characteristic fea- 
tures, i.e. the unit-slope line, the maximum point and 

the infinite acting line, then recalculate k, C and s until 

the requirement in Step 10 is satisfied. That is, until 

Eqs. 2.8 and 2.30 give similar values of permeability. 

The values of k, C and s obtained here are similar to 
the values obtained by type-curve matching and semi- 

log analysis (Horne, 1990). 

3.2. Case 2 - The unit-slope line is not observed 

Pure wellbore storage flow regime, which causes the 

early-time pressure and pressure derivative points to 
yield a unit slope line is not a very common occurrence. 

Also, in many pressure tests there are not enough early- 

time points to draw the unit slope line. In this case, the 

following step-by-step procedure is recommended. 
Step 1 - Plot Ap and t * Ap’ versus time on a log- 

log graph. 

Step 2 - Draw the infinite acting radial flow line 

(horizontal line) using the late-time pressure deriva- 

tive points, and read its corresponding value on the 

pressure derivative axis (t * Ap’),. This value is of 

course equal to (t * Ap’) i and Api had the unit-slope 

line been observed. 
Step 3 - Determine from the graph the coordinates 

of the maximum point (peak) on the t * Ap’ versus 

time curve, i.e. t, and (t * Ap’),. 
Step 4 - Select t, as discussed in Step 6 of Case 1, 

and read the corresponding value of Ap,. 
Step 5 - Calculate the permeability from Eq. 2.8. 

Step 6 - Calculate the wellbore storage coefficient 

from Eq. 2.3 1. 
Step 7 - Calculate skin from Eq. 2.34. 
Step 8 - Recalculate s from Eqs. 2.27 or 2.28. If 

the two values of s obtained in Steps 5 and 8 are approx- 
imately equal, then k, s and C are correct. If the two 
values of s are significantly different, which is very 
possible if there is considerable noise in the derivative 

curve, then either select a new peak or shift up or down 
the infinite acting (horizontal) line, and repeat Steps 
5, 6 and 7 until the two values of s are approximately 
equal. Obviously, if needed, the early-time unit slope 
line can now be drawn. 
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time, hours 

loow 

time, hour8 

Fig. 2. (a) Pressure and pressure derivative curves for Example I. 
The late time portion of the derivative curve is smoothed by the 
spline technique. (b) Pressure and pressure derivative curves for 
Example 1. The pressure derivative points were calculated by numer- 
ical differentiation. 

Example 2 
Using the reservoir and well characteristics in Exam- 

ple 1, and the pressure and pressure derivative data in 
Fig. 3, calculate k, s and C. 

Solution 
Fig. 3 is actually drawn using the pressure data in 

Example 1, but without the early-time pressure points. 
Thus, the coordinates of the maximum point of the 
wellbore storage hump (Step 3 of this case) are 
t,=0.36 h and (t*Ap’).=965 psi. From Step 4, 
t,= 10.4 h, A~,=2947 psia, and (t*Ap’)r= 110 psi. 

From Step 5 and Eq. 2.8 the permeability is 77.6 md. 
The wellbore storage coefficient is obtained from Eq. 
2.31 (Step 6), which gives C= 0.0154 bbl/psi. 

From Step 7, the skin factor is approximately 6.2. 
Eq. 2.30 (Step 8) gives a k value of 77.4 md. Thus, the 
values of k, s and C are correct. 

3.3. Case 3 - The infinite acting line is not observed 
(short test) 

If the pressure test is too short to observe the infinite 
acting radial flow line, or there is too much scatter in 
the late-time derivative points, or the boundary effects 
are felt before the infinite acting flow regime is fully 
developed, then the following step-by-step procedure 
is recommended. 

Step 1 - Plot Ap and t * Ap’ versus time on a log- 
log graph. 

Step 2 - Draw the early-time unit slope line as 
discussed in Step 2 of Case 1. 

Step 3 - Read the coordinates of the maximum 
point (peak) i.e. t, and (t* Ap’),. 

Step 4 - Calculate the wellbore storage coefficient 
from Eq. 2.3, where t and Ap are the coordinates of 
any convenient point on the unit-slope line. 

Step 5 - Calculate the permeability from Eq. 2.22. 
Step 6 - Calculate the coordinates of the point of 

intersection of the unit-slope line and infinite-acting 
line (had the test been run long enough to observe it) 
from Eqs. 2.16 and 2.17, i.e. (t*Ap’)i and ti. 

0.01 0.1 1 IO 100 

time, hours 

Fig. 3. Pressure and pressure derivative curves for Example 2. 
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0.1 1 

time, hours 

Fig. 4. Pressure and pressure derivative curves for Example 3. 

Step 7 - Determine the skin factor from Eq. 2.27 
or 2.28. 

Step 8 - Recalculate k from Eq. 2.32. If the two 

values of k obtained in Steps 5 and 8 are approximately 

equal, then k, s and C are correct. If not, obtain a new 

peak and/or shift the unit slope line (left or right) and 

repeat the process until the two values of k obtained 

from Eqs. 2.21 and 2.32 are approximately identical. If 

needed, the infinite acting radial line can now be drawn. 

Example 3 

Using the reservoir, well characteristics and the pres- 

sure buildup data in Example 1 of Bourdet et al. 

( 1983)) calculate k, s and C. 

4 = 174 STB/D, $=0.25, 

/1= 2.5 cp, c,=4.2~ 10-h psi-‘, 

B = 1.06 RB/STB, h = 107 ft, 

r, = 0.29 ft 

Solution 

Fig. 4 is log-log plot of Ap and t * Ap’ versus test 
time, without the late-time points (to illustrate the pro- 
cedure of Case 3). From Step 4 and Eq. 2.3, the well- 
bore storage coefficient is calculated at t = 0.1 h and 
Ap = 83 psi. Thus, C= 9.3 X 10m3 bbl/psi. 

From Step 5 and Eq. 2.22, the permeability is 10.5 
md. 

From Step 6, the coordinates of the point of inter- 
section of the unit-slope and infinite acting line are: 

ti=0.035 h, (t*Ap’)i=28.97 psi 

The skin factor is computed from Eq. 2.27 or 2.28 (Step 
7). Using Eq. 2.27, s = 8.3. 

Eq. 2.28 also gives a skin factor of approximately 

8.3. For further verification (Step 8)) the permeability 

is recalculated from Eq. 2.32, where (t* Ap’), 

= (t* Ap’)i = 28.97 psi. This equation yields k= 10.5 

md, which is the same value obtained in Step 5. The 

values of k, C and s obtained here are approximately 

equal to the values obtained by type-curve matching 

and semilog analysis (Bourdet et al., 1983). 

3.4. Case 4 - The unit-slope line and the peak are 

not observed 

In some pressure tests, the first pressure reading 

occurred well after the end of wellbore storage flow 

regime, such that the peak or maximum point of the 

pressure derivative is not observed. In this case, if the 
pressure test is run long enough to observe the infinite 

acting radial flow (horizontal) line the following pro- 

cedure is recommended. 

Step 1 - Plot Ap and t * Ap’ versus time on a log- 

log graph. 

Step 2 - Draw the infinite acting radial flow (hor- 
izontal) line. The straight line of course has a constant 

value on the pressure derivative axis (t * Ap’),. 

Step 3 -Determine from the graph the starting time, 

tSR, of the infinite acting line of the pressure derivative 

curve. 
Step 4 - Determine Ap, as discussed in Step 6 of 

Case 1. 
Step 5 - Calculate the permeability from Eq. 2.8. 
Step 6 - Calculate the skin factor from Eq. 2.34. 
Step 7 - Calculate the dimensionless time at the 

start of the infinite acting line, tDSR, from Eq. 1.5 where 
t= r,,; then estimate the wellbore storage coefficient 

from Eq. 2.13. 
The starting time tSR is almost impossible to deter- 

mine, if there is too much noise in the infinite acting 
portion of the pressure derivative curve. In this case the 

following procedure is recommended: 
( 1) Calculate k from the conventional semilog anal- 

ysis, 
(2) Compute (t * Ap’), from Eq. 2.8, 
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0.001 0.01 0.1 1 10 100 

time, hours 

Fig. 5. Pressure and pressure derivative curves for Example 4 

(3) Calculate s from Eq. 2.34, where t, and Ap, are 
determined as discussed above, and 

(4) Calculate C from Eq. 2.13 where tSR is obtained 

from the semilog plot. 

Example 4 
A pressure buildup test in the Ness formation sand 

of the Osberg Field, North Sea, is influenced by skin 

and wellbore storage. The measured shut-in pressure 
and t * Ap’ data as a function of time are listed in Table 

3 of Clark and Van Golf-Racht ( 1984). Other reser- 

voir, fluid and well characteristics are listed below: 

9 = 3000 STB /D, &=0.23, 

/_l = 0.445 cp, c,= 16.8 x 10eh psi-‘, 

B = 1.49 RB/STB, h = 33 ft, 

r,=0.51 ft 

Solution 
Fig. 5 is a log-log plot of Ap and t * Ap’ versus test 

time. Using the instructions in Steps 1 through 4 of 
Case 4, we have: (t * Ap’),= 1.332 psi, Ap,=48.47 

psi, t, = 15.2 h and tSR = 0.06 h. 
Using Eq. 2.8 (Step 5)) the permeability is 3 195 md. 

Eq. 2.34 (Step 6) gives a skin value of 9.2. The well- 

bore storage coefficient is computed from Eq. 2.13 
(Step 7) and is equal to 6.7 X lop3 bbl/psi. The values 
of C and s obtained here are similar to those obtained 
by Clark and Van Golf-Racht. The values of k are 
however different (3 115 md) . 

3.5. Case 5 - The unit-slope and infinite-acting lines 
have not been observed 

In some short tests, both the unit slope line and the 

infinite acting radial flow line are missing. In other tests 

the first pressure reading was taken after the unit-slope 

line. For wells with wellbore storage and skin produc- 

ing from a small bounded reservoir it is possible for 
boundary effects to be felt before the infinite acting line 

develops. In these situations, the pressure test can be 

analyzed as in Case 2 or Case 3, depending on the 

quality of early and/or late time pressure derivative 

values. If the welIbore storage coefficient can be cal- 

culated from well completion data, then the following 

procedure is recommended: 

Step 1 - Plot Ap and t * Ap’ versus time on a log- 

log graph. 
Step 2 - Estimate the wellbore storage coefficient 

from well completion data. For a wellbore with chang- 

ing liquid level C= 144V,lp, where VU is the wellbore 

volume per unit length. When the wellbore is com- 

pletely filed with a single phase fluid C = cwVw, where 

V,,, is the total wellbore volume and c, is the compress- 

ibility of the fluid in the wellbore. 
Step 3 - Obtain the coordinates of the maximum 

point (peak) from the derivative curve: t, and 

(t*Ap’)x. 
Step 4 - Calculate permeability from Eq. 2.22a. 

Step 5 - Calculate (t * Ap’), and ti from Eqs. 2.16 

and 2.17, respectively. If needed, draw the infinite act- 

ing line portion of the derivative curve, and the unit 

slope line. 

Step 6 - Calculate the skin factor from Eq. 2.27 

and 2.28. If they give different values of s, obtain a new 

peak and recalculate s until the two equations agree 

(within 5 percent). 

If permeability is known from other sources, then 
calculate C from Eq. 2.22b and skin as discussed in 

Steps 5 and 6 (Case 5). 

Example 5 
Fig. 6 shows pressure and pressure derivative data 

of a highly damaged well. Calculate the wellbore stor- 
age coefficient, permeability and skin. Known reser- 
voir, fluid and well properties are: 
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Fig. 6. Pressure and pressure derivative curves for Example 5. 

q = 250 STB /D, 4=0.18, 

/_L= 1.2 cp, c,=2.4~ 10P6 psi-‘, 

B= 1.229 RBISTB, h= 16 ft, 

r,,, = 3.2 in., p= 42.5 Ibm/cuft, 

V,,=O.O134 bbl/ft 

Solution 

From Step 2, the wellbore storage coefficient is 

C= 144 X 0.0134/42.5 = 0.0454 bbl/psi. The coordi- 

nates of the maximum point are t, = 1.55 h and 

(t* A$),= 146.88 psi. From Eq. 2.22 (Step 4), the 

permeability is 206 md. The values of ti and (t * Ap' ) i 
are, respectively, 0.028 h (Eq. 2.17) and 7.88 psi (Eq. 

2.16). The skin factor is 19.2 from both Eqs. 2.27 and 

2.28. 

4. 

1. 

2. 

Conclusions 

A log-log plot of pressure and pressure derivative 
versus time can be analyzed without using the type- 
curve matching technique. 
This new technique is particularly useful when the 
early-time unit slope line and/or the late-time infi- 
nite acting radial flow line have not been observed 
or are not well defined due to a variety of reasons, 
such as lack of points, severe noise problem, and 
interference of outer boundaries. 

3. Several unique features of the pressure derivative 

plot have been identified, including the point of 

intersection of the unit slope and the infinite acting 

lines, the maximum point (or peak) or the transition 

period, and the starting time of the infinite acting 
line. 

4. Equations corresponding to these unique features 
have been derived and their usefulness has been 

demonstrated. 

5. 

6. 

7. 

8. 

Unlike type-curve matching, the results of the new 

technique are verifiable. Any two parameters cal- 

culated from two independent equations corre- 

sponding to two different features of the pressure 

derivative curve are verified by a third equation 

which corresponds to a third feature relating the two 

parameters. 

The technique is presented as a step-by-step proce- 
dure for five different cases. Each case is illustrated 

by a numerical example. 

The spline technique should be used to smooth the 
pressure derivative curve, especially the portions 

corresponding to the peak of the wellbore storage 
hump and the infinite acting radial flow line. 

The new technique is applicable to the interpretation 

of pressure drawdown and buildup tests. 

5. Nomenclature 

See Eq. 2.21 

Total system compressibility, psi - ’ 
Wellbore storage coefficient, RB/psi 
Dimensionless storage constant 

Formation thickness, feet 
Bessel function of the first kind, order zero 

Bessel function of the first kind, order one 

Formation permeability, and 
Dimensionless wellbore pressure drop 
Dimensionless wellbore pressure derivative 
Initial pressure, psi 
Wellbore flowing pressure, psi 
Surface rate, SIB /day 
Wellbore radius, ft 
Skin factor 
Test time, h 
Dimensionless time 

bll 

h 

Jo(u) 
J,(u) 
k 

PD 
PD’ 
Pi 
PWf 
4 
rw 
s 
t 

tll 
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Dimensionless time reflecting time at which 
storage effects can be assumed to be 

negligible or start of infinite acting line 

Bessel function of second kind, order zero 
Bessel function of second kind, order one 

Tolerance, fraction 

Viscosity, cp 
Porosity, fraction of bulk volume 

Subscripts 
D Dimensionless quantity 

i Initial conditions or intersection 

W Well 

wf Flowing conditions 

ws Shut-in condition 

X Maximum point or peak 

r radial flow 

SR Start of radial flow line 
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