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s u m m a r y

Constant-head test is a commonly used aquifer testing method in groundwater hydrology. A mathemat-
ical model for constant-head test in a leaky aquifer with a finite-thickness skin was developed in this
study. Three different aquifer–aquitard systems were considered and the Laplace-domain solutions were
obtained and then inverted numerically with the Stehfest method to yield the time-domain solutions.
The well discharges for different cases were computed and a sensitivity analysis of the well discharge
on different parameters was performed. The results indicated that the dimensionless transmissivity of
the aquitard had little effect on the well discharge at early times while a larger transmissivity of the aqui-
tard leaded to a larger well discharge at late times. The well discharge for the positive skin was smaller
than that without the skin while the well discharge for the negative skin was larger than that without the
skin, where positive and negative skins refer to the cases in which the permeability values of the skin
zones are less and greater than that of the formation zone, respectively. A thicker skin resulted in a smal-
ler well discharge for the positive skin case but leaded to a larger well discharge for the negative skin case
at late times. We also found that the drawdown for the positive skin case was less than that for the neg-
ative skin case at the same time, and a positive skin might result in delayed response of the aquifer to
pumping. The sensitivity analysis indicated that the well discharge was sensitive to the properties of
the skin zone, but not sensitive to the properties of the aquitards for the aquifer–aquitard system pre-
sented in this study.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Constant-head test is a technique commonly used to estimate
the aquifer parameters such as the storage coefficient and the
hydraulic conductivity (Chen and Chang, 2002). For a constant-
head test, the hydraulic head or the drawdown in the test well re-
mains constant and the well discharge is measured as a function of
time. The measured well discharge versus time data can be used to
evaluate the aquifer parameters using an appropriate flow theory.
For instance, Jacob and Lohman (1952) obtained an analytical solu-
tion of the well discharge for a constant-head test in a confined
aquifer and developed a method to estimate the storage coefficient
and the transmissivity. Hantush (1964) obtained a similar solution
for a constant-head test in leaky aquifers. In addition, many
researchers studied the constant-head test problem (e.g., Hantush,
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1959; Mishra and Guyonnet, 1992; Hiller and Levy, 1994; Murdoch
and Franco, 1994; Chen and Chang, 2002; Chang and Chen, 2002).
Jones et al. (1992) and Jones (1993) pointed out that the constant-
head test was particularly useful when the transmissivity of the
aquifer was relatively small. Constant-head test was also per-
formed in boreholes or piezometers to determine the hydraulic
conductivity of the clays (Wilkinson, 1968; Tavenas et al., 1990).

A problem that needs to be considered for a constant-head test
is the well skin. The well skin is a small region surrounding the
well and its permeability is different from that of the formation
zone. This skin zone can be caused by the drilling mud and/or
the formation damage during the well drilling and installation pro-
cedure (Chen and Chang, 2006). The well skin is generally classified
into two types: a positive skin and a negative skin. If the perme-
ability of the skin zone is less than that of the formation zone,
the skin is called positive; while if the permeability of the skin zone
is greater than that of the formation zone, the skin is called nega-
tive. The well skin has been studied extensively in hydrological sci-
ences and petroleum engineering (e.g., Hurst, 1953; Hurst et al.,
1969; Motz, 2002; Park and Zhan, 2002; Yang and Yeh, 2002,
2005; Chen and Chang, 2006; Walton, 2007; Pasandi et al., 2008).
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For instance, Hurst et al. (1969) presented the concept of the effec-
tive well radius to deal with a negative skin. Pasandi et al. (2008)
investigated the flow to a partially penetrating well in a phreatic
aquifer considering a finite-thickness skin. Motz (2002) obtained
an analytical solution for one-dimensional flow in a leaky aquifer
considering the effect of a low-permeability skin. Chen and Chang
(2006) investigated a more realistic skin problem by proposing a
mathematical model for non-uniform skin effect on the aquifer re-
sponse due to the constant-rate pumping. Yang and Yeh (2005) ob-
tained the Laplace-domain solutions for a constant-head test
conducted in a partially penetrating well with a finite-thickness
skin. It is probably worthwhile to mention that most studies of
well skin are referred to vertical wells. However, the well skin also
exists around a horizontal well (Park and Zhan, 2002, 2003). Park
and Zhan (2002) investigated the flow to a finite-diameter horizon-
tal well considering a skin with an infinitesimal thickness.

Although the well skin was commonly assumed to be infinites-
imal (e.g., Hurst, 1953; Dougherty and Babu, 1984; Kabala and
Cassiani, 1997; Park and Zhan, 2002, 2003), the thickness of the
skin might vary from nearly zero to a few meters (Barker and
Herbert, 1982). For a finite-thickness skin, the problem should be
considered as a composite aquifer system. Up to now, many stud-
ies have been devoted to study the finite-thickness skin (e.g.,
Moench and Hsieh, 1985; Yang and Yeh, 2005, 2006, 2009; Chiu
et al., 2007; Yeh and Yang, 2006; Yeh et al., 2008). For instance,
Yang and Yeh (2006) obtained an analytical solution for a
(a) (

(c)

Fig. 1. The schematic diagram of the system: (a) case A: the two aquitards are over- and
two aquitards are over- and underlying two impermeable layers; (c) case C: one aquitard
the hydraulic head is constant.
constant-head test considering a finite-thickness skin. Chiu et al.
(2007) developed a mathematical model for a constant-rate test
in a partially penetrating well with a finite-thickness skin in a
confined aquifer. Yeh and Yang (2006) investigated the slug test
conducted in a well with a finite-thickness skin in a confined
aquifer. Yang and Yeh (2009) investigated the finite-thickness skin
effect on the constant-rate test in leaky aquifers.

A careful review of the present literatures shows that there are
limited researches on the constant-head test in a leaky aquifer
with a finite-thickness skin, which will be the purpose of this
study. Similar to the study of Hantush (1960), three different aqui-
fer–aquitard systems will be discussed. The well discharge for dif-
ferent cases will be analyzed and a sensitivity analysis will be
performed. The results of this investigation are also compared with
previous studies to exhibit the new features of the constant-head
test in a leaky aquifer with a finite-thickness skin.
2. Problem statement and solutions

2.1. Mathematical model

The schematic diagram of the investigated problem is shown in
Fig. 1, the main aquifer is bounded by two aquitards. The coordi-
nate system is set up as follows. The x-axis is horizontal, the z-axis
is oriented upward along the axis of the well, and the origin of the
b)

underlying two aquifers in which the hydraulic heads are constants; (b) case B: the
is bounded by an impermeable layer and the other is bounded by an aquifer in which



Table 1
Dimensionless variables used in this study.

rD ¼ r
rw

zD ¼ z
rw

rsD ¼ rs
rw

bD ¼ b
rw

b3D ¼ b3
rw

b4D ¼ b4
rw

TD ¼ T1
T2

T3D ¼ T3
T2

T4D ¼ T4
T2

SD ¼ S1
S2

S3D ¼ S3
S2

S4D ¼ S4
S2

siD ¼ si
sw

q3D ¼
q3rw
k3 sw

q4D ¼
q4 rw
k4 sw

tD ¼ T2 t
r2

w S2
QDðtDÞ ¼ QðtÞ

2pbk2w

i = 1, 2, 3, 4
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system is at the bottom of the lower aquitard. The pumping well
fully penetrates the main aquifer and has a constant head. There
is a finite-thickness skin around the wellbore. As presented in
Hantush (1960), there are three possible cases for such an
aquifer–aquitard system. They are: (A) the two aquitards are over-
and underlying two aquifers in which the hydraulic heads are
constants; (B) the two aquitards are over- and underlying two
impermeable layers; (C) one aquitard is bounded by an imperme-
able layer and the other is bounded by an aquifer in which the
hydraulic head is constant. For the sake of mathematical tractabil-
ity, several assumptions similar to those used by Yang and Yeh
(2009) were used in this study as well. First, the aquifer, the aqui-
tard and the skin zone each is homogeneous, isotropic and with a
constant thickness although the heterogeneity and anisotropy
might be very important issue for such an aquifer–aquitard system.
Second, the flow in the aquifer is horizontal and the flow in the
aquitards are vertical. Third, the radius of the well is sufficiently
small thus the wellbore storage can be neglected. Fourth, the stor-
age of the aquitards can not be ignored. The second assumption is
valid when the hydraulic conductivity of the aquitard is at least
two orders of magnitude smaller than that of the aquifer, which is
often true in real applications (Hantush, 1960, 1964; Zhan et al.,
2009a,b). Based on these assumptions, flow in the aquifer–aquitard
system can be described by the following equations.

Case A: For the aquifer,

@2s1ðr; tÞ
@r2 þ 1

r
@s1ðr; tÞ
@r

þ q3

T1
� q4

T1
¼ S1

T1

@s1ðr; tÞ
@t

; rw 6 r 6 rs; ð1Þ

@2s2ðr; tÞ
@r2 þ 1

r
@s2ðr; tÞ
@r

þ q3

T2
� q4

T2
¼ S2

T2

@s2ðr; tÞ
@t

; rs 6 r <1; ð2Þ

s1ðr;0Þ ¼ s2ðr;0Þ ¼ 0; ð3Þ

s2ð1; tÞ ¼ 0; ð4Þ

s1ðrs; tÞ ¼ s2ðrs; tÞ; ð5Þ

T1
@s1ðrs; tÞ

@r
¼ T2

@s2ðrs; tÞ
@r

; ð6Þ

s1ðrw; tÞ ¼ sw: ð7Þ

For the upper aquitard,

@2s3ðz; tÞ
@z2 ¼ S3

T3

@s3ðz; tÞ
@t

; ð8Þ

s3ðz;0Þ ¼ 0; ð9Þ

s3ðz; tÞjz¼bþb4
¼

s1ðr; tÞ; rw < r < rs

s2ðr; tÞ; rs < r <1

�
; ð10Þ

s3ðz; tÞjz¼bþb3þb4
¼ 0: ð11Þ

For the lower aquitard,

@2s4ðz; tÞ
@z2 ¼ S4

T4

@s4ðz; tÞ
@t

; ð12Þ

s4ðz;0Þ ¼ 0; ð13Þ
s4ðz; tÞjz¼b4
¼

s1ðr; tÞ; rw < r < rs

s2ðr; tÞ; rs < r <1

�
; ð14Þ

s4ðz; tÞjz¼0 ¼ 0; ð15Þ

where s(r, t) and s(z, t) are the drawdowns at time t at the radial dis-
tance r and vertical distance z respectively; T is the transmissivity; S
is the storage coefficient; b is the thickness of the aquifer, b3 and b4

are the thickness of the upper and lower aquitards, respectively; rs

is the thickness of the skin zone in the horizontal direction; the sub-
scripts 1, 2, 3 and 4 denote skin zone, formation zone, upper aqui-
tard and lower aquitard, respectively; q3 and q4 are the leakages of
the upper and lower aquitards, respectively, and are expressed as:

q3 ¼ k3
ds3ðz; tÞ

dz

����
z¼bþb4

; ð16Þ

q4 ¼ k4
ds4ðz; tÞ

dz

����
z¼b4

; ð17Þ

in which, k3 and k4 are the hydraulic conductivities of the upper and
lower aquitards, respectively.

Case B: Same as case A except that the boundary conditions
Eqs. (11) and (15) will be replaced by:

@s3ðz; tÞ
@z

����
z¼bþb3þb4

¼ 0; ð18Þ

@s4ðz; tÞ
@z

����
z¼0
¼ 0: ð19Þ

Case C: Same as case A except that the boundary condition
Eq. (15) will be replaced by Eq. (19).

2.2. Dimensionless transform

Defining the dimensionless variables as shown in Table 1, the
problem can be transformed to the following equations.

For the aquifer,

@2s1DðrD; tDÞ
@r2

D

þ 1
rD

@s1DðrD; tDÞ
@rD

þ q3DT3D

TDb3D
� q4DT4D

TDb4D

¼ SD

TD

@s1DðrD; tDÞ
@tD

; 1 6 rD 6 rsD; ð20Þ
@2s2DðrD; tDÞ
@r2

D

þ 1
rD

@s2DðrD; tDÞ
@rD

þ q3DT3D

b3D
� q4DT4D

b4D

¼ @s2DðrD; tDÞ
@tD

; rsD 6 rD <1; ð21Þ

s1DðrD;0Þ ¼ s2DðrD;0Þ ¼ 0; ð22Þ

s2Dð1; tDÞ ¼ 0; ð23Þ

s1DðrsD; tDÞ ¼ s2DðrsD; tDÞ; ð24Þ

TD
@s1DðrsD; tDÞ

@rD
¼ @s2DðrsD; tDÞ

@rD
; ð25Þ

s1Dð1; tDÞ ¼ 1: ð26Þ

For the upper aquitard,

@2s3DðzD; tDÞ
@z2

D

¼ S3D

T3D

@s3DðzD; tDÞ
@tD

; ð27Þ
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s3DðzD;0Þ ¼ 0; ð28Þ

s3DðzD; tDÞjzD¼bDþb4D
¼

s1DðrD; tDÞ; rwD < rD < rsD

s2DðrD; tDÞ; rsD < rD <1

�
; ð29Þ

s3DðzD; tDÞjzD¼bDþb3Dþb4D
¼ 0: ð30Þ

For the lower aquitard,

@2s4DðzD; tDÞ
@z2

D

¼ S4D

T4D

@s4DðzD; tDÞ
@tD

; ð31Þ
s4DðzD;0Þ ¼ 0; ð32Þ

s4DðzD; tDÞjzD¼b4D
¼

s1DðrD; tDÞ; rwD < rD < rsD

s2DðrD; tDÞ; rsD < rD <1

�
; ð33Þ

s4DðzD; tDÞjzD¼0 ¼ 0: ð34Þ

Accordingly, Eqs. (16)–(19) can also be rewritten in dimension-
less format as:

q3D ¼
ds3DðzD; tDÞ

dzD

����
zD¼bDþb4D

; ð35Þ

q4D ¼
ds4DðzD; tDÞ

dzD

����
zD¼b4D

; ð36Þ

@s3DðzD; tDÞ
@zD

����
zD¼bDþb3Dþb4D

¼ 0; ð37Þ

@s4DðzD; tDÞ
@zD

����
zD¼0
¼ 0: ð38Þ
Table 2
The default values used in this study.

Parameter name Symbol Default value

Storage coefficient of the formation
zone

S2 1 � 10�3

Storage coefficient of the skin zone S1 1 � 10�3

Storage coefficient of the aquitard S3, S4 1 � 10�3

Radius of the well rw 0.2 m
Thickness of the main aquifer b1, b2 4 m
Thickness of the aquitard b3, b4 1 m
Transmissivity of the formation zone T2 40 m2/day
Transmissivity of the skin zone T1 4, 20, 40, 80, 200 m2/day
Transmissivity of the aquitard T3, T4 0.04, 0.2, 0.32 m2/day
Thickness of the skin rs 0.4, 0.6, 1, 2 m
3. Solutions in the Laplace domain

The solutions for case A in the Laplace domain can be expressed
as follows. The details can be found in the Appendix.

s1DðrD;pÞ ¼
1
p
�x1I0ðk1rDÞ þx2K0ðk1rDÞ
�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ð39Þ

and

s2DðrD;pÞ ¼
1
p

x3K0ðk2rDÞ
�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ð40Þ

in which,

x1 ¼ k2K0ðk1rsDÞK1ðk2rsDÞ � TDk1K0ðk2rsDÞK1ðk1rsDÞ; ð41Þ

x2 ¼ k2I0ðk1rsDÞK1ðk2rsDÞ þ TDk1I1ðk1rsDÞK0ðk2rsDÞ; ð42Þ

x3 ¼ TDk1I0ðk1rsDÞK1ðk1rsDÞ þ TDk1I1ðk1rsDÞK0ðk1rsDÞ; ð43Þ

where k2
1 ¼ ðSD=TDÞpþ ðAT3D=TDb3DÞ cothðAb3DÞ þ ðBT4D=TDb4DÞ coth

ðBb4DÞ; and k2
2 ¼ pþ ðAT3D=b3DÞ cothðAb3DÞ þ ðBT4D=b4DÞ cothðBb4DÞ,

with A2 ¼ pS3D=T3D and B2 = pS4D/T4D, in which coth(x) is the hyper-
bolic cotangent function; p is the Laplace variable; Iv(x) and Kv(x)
are the first and second kinds of the modified Bessel functions with
the order v. As stated in the Appendix, the solutions for case B and
case C can be easily obtained and they have the same patterns as
Eqs. (39) and (40). For case B, one needs to change the coth function
to tanh function for k2

1 and k2
2. For case C, one needs to change the

coth function in the last term of k2
1 and k2

2 to tanh function. The
results for cases B and C are not listed here considering the space.

Up to now, we have obtained the solutions of drawdown in the
Laplace domain. However, for a constant-head test, it is also impor-
tant to analyze the well discharge which can be expressed as:
QðtÞ ¼ � lim
r!rw

2pbrk1
ds1ðr; tÞ

dr
; ð44Þ

where Q(t) is the well discharge. Eq. (44) can be rewritten in a
dimensionless format as:

QDðtDÞ ¼ �TD lim
rD!1

rD
ds1DðrD; tDÞ

drD
; ð45Þ

in which QDðtDÞ ¼ QðtÞ
2pbk2sw

is the dimensionless well discharge. Apply-
ing the Laplace transform to Eq. (45) and considering Eq. (39), one
obtains the dimensionless well discharge in the Laplace domain as:

�QDðpÞ ¼ �TD lim
rD!1

rD
d�s1DðrD;pÞ

drD

¼ TD

p
x1k1I1ðk1Þ þx2k1K1ðk1Þ
�x1I0ðk1Þ þx2K0ðk1Þ

� �
: ð46Þ

Eq. (46) can be inverted to yield the solution in the real time do-
main. It is difficult, if not impossible, to invert such Laplace-domain
solutions analytically in this study. However, it is rather conve-
nient to invert these solutions numerically. There are several pos-
sible ways to do such numerical inversion, such as the Stehfest
method (Stehfest, 1970a,b), the Crump method (Crump, 1976),
and the de Hoog method (de Hoog et al., 1982). In the following
computation, the Stehfest method was used because of its simplic-
ity. The accuracy of the Stehfest method was tested later as well.

4. Results and discussion

For a constant-head test, it is important to analyze the well dis-
charge. In the following, we analyzed the impact of the leakage and
the skin on the well discharge. A sensitivity analysis was also con-
ducted to see the dependence of the well discharge on different
parameters. We used the dimensionless variables in the following
analysis. One benefit of using the dimensionless rather than the
dimensional variables is that the number of independent variables
is usually smaller (Park and Zhan, 2002, 2003; Zhan et al., 2009a,
Zhan et al., 2009b). However, in order to help the readers to under-
stand the range of those dimensionless variables, several realisti-
cally possible values of the real parameters are given in Table 2.
For the sake of simplicity of illustration, we assumed that the stor-
age coefficients are all the same: S1 = S2 = S3 = S4 = 10�3. The radius
of the well is chosen to be 0.2 m. The thickness of the main aquifer
is chosen to be 4 m, and the thickness of each aquitard is chosen to
be 1 m. The transmissivity of the formation zone is chosen to be 40
m2/day (the hydraulic conductivity is 10 m/day). The transmissiv-
ities of the skin zone are 4, 20, 40, 80 and 200 m2/day (the hydraulic
conductivities are 1, 5, 10, 20 and 50 m/day), corresponding to TD

of 0.1, 0.5, 1, 2 and 5, respectively. The transmissivities of the aqui-
tards are 0.04, 0.2 and 0.32 m2/day (the hydraulic conductivities
are 0.04, 0.2 and 0.32 m/day), corresponding to T3D and T4D of
0.001, 0.005 and 0.008, respectively. The thickness of the skin are
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Fig. 3. The well discharge versus time for three different cases for TD = 0.1 (positive
skin) and TD = 5 (negative skin) with b3D = b4D = 5, T3D = T4D = 0.005 and rsD = 5,
respectively. (a) SD = S3D = S4D = 1; (b) SD = S3D = S4D = 5.
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0.4, 0.6, 1 and 2 m, corresponding to rsD of 2, 3, 5 and 10, respec-
tively. It should be pointed out that the values used in Table 2
are reasonable for the real aquifer–aquitard system. As stated in
Bear (1979), the hydraulic conductivity of the aquifer with clean
sand or sand and gravel is around 10�3–100 cm/s or 8.64 � 10�1–
8.64 � 102 m/day. The hydraulic conductivity of the semipervious
aquifer (aquitard) with very fine sand, silt, loess, or loam is around
10�6–10�3 cm/s or 8.64 � 10�4–8.64 � 10�1 m/day. The chosen
hydraulic conductivity of 10 m/day for the formation and 0.04,
0.2 and 0.32 m/day for the aquitards are within those ranges. It is
also notable that the hydraulic conductivities of the aquitards are
at least two orders of magnitude smaller than that of the forma-
tion, so the assumption of horizontal flow in the formation and ver-
tical flow in the aquitard is valid. The hydraulic conductivities of
the aquitards are about one order of magnitude smaller than the
hydraulic conductivities of the skin zone for a few cases. However,
since the thickness of the skin zone is small (less than 2 m), the
assumption of horizontal flow in the skin zone and vertical flow
in the aquitard will only be slightly affected within small regions
near the skin-aquitard contacts. Therefore, along the same line
with previous studies (e.g., Yeh and Yang, 2006; Yang and Yeh,
2009), flow in the skin zone is also assumed to be horizontal.

In order to test the accuracy of the Stehfest method, we first
considered a simple case in which a closed-form analytical solution
is available. Jacob and Lohman (1952) provided such a closed-form
analytical solution for constant-head test in a confined aquifer
without the leakage and skin. We used this analytical solution to
test the accuracy of the numerical Laplace inversion method. If
the leakage and the skin are not considered, the solution in the La-
place domain can be easily obtained from Eq. (46). The comparison
of the closed-form analytical solution with that obtained by the
Stehfest method is shown in Fig. 2. N is the number of terms used
in the Stehfest method, which is suggested to be an even number
ranging from 4 to 24. As shown in Fig. 2, different N values can
yield solutions in very good agreement with the analytical solution
except that a slight difference has been found for the case of N of
24. In this study, N is chosen to be 12.

4.1. Effect of leakage and skin

For the purpose of illustration, we used the same values for the
parameters of the upper and lower aquitards. First, we compared
the well discharges for three different cases, as shown in Fig. 3.
The parameters are given as TD = 0.1 (positive skin) and TD = 5 (neg-
10−2 100 102 104 1060

2

4

6

8

10

12

14

16

18

20

tD

Q
D

Jacob and Lohman (1952)
N=4
N=12
N=18
N=24

Fig. 2. Test the accuracy of the Stehfest method used in this study.
ative skin) with b3D = b4D = 5, T3D = T4D = 0.005 and rsD = 5, respec-
tively, for (a) SD = S3D = S4D = 1 and (b) SD = S3D = S4D = 5. It can be
seen that the features of the curves are similar for the positive skin
and the negative skin cases as well as for different dimensionless
storage coefficients. That is, the well discharges for three different
cases approach the same asymptotic values at early times, this is
because the leakage has not arrived at the aquifer and conse-
quently has little effect on the flow. The well discharge is the larg-
est for case A and the smallest for case B. This is understandable. A
check of these three cases (Fig. 1) indicates that the leakage of case
A is the largest at late times, which will result in the largest well
discharge at late times. Comparing Fig. 3a with b, one can see that
larger storage coefficients results in greater well discharge at early
times, this is because a larger storage coefficient means the aquifer
(or aquitard) can release more water under a same drawdown. As
the case discussed in this study is a constant-head test, thus it is no
wonder to see such features at early times as shown in Fig. 3a and
b. We also find that the impact of the parameters on the well dis-
charge for case A is similar to that for case B and case C. Therefore,
we only consider the results of case A in the following analysis.

Fig. 4 is about the well discharge versus time for case A for
TD = 0.1 (positive skin) and TD = 5 (negative skin) with SD = 1,
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S3D = S4D = 1, b3D = b4D = 5, rsD = 5, T3D = T4D = 0.001, 0.005 and
0.008, respectively. The case without leakage is also presented in
this figure as a reference. As shown in Fig. 4, the dimensionless
transmissivity of the aquitard has little effect on the well discharge
at early times; while a larger transmissivity of the aquitard leads to
a larger well discharge at late times. This is because the leakage of
the aquitard has not reached the main aquifer at early times. While
at late times, the well discharge is partially from the leakage. A lar-
ger transmissivity means a greater leakage, consequently yields a
greater well discharge, as shown in Fig. 4. It can also be found that
the well discharge for the positive skin case is smaller than that of
the negative skin case.

The skin effect on the well discharge is shown in Fig. 5. The
parameters are given as SD = 1, T3D = T4D = 0.005, S3D = S4D = 1,
b3D = b4D = 5, rsD = 5, TD = 0.1, 0.5, 1, 2 and 5, respectively. It is nota-
ble that TD = 1 means that the transmissivity of the skin zone is
equal to that of the formation zone (i.e., the skin is absent). It is evi-
dent that the well discharge for the positive skin is smaller than
that without the skin, while the well discharge for the negative
skin is larger than that without the skin.
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We have also analyzed the effect of skin thickness on the well
discharge, as shown in Fig. 6. This figure reflects the well discharge
versus time with respect to SD = 1, T3D = T4D = 0.005, S3D = S4D = 1,
b3D = b4D = 5, rsD = 2, 3, 5 and 10, respectively, for (a) TD = 0.1 (posi-
tive skin); (b) TD = 5 (negative skin). Interestingly enough, a thicker
skin results in a smaller well discharge for the positive skin case
while leads to a larger well discharge for the negative skin case
at late times. This feature can be explained as follows. The two-
region (skin zone and formation zone) flow model presented in this
study may be approximated by an equivalent one-region flow
model when analyzing the well discharge. For the positive skin
case, the homogenized hydraulic conductivity of the equivalent
one-region flow model should be smaller when the skin is thicker,
resulting in a smaller well discharge. For the negative skin case, a
thicker skin means a greater homogenized hydraulic conductivity
of the equivalent one-region flow model, thus a larger well
discharge.

Fig. 7 is about the drawdown-distance behavior for TD = 0.1 (po-
sitive skin) and TD = 5 (negative skin) with SD = 1, T3D = T4D = 0.005,
S3D = S4D = 1, b3D = b4D = 5, rsD = 5, tD = 1, 10 and 100, respectively. It
can be seen that the drawdown for the positive skin case is less
than that of the negative skin at the same time. Another interesting
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feature is that a positive skin might result in delayed response of
the aquifer to pumping. As shown in Fig. 7, one can see that the
drawdown in the formation zone is nearly zero for TD = 0.1 with
tD = 1 and 10. This is because the hydraulic conductivity of the skin
zone is much smaller than that of the formation zone for this posi-
tive skin case, thus greater resistance to flow exists across the skin.
On the contrary, for the negative skin case (TD = 5), the drawdown
increases rapidly after a short period of time as shown in Fig. 7.

4.2. Sensitivity analysis

Sensitivity analysis is a tool to analyze the impact of the input
parameters on the results (i.e., well discharge in this study) of a
model. In order to see how different parameters would affect the
result, the normalized sensitivity method proposed by Kabala
(2001) and Huang and Yeh (2007) seems to be a convenient way
to do this analysis. The normalized sensitivity of a dependent var-
iable to the relative change of a given parameter can be expressed
as follows:

Xi;j ¼ Pj
@Ri

@Pj
; ð47Þ

in which Xi,j is the normalized sensitivity coefficient for the jth
parameter Pj at the ith time step; Ri is the dependent variable at
the ith time step and it is the dimensionless well discharge in this
study. The partial derivative on the right hand of Eq. (47) can be
approximated as follows (Yeh, 1987):

@Ri

@Pj
¼ RiðPj þ DPjÞ � RiðPjÞ

DPj
ð48Þ

in which DPj is a small positive increment, which will be chosen as
10�2 � Pj (Yang and Yeh, 2009). The sensitivity analysis of the
parameters was performed and the result is shown in Fig. 8.
Fig. 8a is for a positive skin case (TD = 0.1) while Fig. 8b is for a neg-
ative skin case (TD = 2). The other parameters are given as SD = 1,
S3D = S4D = 1, T3D = T4D = 0.005, b3D = b4D = 5, and rsD = 5. As the flow
system is symmetrical vertically, one only needs to analyze the nor-
malized sensitivity of the parameters for the upper aquitard. Fig. 8
shows that a relative increase in SD and produces a positive effect on
well discharge, and a relative increase in TD produces a positive ef-
fect as well on the well discharge at early times. This figure also
shows that the normalized sensitivity coefficients on other param-
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Fig. 7. The drawdown versus distance for TD = 0.1 (positive skin) and TD = 5
(negative skin) with SD = 1, T3D = T4D = 0.005, S3D = S4D = 1, b3D = b4D = 5, rsD = 5,
tD = 1, 10 and 100, respectively.
eters such as S3D, T3D, b3D, rsD are very small, nearly equal to zero.
These features indicate that the well discharge is very sensitive to
the change in SD and TD, not sensitive to the change of other param-
eters. Physically speaking, the well discharge is sensitive to the
properties of the skin zone and not sensitive to the properties of
the aquitards for such an aquifer–aquitard system presented in this
study.

Generally speaking, the main purpose of a pumping test includ-
ing the constant-head test is to estimate the hydraulic parameters
of the aquifer (or aquitards). For a constant-head test conducted in
an aquifer–aquitard system if a finite-thickness skin existed, the
drawdown inside the well sw and the thickness of the aquifer
and the aquitards, i.e., b1, b2, b3 and b4 might be known. The un-
known parameters will include S1, T1, S2, T2, S3, T3, S4, T4 and rs. It
seems that it is impossible to estimate these parameters with the
matching point method associated with some type curves which
we usually use for the Theis flow model. In this case, the determi-
nation of the aquifer parameters from the constant-head test data
might be an optimization problem (Chen and Yeh, 2009). Chen and
Yeh (2009) presented an interesting optimization method to esti-
mate the aquifer parameters for a constant-head test in a confined
aquifer with a finite-thickness skin, which is similar to the problem
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described in this study except that the leakage is not considered by
Chen and Yeh (2009). This method can also be used to estimate the
hydraulic parameters for the aquifer–aquitard system presented in
this study if the field data are available. If some of the aquifer
parameters are known or one of the aquitards is absent, i.e. only
one aquitard bounded the main aquifer, it will make the problem
much simpler. Therefore, the study of Chen and Yeh (2009) might
be a good reference when using the solutions in this study associ-
ated with the pumping test data.

5. Summary and conclusions

In this study, a mathematical model for radial groundwater flow
to a pumping well in an aquifer–aquitard system was presented for
a constant-head test considering the finite-thickness skin. Three
different cases with different boundary conditions of the aquitards
were discussed. The Laplace-domain solutions were obtained and
subsequently inverted numerically by using the Stehfest method.
We have analyzed the impact of the leakage of the aquitards and
the skin effect on the well discharge, and a sensitivity analysis
has also been included. Several conclusions can be drawn from this
study:

(1) The dimensionless transmissivity of the aquitard has little
effect on the well discharge at early times, while a larger
transmissivity of the aquitard leads to a larger well dis-
charge at late times.

(2) The well discharge for the positive skin is smaller than that
without the skin, while the well discharge for the negative
skin is larger than that without the skin. A thicker skin
results in a smaller well discharge for the positive skin case
while leads to a larger well discharge for the negative skin
case at late times.

(3) When the leakage is the same, the drawdown for the posi-
tive skin case is less than that of the negative skin case at
the same time, and a positive skin results in delayed
response of the aquifer to pumping.

(4) The well discharge is sensitive to the properties of the skin
zone and not sensitive to the properties of the aquitards
for the aquifer–aquitard system presented in this study.
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Appendix A

First we will solve the problem of case A. Applying the Laplace
transform to Eqs. (27), (29), and (30) with consideration of Eq. (28)
will lead to:

d2s3DðzD; pÞ
dz2

D

¼ pS3D

T3D
s3DðzD; pÞ; ðA1Þ

s3DðzD; pÞjzD¼bDþb4D
¼

s1DðrD; pÞ; rwD < rD < rsD

s2DðrD;pÞ; rsD < rD <1

�
; ðA2Þ
s3DðzD;pÞjzD¼bDþb3Dþb4D
¼ 0; ðA3Þ

in which p is the Laplace variable, and over bar means the variables
in the Laplace domain. The solution of Eqs. (A1), (A2), (A3) can be
expressed as:

s3DðzD;pÞ ¼
sinh½AðbD þ b3D þ b4D � zDÞ�

sinhðAb3DÞ
siðrD;pÞ; ðA4Þ

where A2 = pS3D/T3D, i = 1 and 2 denotes the drawdown in the skin
and formation zones, respectively. sinh(x) and cosh(x) are the
hyperbolic sine and cosine functions which are defined as:
sinh (x) = (ex � e�x)/2, cosh (x) = (ex + e�x)/2. Similarly, one can have:

s4ðzD;pÞ ¼
sinhðBzDÞ
sinhðBb4DÞ

siðrD;pÞ; ðA5Þ

where B2 = pS4D/T4D. In terms of Eqs. (35) and (36), the dimension-
less leakage through the upper and lower aquitards in the Laplace
domain can be obtained as:

q3D ¼
ds3DðzD;pÞ

dzD
jzD¼bDþb4D

¼ �A cothðAb3DÞsiðrD;pÞ; ðA6Þ

q4D ¼
ds4DðzD;pÞ

dzD
jzD¼b4D

¼ B cothðBb4DÞsiðrD; pÞ; ðA7Þ

where coth(x) is the hyperbolic cotangent function. With the
Laplace transform, Eqs. (20) and (21) can be transformed to the
following equations:

d2s1DðrD;pÞ
dr2

D

þ 1
rD

ds1DðrD;pÞ
drD

¼ k2
1s1DðrD;pÞ; 1 6 rD 6 rsD; ðA8Þ

d2s2DðrD;pÞ
dr2

D

þ 1
rD

ds2DðrD;pÞ
drD

¼ k2
2s2DðrD;pÞ; rsD 6 rD <1; ðA9Þ

in which k2
1 ¼ ðSD=TDÞpþ ðAT3D=TDb3DÞ cothðAb3DÞ þ ðBT4D=TDb4DÞ�

cothðBb4DÞ; and k2
2 ¼ pþ ðAT3D=b3DÞ cothðAb3DÞ þ ðBT4D=b4DÞ coth�

ðBb4DÞ. The general solutions to Eqs. (A8) and (A9) can be expressed
as:

s1DðrD; pÞ ¼ D1I0ðk1rDÞ þ D2K0ðk1rDÞ; ðA10Þ

s2DðrD; pÞ ¼ D3I0ðk2rDÞ þ D4K0ðk2rDÞ; ðA11Þ

where Iv(x) and Kv(x) are the first and second kinds of the modified
Bessel functions with the order v, respectively. D1, D2, D3, D4 are
constants depending on the boundary conditions. Applying the
Laplace transform, the boundary conditions can be transformed as:

s2Dð1; pÞ ¼ 0; ðA12Þ

s1DðrsD; pÞ ¼ s2DðrsD;pÞ; ðA13Þ

TD
ds1DðrsD;pÞ

drD
¼ ds2DðrsD; pÞ

drD
; ðA14Þ

s1Dð1;pÞ ¼
1
p
: ðA15Þ

With Eq. (A12), one knows that D3 = 0. Substituting Eqs. (A10)
and (A11) into Eqs. (A13), (A14), and (A15) will yield the following
equations:

D1I0ðk1rsDÞ þ D2K0ðk1rsDÞ ¼ D4K0ðk2rsDÞ; ðA16Þ

TDk1½D1I1ðk1rsDÞ � D2K1ðk1rsDÞ� ¼ �k2D4K1ðk2rsDÞ; ðA17Þ

D1I0ðk1Þ þ D2K0ðk1Þ ¼
1
p
: ðA18Þ
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Solving above equations leads to:

D1 ¼
1
p

�x1

�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ðA19Þ

D2 ¼
1
p

x2

�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ðA20Þ

D4 ¼
1
p

x3

�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ðA21Þ

in which

x1 ¼ k2K0ðk1rsDÞK1ðk2rsDÞ � TDk1K0ðk2rsDÞK1ðk1rsDÞ; ðA22Þ

x2 ¼ k2I0ðk1rsDÞK1ðk2rsDÞ þ TDk1I1ðk1rsDÞK0ðk2rsDÞ; ðA23Þ

x3 ¼ TDk1I0ðk1rsDÞK1ðk1rsDÞ þ TDk1I1ðk1rsDÞK0ðk1rsDÞ: ðA24Þ

After D1, D2 and D4 are obtained the dimensionless drawdowns
for the skin and formation zones are:

s1DðrD;pÞ ¼
1
p
�x1I0ðk1rDÞ þx2K0ðk1rDÞ
�x1I0ðk1Þ þx2K0ðk1Þ

� �
; ðA25Þ

s2DðrD;pÞ ¼
1
p

x3K0ðk2rDÞ
�x1I0ðk1Þ þx2K0ðk1Þ

� �
: ðA26Þ

For case B and case C, it is notable that the only differences are
the leakage through the aquitards. For case B, using the similar der-
ivations above, one can obtain the leakage through the upper and
lower aquitards as:

q03D ¼ �AtanhðAb3DÞsiðrD;pÞ; ðA27Þ

q04D ¼ BtanhðBb4DÞsiðrD;pÞ: ðA28Þ

Comparing Eqs. (A27) and (A28) with Eqs. (A6) and (A7), one
can find that the equations have the same pattern except that
the coth function is replaced by the tanh function. Therefore, the
solutions for case B and case C can be easily obtained. For case B,
one needs to change the coth function to tanh function for k2

1 and
k2

2: For case C, one needs to change the coth function in the last
terms of k2

1 and k2
2 to tanh function. The final results will not be

listed here.
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