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Shaw-Yang Yang1 and Hund-Der Yeh2*
1 Department of Civil Engineering, Vanung University, Chungli, Taiwan

2 Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract:

A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two-zone leaky
confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation.
A skin zone of constant thickness exists around the wellbore. A general solution to a two-zone leaky confined aquifer system
in Laplace domain is developed and inverted numerically to the time-domain solution using the modified Crump (1976)
algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the
skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their
effects on drawdowns in a two-zone leaky confined aquifer system. For the negative-skin case, the drawdown is very sensitive
to the relative change in the formation transmissivity. For the positive-skin case, the drawdown is also sensitive to the relative
changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well
radius and formation storage coefficient at early pumping time. Copyright  2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Hantush and Jacob (1955) presented the non-steady
drawdown solution in a leaky confined aquifer due to
constant well discharge. They assumed that the rate of
leakage from an aquitard is proportional to the drawdown
at any point and the storage of the aquitard is negligible.
In addition, the early-time and late-time approximate
solutions were also developed by Hantush and Jacob
(1955). Hantush (1960) dealt with a flow system in which
the effect of storage in the semi-pervious layers was taken
into consideration. The solutions to the boundary-value
problems were obtained using the Hankel and Laplace
transforms. The investigations of Hantush and Jacob
(1955) and Hantush (1960) did not consider the effect of
well radius and hence might not accurately describe the
early-time drawdown response. Cheng and Morohunfola
(1993) presented an analytical drawdown solution for
the problem of radially convergent flow towards a well
pumping at a constant rate in a multi-layered leaky
aquifer system. They modelled the aquifer system based
on the methodology of Neuman and Witherspoon (1969)
and Herrera (1970), and utilized a numerical inversion
algorithm to evaluate the drawdowns in associated layers.

Sekhar et al. (1994) presented a procedure for the
determination of flow parameters in an anisotropic aquifer
in which the direction of principal axes is unknown.
They used a modified parameter perturbation technique to
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determine the sensitivity coefficients. Shan et al. (1995)
studied the problem of saturated water flow to a sin-
gle pumping test well in an aquifer-fault-aquifer sys-
tem. They developed analytical solutions and presented
methods in determining the fault transmissivity from
pumping test data. Zlotnik (2004) introduced a new con-
cept of maximum stream depletion rate (MSDR), defined
as a maximum fraction of pumping rate contributed
by the stream depletion. The MSDR was determined
from the aquifer hydro-stratigraphic conditions, geom-
etry of recharge and discharge zones, and locations of
pumping wells. Yeh and Huang (2005) employed the
extended Kalman filter to determine aquifer parameters in
leaky aquifer systems with and without considering stor-
age effect in the aquitard. Copty et al. (2006) assessed
the effect of leakage on equivalent transmissivity for a
steady-state radial flow in heterogeneous leaky aquifers.
Zhan and Bian (2006) provided the analytical and semi-
analytical solutions for use in calculating leakage rate and
volume in a leaky confined aquifer bounded by a rela-
tively thin aquitard. Yeh et al. (2007) developed a novel
approach based on global optimization methods such as
simulated annealing or a genetic algorithm to determine
the best-fit aquifer parameters for leaky aquifer systems.
Hunt and Scott (2007) obtained an approximate solution
for the aquifer–aquitard–aquifer problem from numerical
inversions of exact analytical solutions for Laplace trans-
forms and reduced it to a well-known aquifer–aquitard
problem. Li (2007a) presented a new analytical solution
to investigate the aquifer horizontal movement driven
by hydraulic forces. His solution described the aquifer
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radial transient movement caused by well discharge and
recharge in a leaky confined aquifer. In addition, Li
(2007b) also developed new analytical solutions in the
velocity and cumulative displacement fields describing
transient radial movement of an unconfined leaky aquifer.
He indicated that the large leakage is important in slow-
ing radial movement and reducing aquifer deformation.
Li and Neuman (2007) interpreted the pumping test in the
Oxnard basin by coupling the Neuman solution (Neuman,
1968) with a numerical inversion algorithm in a five-
layer system. Trinchero et al. (2008) developed a double
inflection point (DIP) method for the interpretation of
pumping tests in the leaky aquifers. Their DIP method
does not involve any curve fitting, requiring the estima-
tion of the position of three points on the time-drawdown
curve instead.

A skin is usually developed near the wellbore due to
an extensive well development or the intrusion of drilling
mud into the adjacent formation during well construction.
A positive wellbore skin (also called positive skin or low-
conductivity skin) has a lower permeability than that of
the original formation. In contrast, a disturbed formation
with a higher permeability near the bore well is referred to
as a negative bore well skin (also called negative skin or
high-conductivity skin). Novakowski (1989) mentioned
that the thickness of the skin zone might range from a
few millimetres to several metres and thus should be con-
sidered in the pumping-test data analysis. The effect of
wellbore skin on the results of pumping tests had been
investigated by Barker and Herbert (1982) without con-
sidering the well radius effect and by Novakowski (1989),
Novakowski (1990), and Yeh et al. (2003) accounting
for the well radius effect. However, these papers did
not consider the leaky condition in a two-zone confined
aquifer system. Moench (1985) developed the concep-
tual models combining the Hantush theory of the storage
in the aquitard (Hantush, 1960) with the Papadopulos
and Cooper theory of a large-diameter well (Papadopu-
los and Cooper, 1967). The solution for the dimensionless
drawdown in the comprising aquifer and aquitard due to
pumpage was provided in Laplace domain and inverted
numerically. However, his model treated the skin effect
as a factor of head loss and therefore, the skin thickness
was neglected.

The drawdown solution, which accounts for the effects
of the skin zone, finite radius well, and storage in the
aquitard, has not been developed before for the case of
a leaky confined aquifer. The purpose of this paper is to
present a mathematical model that describes the draw-
down due to constant pumpage from a finite radiuswell
in a two-zone leaky confined aquifer accounting for the
effects of storage of the aquitard and the finite thickness
skin. The drawdown solutions in the skin and formation
zones are developed in Laplace domain and evaluated
to the time-domain solutions by a numerical inversion
algorithm. Hypothetical leaky aquifer systems are used to
illustrate the effects of the skin zone and leakage on draw-
down distribution in a two-zone leaky confined aquifer
system. In addition, the sensitivity analysis is performed

to investigate the aquifer drawdown in response to the
relative changes of parameters of the aquifer and aquitard.

THEORY

A schematic cross-section of an idealized leaky confined
aquifer system is depicted in Figure 1. The aquifer
of constant thickness is overlain by an aquitard and
underlain by an impermeable formation. A skin zone of
finite thickness is assumed to exist around the wellbore.
The pumping well penetrates the entire thickness of the
aquifer and the pumping rate is maintained constant.
In this study, the assumptions made for the conceptual
model are:

1. The upper aquifer is highly permeable with an infinite
amount of water supply such that it maintains a
constant head at any time.

2. The formation zone is homogeneous, isotropic, of a
constant thickness, and infinite in radial extent.

3. The skin zone is also homogeneous, isotropic, and of
a constant thickness around the wellbore.

4. The flow direction is vertical in the aquitard and
horizontal in the confined aquifer.

Mathematical model

Based on the above assumptions, the governing
equation describing the drawdown distribution, s�r, t�, for
the skin and formation zones are, respectively,

∂2s1�r, t�

∂r2 C 1

r

∂s1�r, t�

∂r
C q0

T1
D S1

T1

∂s1�r, t�

∂t
, rw � r � r1

�1�
and

∂2s2�r, t�

∂r2 C 1

r

∂s2�r, t�

∂r
C q0

T2
D S2

T2

∂s2�r, t�

∂t
, r1 � r < 1

�2�

Figure 1. The schematic cross-sectional diagram of an idealized two-zone
leaky confined aquifer system
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where subscripts 1 and 2 respectively denote the skin and
formation zones; q0 is the leakage of the aquitard; T is
the transmissivity; S is the storage coefficient; r is the
radial distance from the centerline of pumping well; rw

is the radius of pumping well; r1 is the radial distance
from the centerline of the well to the outer skin envelope;
and t is the time from the start of the pumping test.

The drawdown of the aquifer is initially zero within
the skin and formation zones. Thus, the initial conditions
for Equations (1) and (2) are written as

s1�r, 0� D s2�r, 0� D 0 �3�

As r approaches infinity, the drawdown in the forma-
tion zone tends to be zero. Therefore, the outer boundary
condition at an infinite distance is specified as

s2�1, t� D 0 �4�

Applying the Darcy law, the boundary condition for
a constant flow rate across the screen is assumed to be
uniform and expressed as

Qw D �2�T1r
∂s1�r, t�

∂r
, r D rw �5�

where Qw is a constant pumping rate.
The continuities of the drawdown and the flux between

the skin and formation zones, respectively, require that

s1�r1, t� D s2�r1, t� �6�

and

T1
∂s1�r1, t�

∂r
D T2

∂s2�r1, t�

∂r
�7�

Aquitard flow

Considering the effect of the aquitard storage, the
governing equation describing drawdown distribution
within the aquitard is

b0K0 ∂
2s0�z, t�

∂z2 D S0 ∂s0�z, t�

∂t
�8�

where s0�z, t� is the drawdown of the aquitard; z is
the vertical distance from the lower impermeable layer;
b0 is the thickness of the aquitard; and K0 and S0 are
the hydraulic conductivity and storage coefficient of the
aquitard, respectively.

The drawdown in the aquitard is initially assumed zero
and expressed as

s0�z, 0� D 0 �9�

The boundary condition at the interface between the
aquitard and the lower aquifer is

s0�z, t� D s1�r, t� D s2�r, t�, z D b �10�

In addition, the boundary condition on the top of the
aquitard is

s0�z, t� D 0, z D b C b0 �11�

Applying Laplace transforms to Equations (8), (10)
and (11) leads to

d2s0�z, p�

dz2 D ˛02s0�z, p�, ˛02 D pS0

b0K0 �12�

s0�z, p� D s1�r, p� D s2�r, p� D s�r, p�, for z D b

�13�

and
s0�z, p� D 0, for z D b C b0 �14�

The general solution to Equation (12) is

s0�z, p� D C1 sinh�˛0z� C C2 cosh�˛0z� �15�

where C1 and C2 are undetermined constants.
Substituting Equation(15) into Equations (13) and

(14), one obtains

C1 D �cosh�˛0�b C b0��
sinh�˛0b0�

si�r, p� �16�

and

C2 D sinh�˛0�b C b0��
sinh�˛0b0�

si�r, p� �17�

where si�r, p� is the drawdown within the skin for
i D 1 and within the formation for i D 2. The solution
for drawdown within the aquitard can be obtained by
substituting Equations (16) and (17) into Equation (15)
after some manipulations as

s0�z, p� D sinh�˛0�b C b0 � z��

sinh�˛0b0�
si�r, p� �18�

Based on the mass conservation, the leakage of the
aquitard is

q0 D K0 ds0�z, p�

dz

∣∣∣∣
zDb

�19�

Substituting Equation (18) into Equation (19), the
leakage to the confined aquifer is

q0 D �K0˛0 coth�˛0b0�si�r, p� �20�

Drawdown of leaky aquifer

The solutions to Equations (1) and (2) with respect
to boundary conditions Equations (4)–(7) can be found
using Laplace transform method. The detailed derivation
for the Laplace-domain solutions is given in Appendix
A and the drawdown solutions within the skin and
formation zones are respectively

s1�r, p� D
(

Qw

2�rwT1

)

( ��1I0�˛1r� C �2K0�˛1r�

˛1p[�1I1�˛1rw� C �2K1�˛1rw�]

)
�21�

and

s2�r, p� D
(

Qw

2�rwr1

)

(
K0�˛2r�

˛1p[�1I1�˛1rw� C �2K1�˛1rw�]

)
�22�
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with

�1 D T2˛2K0�˛1r1�K1�˛2r1� � T1˛1K1�˛1r1�K0�˛2r1�
�23�

and

�2 D T2˛2I0�˛1r1�K1�˛2r1� C T1˛1I1�˛1r1�K0�˛2r1�
�24�

where p is the Laplace variable; s�r, p� is the transformed
drawdown; ˛2

1 D �S1/T1�p C �K0˛0/T1� coth�˛0b0�; ˛2
2 D

�S2/T2�p C �K0˛0/T2� coth�˛0b0�; I0(.) and I1(.) are the
modified Bessel functions of the first kind of order
zero and one, respectively; and K0(.) and K1(.) are the
modified Bessel functions of the second kind of order
zero and one, respectively.

Dimensionless solutions

Define dimensionless variables as following:

tD D T2t

S2r2
w

, rD D r

rw
, r1D D r1

rw
,

b0
D D b0

rw
, TD D T1

T2

T0
D D K0b0

T2
, SD D S1

S2
, S0

D D S0

S2
,

s1D D 2�T2

Qw
s1, s2D D 2�T2

Qw
s2 �25�

Using the above-defined dimensionless variables,
Equations (21) and (22) can be expressed in dimension-
less forms as

s1D�rD, p� D
(

1

TD˛1D

)

(��1DI0�˛1DrD� C �2DK0�˛1DrD�

p[�1DI1�˛1D� C �2DK1�˛1D�]

)
�26�

and

s2D�rD, p� D
(

1

˛1Dr1D

)

(
K0�˛2DrD�

p[�1DI1�˛1D� C �2DK1�˛1D�]

)
�27�

with

�1D D ˛2DK0�˛1Dr1D�K1�˛2Dr1D�

� TD˛1DK1�˛1Dr1D�K0�˛2Dr1D� �28�

and

�2D D ˛2DI0�˛1Dr1D�K1�˛2Dr1D�

C TD˛1DI1�˛1Dr1D�K0�˛2Dr1D� �29�

where ˛
02
D D �S0

D/T0
D�p, ˛2

1D D �SD/TD�p C �T0
D˛0

D
/TDb0

D� coth�˛0
Db0

D�, and ˛2
2D D p C �T0

D˛0
D/b0

D� coth
�˛0

Db0
D�.

SIMPLIFIED SOLUTIONS

Solution without considering skin effect

The aquifer formation is a single-layer system if the
skin zone is absent. Under this condition, the aquifer
properties T1 D T2 D T and S1 D S2 D S and the vari-
ables �1 D 0, �2 D T/r1, and ˛1 D ˛2 D ˛. Then both
Equations (21) and (22) reduce to

s�r, p� D
(

Qw

2�rwT

) (
K0�˛r�

˛pK1�˛rw�

)
,

˛ D
√

�S/T�p C �K0˛0/T� coth�˛0b0� �30�

If the well radius is negligible (i.e. rw ! 0), the
modified Bessel function K1�˛rw� approaches 1/�˛rw�
and Equation (30) reduces to

s�r, p� D
(

Qw

2�T

) (
K0�˛r�

p

)
�31�

which is the drawdown solution in Laplace domain given
by Hantush and Jacob (1955) for a leaky confined aquifer
under the assumption of an infinitesimal radius well.

Solution without considering leakage effect

If the aquitard is impervious (i.e. K0 D 0), then
one can write ˛2

1 D �S1/T1�p and ˛2
2 D �S2/T2�p in

Equations (21) and (22), which, consequently, lead these
two solutions to those presented in Yeh et al. (2003) for
the two-zone nonleaky aquifer case. After neglecting the
well radius (rw ! 0), the solutions of Yeh et al. (2003)
reduce respectively to

s1�r, p� D
(

Qw

2�T1

) (��1I0�˛1r� C �2K0�˛1r�

p�2

)

�32�
and

s2�r, p� D
(

Qw

2�T1

) (
T1K0�˛2r�

r1p�2

)
�33�

Note that Equations (32) and (33) were given in
different forms by Barker and Herbert (1982).

As the aquitard is impervious and the skin zone is
absent, both Equations (21) and (22) reduce to

s�r, p� D
(

Qw

2�rwT

) (
K0�˛r�

˛pK1�˛rw�

)
, ˛ D

√
�S/T�p

�34�
which is the drawdown equation in Laplace domain for
a single-layer confined aquifer.

NUMERICAL INVERSION OF THE SOLUTIONS

The Laplace-domain solutions to Equations (21) and (22)
for drawdowns consist of the products of the Bessel func-
tions. These Bessel functions can be approximated by the
formulas given in Watson (1958) and Abramowitz and
Stegun (1964). The application of the Shanks method
(Shanks, 1955; Wynn, 1956) will be computational effi-
cient to numerically evaluate the Bessel functions. Simi-
lar approximations of the Bessel functions can be found
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in the works of Yeh and Yang (2006) and Yang and Yeh
(2007).

The analytical inversion of the Laplace-domain solu-
tions Equations (21) and (22) may not be possible. There-
fore, the method of numerical Laplace inversion such
as the Crump (1976) algorithm is employed. The rou-
tine INLAP of IMSL (2003), developed on the basis of
the Crump (1976) algorithm, can be used to evaluate the
time-domain solutions to Equations (21) and (22) with
accuracy to the fourth decimal place in comparison to the
analytical inversion. This routine had also been success-
fully applied to the groundwater problems mentioned in
the study by Yang and Yeh (2005) or Yang et al. (2006).

RESULTS AND DISCUSSION

Effect of leakage

Several examples with hypothetical data are used to
illustrate the effects of the skin and leakage in a two-
zone leaky confined aquifer system. The parameters of
the formation zone are T2 D 10�3 m2 s�1, S2 D 10�3,
and the thickness of the confined aquifer b D 30 m. The
storage coefficient of the aquitard is S0 D 10�3. The well
radius rw is 0Ð05 m and the pumpage is maintained
constant at Q D 10�3 m3 s�1.

Figure 2 illustrates the effects of the conductivity and
thickness of the aquitard on drawdowns in a pump-
ing well for the positive-skin case. Figure 2a displays
the time-drawdown curves for T1 D 10�4 m2 s�1, r1 D
0Ð50 m, b0 D 5 m, and K0 D 0 (no leakage), 10�8, 10�7

or 10�6 m s�1 when the time ranges from 10�1 to 106 s.
Figure 2b displays the time-drawdown curves for T1 D
10�4 m2 s�1, r1 D 0Ð50 m, K0 D 10�7 m s�1, and b0 D
5, 10 or 20 m for the same time. The time-drawdown
curves shown in Figure 2a are the same at early pump-
ing time, and the drawdown increases with the decrease
of K0 at a later pumping time (say, t ½ 2 ð 103 s). The
drawdown in a leaky aquifer is less than that in a
non-leaky aquifer after t ½ 2 ð 103 s. Furthermore, the
aquifer without having the skin and leakage produces
the least drawdown among these five drawdown curves
for the positive-skin case. The drawdown tends to be
stabilized when the pumping time is larger than 105 s
(1Ð157 day). Figure 2b also shows that the drawdowns
are the same at early pumping time and increase with b0
at the later pumping time. These results indicate that a
smaller K0 and/or a larger b0 results in a larger drawdown
for the positive-skin case. In addition, the influence of K0
and b0 is slightly more profound on drawdown at later
time.

Figure 3 displays the distance-drawdown curves in a
leaky confined aquifer with r D 0Ð05 m, b0 D 5 m, T1 D
10�4 m2 s�1, and r1 D 0Ð50 m for K0 D 0 (no leakage),
10�8, 10�7 or 10�6 m s�1. The figure shows that the
drawdown decreases with time and radial distance. In
addition, the drawdown decreases rapidly within the
skin zone and slowly within the formation zone. The
drawdowns in the skin and formation zones near the

Figure 2. The time-drawdown curves with r D 0Ð05 m, T1 D 10�4 m2

s�1, and r1 D 0Ð50 m for (a) b0 D 5 m and various K0 D 0 (no leakage),
10�8, 10�7, or 10�6 m s�1 and (b) K0 D 10�7 m s�1 and various b0 D 5,

10, or 20 m

interface behave differently. The drawdown is larger
within the skin zone and smaller within the formation
zone when compared with that of the aquifer without
skin and leakage. The figure also indicates that a larger
K0 results in a smaller drawdown. Figure 4 also displays
the distance-drawdown curves in a leaky confined aquifer
for K0 D 0 (no leakage) or 10�7 m s�1, r D 0Ð05 m,
T1 D 10�4 m2 s�1, and r1 D 0Ð50 m when b0 D 5, 10, or
20 m. For the positive-skin case, the drawdown decreases
rapidly within the skin zone and slowly within the
formation zone. In addition, a larger b0 leads to a larger
drawdown, especially near the wellbore area.
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Figure 3. The distance-drawdown curves for r D 0Ð05 m, T1 D 10�4 m2

s�1, r1 D 0Ð50 m, b0 D 5 m and various K0 D 0 (no leakage), 10�8, 10�7,
or 10�6 m s�1

Figure 4. The distance-drawdown curves for r D 0Ð05 m, T1 D 10�4 m2

s�1, r1 D 0Ð50 m, K0 D 10�7 m s�1 and various b0 D 5, 10, or 20 m

Effect of wellbore skin

Figure 5 shows the time-drawdown curves for rw D
0Ð05 m in the aquifer with the skin zone of T1 D
10�4, 10�3 (no skin) or 10�2 m2 s�1 and r1 D 0Ð25
or 0Ð50 m and the aquitard of K0 D 0 (no leakage)
or 10�7 m s�1 and b0 D 5 m when the time ranges
from 10�1 to 106 s. Note that the case of K0 D 0
corresponds to the solution of a non-leaky confined
aquifer system and the case of K0 D 0 and T1 D T2 D
10�3 m2 s�1 corresponds to the solution for a single-
layer non-leaky confined aquifer system. In this figure,
the time-drawdown curves for the aquifer with a positive
skin when T1 D 10�4 m2 s�1, without skin when T1 D
10�3 m2 s�1, and with a negative skin when T1 D
10�2 m2 s�1. The figure shows that the aquifer with a

Figure 5. The drawdown-time curves within a pumping well (rw D
0Ð05 m) for K0 D 0 (no leakage) and 10�7 m s�1, b0 D 5 m, r1 D 0Ð25
and 0Ð50 m, and T1 D 10�4 in the positive-skin case, 10�3 in the no skin

case or 10�2 m2 s�1 in the negative-skin case

positive skin produces the largest drawdown, the no skin
is the second, and the negative skin yields the smallest
drawdown. In addition, the difference in drawdown
between the aquifer with a positive skin and a single-
layer aquifer is larger than that between the aquifer with
a negative skin and a single-layer aquifer. It also shows
that a larger r1 has a larger drawdown for the positive-
skin case and a smaller drawdown for the negative-skin
case. This indicates that the effect of a positive skin on
drawdown is larger than that of a negative skin. The
results demonstrate that the drawdown is significantly
influenced by a positive skin than by a negative skin. In
addition, a thicker skin zone has a more profound effect
on drawdown. The time-drawdown curves also show that
the drawdown of a non-leaky curve is proportional to
natural logarithm of time.

Sensitivity analysis

Sensitivity analysis is a technique to assess the effects
of uncertainty in input parameters on the model result.
This method is helpful in assessing how a model responds
to the change in certain parameters. The sensitivity of
a dependent variable in response to the change in a
parameter is defined as (Liou and Yeh, 1997)

Xi,j D ∂Vi

∂Pj
�35�

where Xi,j is the sensitivity coefficient of the jth param-
eter (Pj) at the ith time and Vi is the dependent variable
of the model, e.g. the drawdown distribution. Huang and
Yeh (2007) provided a normalized sensitivity to assess
the effect of relative changes in parameters on depen-
dent variable. The normalized sensitivity of a dependent
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variable to the relative change in a given parameter is
defined as

X0
i,j D Pj

∂Vi

∂Pj
�36�

where X0
i,j is the normalized sensitivity of the jth

parameter (Pj) at the ith time. The partial derivative in
Equation (36) may be laborious to evaluate. A finite-
difference formula may be used to approximate the
differentiation (Yeh, 1987). That is

∂Vi

∂Pj
D Vi�Pj C Pj� � Vi�Pj�

Pj
�37�

where Pj is a small increment chosen as 10�2 ð Pj.
The sensitivity analyses of parameters of a two-

zone leaky confined aquifer system are performed using
the hypothetic data. The aquifer has b D 30 m, T2 D
10�3 m2 s�1, and S2 D 10�3 for the formation zone while
the aquitard has b0 D 5 m, K0 D 10�7 m s�1, and S0 D
10�3. The well radius rw is 0Ð05 m and the pumping
rate is maintained constant at Q D 10�3 m3 s�1. For a
skin zone with the storage S1 D 10�3, two cases are
considered; that is, T1 D 10�2 m2 s�1 for the negative-
skin case and T1 D 10�4 m2 s�1 for the positive-skin
case. Figure 6a and b plots the time-drawdown curves
and the normalized sensitivities of the parameters K0,
S0, b0, T1, S1, r1, T2, S2, and rw. Figure 6a shows
that a relative change in b0 produces a minor positive
effect on drawdown and the other parameters produce
negative effects on drawdown for the negative-skin case
with T1 D 10�2 m2 s�1. The normalized sensitivity of
drawdown with respect to b0 starts with a slight increase
after 103 s and reaches a constant value of 0Ð08 m
after 105 s. In contrast, the normalized sensitivity of
drawdown with respect to K0 produces a similar pattern
but has a negative effect. A relative change in r1 has a
negative effect on drawdown and the sensitivity curve
shows a slight increase with time at early time and
stabilized at a value of �0Ð14 m after t ½ 3 s. The
normalized sensitivity of drawdown with respect to T2

decreases with time and approaches a constant value of
�0Ð90 m when t ½ 105 s. Furthermore, the normalized
sensitivities of drawdown with respect to K0, b0, r1, and
T2 maintain constant values of �0Ð08, 0Ð08, �0Ð14, and
�0Ð90 m, respectively, at a later time (say, t ½ 105 s)
because the leaky confined aquifer system reaches a
steady-state condition. The figure also shows that the
drawdown in response to the change of T2 produces
the largest normalized sensitivity in the magnitude, the
parameter r1 is the second, and the other parameters
such as S0, T1, S1, and S2, rw are relatively less in the
analyses. Those results indicate that the drawdowns are
very sensitive to the change in T2, slightly less sensitive
to the change in r1, and the parameters b0 and K0 give
minor influences on drawdown at a later time in the
negative-skin case. Figure 6b plots the time-drawdown
curves and the normalized sensitivities for the positive-
skin case with T1 D 10�4 m2 s�1. The figure shows that
the normalized sensitivities of drawdown with respect to

Figure 6. Plots of the time-drawdown curve and the normalized sen-
sitivities of the parameters K0, S0, b0, T1, S1, r1, T2, S2, and rw
versus time for (a) T1 D 10�2 m2 s�1 in the negative-skin case and

(b) T1 D 10�4 m2 s�1 in the positive-skin case

b0, r1, and rw are positive and those with respect to other
parameters are negative. The normalized sensitivity to
the relative change in r1 starts to increase after about
0Ð5 s and is stabilized at a value of 1Ð4 m after about
10 s. The normalized sensitivity of drawdown in response
to the change in T1 decreases with time and keeps a
constant value of �3Ð6 m after about 5 s. The normalized
sensitivity to the relative change in T2 becomes larger
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after 1 s and approaches a constant value (�0Ð9 m) when
t ½ 105 s. The normalized sensitivity of drawdown with
respect to rw is relatively small (say 0Ð36) at t D 0Ð1 s
and then decreases with time and approaches zero when
t ½ 600 s. This figure also shows that the normalized
sensitivity to the relative change in S2 produces a negative
effect, gradually decreases in magnitude with time from
1 s, and approaches zero at about 5 s. It indicates that
the effect of the formation storage on drawdown occurs
only at early time. Furthermore, the relative changes in
b0, K0, S0, and S1 yield very small effects on drawdown.
The influences of relative changes in parameters K0 and
b0 on drawdown become profound at a later time. In
short, the results of sensitivity analyses indicate that
the effects of relative changes in T1, T2, and r1 on
drawdown are very significant and the parameters rw

and S2 are fairly sensitivity only at an early time
in the positive-skin case. In addition, the effect of
relative change in r1 on drawdown in the positive-
skin case is much larger than those in the negative-skin
case.

CONCLUSION

A mathematical model describing the drawdown distri-
bution for a radial flow to a fully penetrating well of
finite radius in a two-zone leaky confined aquifer is devel-
oped, accounting for the effect of the finite-thickness skin
zone. The general solution to a two-zone leaky confined
aquifer system in Laplace domain is developed and the
time-domain solution is obtained by the modified Crump
(1976) algorithm. The conclusions can be drawn as fol-
lows:

1. An aquitard with larger hydraulic conductivity and
smaller thickness leads to a smaller drawdown in the
positive-skin case. Both hydraulic conductivity and
thickness of the aquitard influence the drawdown after
a large pumping time in a two-zone leaky confined
aquifer system.

2. The effect of relative change in formation transmissiv-
ity T2 to the drawdown is significant for the negative-
skin case. On the other hand, the effects of relative
changes in the transmissivities of the skin and forma-
tion zones (i.e. T1 and T2) and the radial distance from
the centerline of the well to the outer skin envelope
(r1) on the drawdown are significant for the positive-
skin case. In addition, the drawdown in response to the
relative change in the well radius (rw) and the forma-
tion storage coefficient (S2) is sensitive only at early
time.

3. This solution predicts the drawdown distribution in
a leaky confined aquifer system with the skin zone
around the wellbore. It is useful in preliminary design
for a constant-flux pumping system in a two-zone leaky
confined aquifer.
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APPENDIX A. DERIVATION OF THE
LAPLACE-DOMAIN SOLUTIONS TO

EQUATIONS (21) AND (22)
Applying Laplace transforms to Equations (1) and (2)
with Equation (20) yields the following subsidiary
equations, respectively,

d2s1�r, p�

dr2 C 1

r

ds1�r, p�

dr
D ˛2

1s1�r, p�, rw � r � r1

�A1�
and

d2s2�r, p�

dr2 C 1

r

ds2�r, p�

dr
D ˛2

2s2�r, p�, r1 � r < 1
�A2�

where p is the Laplace transform variable correspond-
ing to the time variable t; s�r, p� is the transformed
drawdown; ˛2

1 D �S1/T1�p C �K0˛0/T1� coth�˛0b0�; ˛2
2 D

�S2/T2�p C �K0˛0/T2� coth�˛0b0�; and ˛02 D pS0/�b0K0�.
The boundary conditions of Equations (4) and (5) in

Laplace domain are

s2�1, p� D 0 �A3�

and
Qw

p
D �2�T1rw

ds1�rw, p�

dr
�A4�

Moreover, the continuity conditions of drawdown and
flux between the skin and formation zones after applying
Laplace transform yield

s1�r1, p� D s2�r1, p� �A5�

and
T1

ds1�r1, p�

dr
D T2

ds2�r1, p�

dr
�A6�

The general solutions to Equations (A1) and (A2) are

s1�r, p� D D1I0�˛1r� C D2K0�˛1r� �A7�

and

s2�r, p� D D3I0�˛2r� C D4K0�˛2r� �A8�

where D1, D2, D3, and D4 are undetermined constants.
Substituting Equations(A7) and (A8) into

Equations(A3)–(A6), the undetermined constants can
then be determined as

D1 D
(

Qw

2�rwT1˛1p

) ( ��1

�1I1�˛1rw� C �2K1�˛1rw�

)

�A9�

D2 D
(

Qw

2�rwT1˛1p

) (
�2

�1I1�˛1rw� C �2K1�˛1rw�

)

�A10�

D3 D 0 �A11�
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and

D4 D
(

Qw

2�rwT1˛1p

)

( ��1I0�˛1r1� C �2K0�˛1r1�

��1I1�˛1rw� C �2K1�˛1rw��K0�˛2r1�

)
�A12�

with

�1 D T2˛2K0�˛1r1�K1�˛2r1� � T1˛1K1�˛1r1�K0�˛2r1�
�A13�

and

�2 D T2˛2I0�˛1r1�K1�˛2r1� C T1˛1I1�˛1r1�K0�˛2r1�
�A14�

Consequently, the solutions of drawdowns within the skin
and formation zones can then be respectively obtained by
substituting the constants in Equations (A9) and (A10)
into Equation (A7) and the constants in Equations (A11)
and (A12) into Equation (A8). The final results are given
as Equations (21) and (22) in the text.
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