doc. Ing. Milan Petrík, Ph.D.
Milan Petrík

List of publications

Journal articles: 

  1. M. Petrík. Dominance on continuous Archimedean triangular norms and generalized Mulholland inequality. Fuzzy Sets and Systems 403 (2021) 88-100. DOI: 10.1016/j.fss.2020.01.012. [PDF]
  2. M. Petrík and T. Vetterlein. Rees coextensions of finite tomonoids and free pomonoids. Semigroup Forum 99 (2019) 345-367. DOI: 10.1007/s00233-018-9972-z. [PDF]
  3. M. Petrík and P. Sarkoci. Continuous weakly cancellative triangular subnorms: I. Their web-geometric properties. Fuzzy Sets and Systems 332 (2018) 93-110. DOI: 10.1016/j.fss.2017.04.010. [PDF]
  4. M. Petrík. Dominance on strict triangular norms and Mulholland inequality. Fuzzy Sets and Systems 335 (2018) 3-17. DOI: 10.1016/j.fss.2017.06.001. [PDF]
  5. M. Petrík and T. Vetterlein. Rees coextensions of finite, negative tomonoids. Journal of Logic and Computation 27 (2017) 337-356. DOI: 10.1093/logcom/exv047. [PDF]
  6. M. Petrík. New solutions to Mulholland inequality. Aequationes Mathematicae 89 (2015) 1107-1122. DOI: 10.1007/s00010-014-0327-x. [PDF]
  7. M. Petrík and R. Mesiar. On the structure of special classes of uninorms. Fuzzy Sets and Systems 240 (2014) 22-38. DOI: 10.1016/j.fss.2013.09.013. [PDF]
  8. M. Petrík and P. Sarkoci. Associativity of triangular norms characterized by the geometry of their level sets. Fuzzy Sets and Systems 202 (2012) 100-109. DOI: 10.1016/j.fss.2012.01.008. [PDF]
  9. M. Navara, M. Petrík, and P. Sarkoci. Explicit formulas for generators of triangular norms. Publicationes Mathematicae Debrecen 77 (2010) 171-191. [PDF]
  10. M. Petrík and P. Sarkoci. Zero-reconstructible triangular norms as universal approximators. Neural Network World 10 (2010) 63-67. [PDF]
  11. M. Petrík. Convex combinations of strict t-norms. Soft Computing - A Fusion of Foundations, Methodologies and Applications 14 (2010) 1053-1057. DOI: 10.1007/s00500-009-0484-3. [PDF]
  12. V. Chudáček, G. Georgoulas, L. Lhotská, C. Stylios, M. Petrík, and M. Čepek. Examining cross-database global training to evaluate five different methods for ventricular beat classification. Physiological Measurement 30 (2009) 661-677. DOI: 10.1088/0967-3334/30/7/010. [PDF]
  13. M. Petrík and P. Sarkoci. Convex combinations of nilpotent triangular norms. Journal of Mathematical Analysis and Applications 350 (2009) 271-275. DOI: 10.1016/j.jmaa.2008.09.060. [PDF]
  14. M. Petrík. Many-valued R-S memory circuits. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 16 (2008) 495-518. DOI: 10.1142/S0218488508005388. [PDF]
  15. R. Horčík, C. Noguera, and M. Petrík. On n-contractive Fuzzy Logics. Mathematical Logic Quarterly 56 (2007) 268-288. DOI: 10.1002/malq.200610044. [PDF]
  16. M. Petrík. Quine-McCluskey method for many-valued logical functions. Soft Computing - A Fusion of Foundations, Methodologies and Applications 12 (2007) 393-402. DOI: 10.1007/s00500-007-0175-x. [PDF]
  17. M. Petrík. Finding Normal Forms using Svoboda Maps. Journal of Electrical Engineering 54 (2003) 93-98. [PDF]
  18. M. Petrík. Svoboda Maps in Many-Valued Logic. Journal of Electrical Engineering 53 (2002) 100-104. [PDF]