I have studied molecular and evolutionary biology at Charles University in Prague (2005-2013). My research topic were bacterial colonies. I started with study of inter-colony signaling [1], followed by interactions of different bacterial species [2], heredity and variation in colony shape [3], volatile antibiotic inactivation system [4] and volatile compound based identification of different strains [5].
[1] Čepl, J., Pátková, I., Blahůšková, A., Cvrčková, F., & Markoš, A. (2010). Patterning of mutually interacting bacterial bodies: close contacts and airborne signals. BMC microbiology, 10(1), 1-15.
[2] Pátková, I., Čepl, J. J., Rieger, T., Blahůšková, A., Neubauer, Z., & Markoš, A. (2012). Developmental plasticity of bacterial colonies and consortia in germ-free and gnotobiotic settings. BMC microbiology, 12(1), 1-19
[3] Čepl, J., Blahůšková, A., Neubauer, Z., & Markoš, A. (2016). Variations and heredity in bacterial colonies. Communicative & Integrative Biology, 9(6), e1261228.
[4] Čepl, J., Blahůšková, A., Cvrčková, F., & Markoš, A. (2014). Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation. FEMS microbiology letters, 354(2), 126-132.
[5] Sovová, K., Čepl, J., Markoš, A., & Španěl, P. (2013). Real time monitoring of population dynamics in concurrent bacterial growth using SIFT-MS quantification of volatile metabolites. Analyst, 138(17), 4795-4801.
After joining KGFLD (2014 -), I continue with bacterial colony model only in-silico in the form of population simulations [6,7]. I have collaborated on simulation studies of forest tree breeding strategies [8,9] and I am currently working on simulation studies of the variation of the quantitative trait after the colonization of the new territory and the changes of adaptability to climate change. I also participate in the evaluation of genetic data for population genetics/evolutionary biology studies [10].
[6] Čepl, J., Scholtz, V., & Scholtzová, J. (2016). The fitness change and the diversity maintenance in the growing mixed colony of two Serratia rubidaea clones. Archives of microbiology, 198(3), 301-306.
[7] Čepl, J., Scholtz, V., & Scholtzová, J. (2019). Modeling of concentric pattern of Serratia marcescens colony. Archives of microbiology, 201(1), 87-92.
[8] Stejskal, J., Lstibůrek, M., Klápště, J., Čepl, J., & El-Kassaby, Y. A. (2018). Effect of genomic prediction on response to selection in forest tree breeding. Tree Genetics & Genomes, 14(5), 1-9.
[9] Stejskal, J., Klápště, J., Čepl, J., El-Kassaby, Y. A., & Lstibůrek, M. (2022). Effect of clonal testing on the efficiency of genomic evaluation in forest tree breeding. Scientific reports, 12(1), 1-5.
[10] Korecký, J., Čepl, J., Stejskal, J., Faltinová, Z., Dvořák, J., Lstibůrek, M., & El-Kassaby, Y. A. (2021). Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Scientific reports, 11(1), 1-12.
Another area of my interest is the evaluation of rich physiological data, such as gene expression [11], volatile metabolites [12], spectral reflectance [13] or photosynthesis parameters viewed through chlorophyll fluorescence [14,15]. For the latter two, my goal is to capture genetic variability in certain sections of the reflectance and fluorescence curves, which will lead to a deeper understanding of the significance of such phenotypes.
[11] Čepl, J., Stejskal, J., Korecký, J., Hejtmánek, J., Faltinová, Z., Lstibůrek, M., & Gezan, S. (2020). The dehydrins gene expression differs across ecotypes in Norway spruce and relates to weather fluctuations. Scientific reports, 10(1), 1-9.
[12] Stříbrská, B., Hradecký, J., Čepl, J., Tomášková, I., Jakuš, R., Modlinger, R., ... & Jirošová, A. (2022). Forest margins provide favourable microclimatic niches to swarming bark beetles, but Norway spruce trees were not attacked by Ips typographus shortly after edge creation in a field experiment. Forest Ecology and Management, 506, 119950.
[13] Čepl, J., Stejskal, J., Lhotáková, Z., Holá, D., Korecký, J., Lstibůrek, M., ... & Albrechtová, J. (2018). Heritable variation in needle spectral reflectance of Scots pine (Pinus sylvestris L.) peaks in red edge. Remote Sensing of Environment, 219, 89-98.
[14] Čepl, J., Holá, D., Stejskal, J., Korecký, J., Kočová, M., Lhotáková, Z., ... & Lstibůrek, M. (2016). Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.). Tree physiology, 36(7), 883-895.
[15] Tomášková, I., Pastierovič, F., Krejzková, A., Čepl, J., & Hradecký, J. (2021). Norway spruce ecotypes distinguished by chlorophyll a fluorescence kinetics. Acta Physiologiae Plantarum, 43(2), 1-6.
Complete publication list:
https://www.researchgate.net/profile/Jaroslav-Cepl/research